JPS6240339A - Aluminum-base composite material excellent in cutting tool life - Google Patents

Aluminum-base composite material excellent in cutting tool life

Info

Publication number
JPS6240339A
JPS6240339A JP60178797A JP17879785A JPS6240339A JP S6240339 A JPS6240339 A JP S6240339A JP 60178797 A JP60178797 A JP 60178797A JP 17879785 A JP17879785 A JP 17879785A JP S6240339 A JPS6240339 A JP S6240339A
Authority
JP
Japan
Prior art keywords
composite material
nonmetallic
cutting tool
aluminum
tool life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60178797A
Other languages
Japanese (ja)
Other versions
JPH0138858B2 (en
Inventor
Tsunemasa Miura
三浦 恒正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP60178797A priority Critical patent/JPS6240339A/en
Publication of JPS6240339A publication Critical patent/JPS6240339A/en
Publication of JPH0138858B2 publication Critical patent/JPH0138858B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al-base composite material combining prescribed high elasticity and heat-resisting strength with superior cutting tool life by uniformly dispersing nonmetallic grains having controlled size and quantity in an Al matrix. CONSTITUTION:The nonmetallic grains are uniformly dispersed in the Al matrix. Moreover, the above nonmetallic grains are set as in the following: average grain size, <=3.0mum; maximum grain size, <=8.0mum; and content, <=35.0vol%, preferably >=about 1.5%. In this way, the Al-base composite material combining high elasticity and heat-resisting strength with superior cutting tool life characteristic can be obtained. The above composite material can be manufactured by blending, in a prescribed ratio, an Al powder with a powder of nonmetallic reinforcing material having prescribed average and maximum grain sizes, such as SiC, Al2O3, Si3N4, B4C, etc., mixing the above by a mechanical alloying method etc., compacting the resulting mixture into a billet and then subjecting the billet to extrusion forming.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えばコンロッド、ピストン、ロッカーア
ーム、ピストンピン、トーションバー等の高弾性、高耐
熱強度に加えて良好な切削工具寿命特性が要求される自
動車エンジン部品等の素材として好適な、切削工具寿命
に優れたアルミニウム基複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is applicable to connecting rods, pistons, rocker arms, piston pins, torsion bars, etc., which require good cutting tool life characteristics in addition to high elasticity and high heat-resistant strength. The present invention relates to an aluminum matrix composite material that is suitable as a material for automobile engine parts and has an excellent cutting tool life.

なおこの明細書において、アルミニウムの詔はアルミニ
ウム合金を含む意味において用いる。
In this specification, the term "aluminum" is used to include aluminum alloys.

従来の技術及び間笛点 アルミニ「クム基複合材料は一般に、弾性、耐熱強度に
優れるため、自動車エンジン部品等の素材として好適な
ものである。ところが、実際の適用に際しては、これら
の部品を所定の寸法に仕上げるための切削加工が不可避
であるのに対し、アルミニウム基複合材料は概して切削
性、特に切削工具寿命に劣るものであるため、この点が
自動車エンジン部品材料等への実用化を阻む要因となっ
ていた。
Conventional Technology and Aluminum-based Composite materials generally have excellent elasticity and heat-resistant strength, so they are suitable as materials for automobile engine parts, etc. However, in actual application, these parts are However, aluminum-based composite materials generally have poor machinability, especially the life of cutting tools, which hinders their practical application as materials for automobile engine parts. This was a contributing factor.

この発明はかかる事情に鑑みてなされたものであって、
所定の高弾性を保有しながら切削工具寿命を改善したア
ルミニウム基複合材料の提供を目的とするものである。
This invention was made in view of such circumstances, and
The object of the present invention is to provide an aluminum matrix composite material that has a predetermined high elasticity and has an improved cutting tool life.

問題点を解決するための手段 この目的は、発明者らの実験と研究の結果、アルミニウ
ムマトリクス中に、大きざと含有mを制御した非金属粒
子を均一に分散させてなる粒子分散強化型のアルミニウ
ム基複合材料によっで達成しえたものである。
Means for Solving the Problems As a result of experiments and research by the inventors, the purpose was to create a particle dispersion-strengthened aluminum material in which non-metallic particles with a roughly controlled content m were uniformly dispersed in an aluminum matrix. This was achieved using a base composite material.

すなわちこの発明は、アルミニウムマトリクス中に、非
金属粒子が均一に分散されたアルミニウム基複合材料で
あって、前記非金属粒子が平均粒径:3.0μm以下、
最大粒径:8.0μm以下、含有1:35.Ovo 1
%以下に規定されてなる切削工具寿命に優れたアルミニ
ウム基複合材料を要旨とする。
That is, the present invention provides an aluminum matrix composite material in which nonmetallic particles are uniformly dispersed in an aluminum matrix, wherein the nonmetallic particles have an average particle size of 3.0 μm or less,
Maximum particle size: 8.0 μm or less, content 1:35. Ovo 1
% or less and has an excellent cutting tool life.

前記非金属粒子は、複合材料の強化相を形成するもので
あり、非金属の種類としては例えばSiC,Aj!z 
03 、Si3N4.84 C等を始めとする、金属基
複合材料における既知の非金属強化材が任意に採択され
る。この非金属粒子がマトリクス中に分散されることに
より、複合材としての特性を発揮されるものであるが、
この発明ではその平均粒径、最大粒径、含有量が上記規
定値以下にコントロールされなければならない。上記の
値を越えると切削工具寿命の改善効果がなく、所期の目
的を達成できないからである。切削工具寿命のより顕著
な改善効果を期待するためには、粒子の平均粒径は、1
゜0μm以下に設定されるのが好ましい。なお実験的に
は0.005μm程度の大きさまで可能と思われる。ま
た最大粒径は5.0μm以下となされるのが好ましく、
含有量は25VO1%以下となされるのが好ましい。た
だし含有量が1、Ovo1%未満では所望の高弾性が得
られない虞れがあるため、1.0VOI%以上に設定す
るのが望ましい。
The nonmetallic particles form the reinforcing phase of the composite material, and examples of nonmetallic particles include SiC, Aj! z
Known non-metallic reinforcements in metal matrix composites are optionally employed, including 03, Si3N4.84C, etc. By dispersing these nonmetallic particles in a matrix, the properties of a composite material are exhibited.
In this invention, the average particle size, maximum particle size, and content must be controlled to be below the above specified values. This is because if the above value is exceeded, there is no effect of improving the life of the cutting tool, and the intended purpose cannot be achieved. In order to expect a more significant improvement effect on cutting tool life, the average particle size of the particles should be 1.
It is preferable to set it to 0 μm or less. Note that experimentally it seems possible to have a size of about 0.005 μm. Further, the maximum particle size is preferably 5.0 μm or less,
The content is preferably 25VO1% or less. However, if the content is less than 1% OVO, the desired high elasticity may not be obtained, so it is desirable to set it to 1.0% VOI% or more.

一方、71〜リクス材料としてのアルミニウムは、その
組成が特に限定されるものではなく、適用部品の要求特
性に応じて選択した任意のものを用いることができる。
On the other hand, the composition of aluminum as the 71-RIX material is not particularly limited, and any aluminum selected depending on the required characteristics of the applied parts can be used.

従って純アルミニウム、従来の規格合金のみならず、各
含有成分の配合比率を任意に設定した合金を用いても良
い。
Therefore, not only pure aluminum and conventional standard alloys, but also alloys in which the blending ratio of each component is set arbitrarily may be used.

このアルミニウム材料は複合材の製造に際しては粉末と
して準備されなければならない。
This aluminum material must be prepared as a powder for composite manufacturing.

この発明に係るアルミニウム基複合材料は、そのVB六
方法ついては何ら限定するものではなく、分散強化型複
合材の既知の製造方法を任意に採択しつる。製造方法の
一例を挙げれば、この発明の要件を満たす平均粒径、最
大粒径の粒子からなる非金属粉末と、アルミニウム粉末
とを前記規定条件以下の含有比率で混合したのち、真空
ホットプレス等により押出し用ビレットに加圧成型し、
次いでこのビレットを押出し成形して製作する方法があ
る。なお、非金属粒子をアルミニウムマトリクス中によ
り均一に分散させるため、両粉末の混合段階で、アルミ
ニウム粉末中に非金属粉末を機械的に分散させるいわゆ
る機械的合金化処理法(メカニカルアロイイング法)に
より複合粉末を作り、その後加圧成型、押出し成形を順
次的に施して複合材を製作することも推奨される。
The aluminum matrix composite material according to the present invention is not limited in any way to the VB6 method, and any known manufacturing method for dispersion-strengthened composite materials may be arbitrarily adopted. To give an example of a manufacturing method, after mixing a nonmetallic powder consisting of particles with an average particle size and a maximum particle size that meet the requirements of the present invention and aluminum powder at a content ratio below the above-mentioned specified conditions, vacuum hot pressing etc. Pressure molded into a billet for extrusion,
Next, there is a method of manufacturing by extrusion molding this billet. In addition, in order to disperse the nonmetallic particles more uniformly in the aluminum matrix, a so-called mechanical alloying process (mechanical alloying method) in which the nonmetallic powder is mechanically dispersed in the aluminum powder is used at the mixing stage of both powders. It is also recommended to produce a composite material by making a composite powder and then sequentially applying pressure molding and extrusion molding.

発明の効果 この発明に係るアルミニウム基複合材料は、複合材であ
ることによる高弾性、耐熱強度を損うことなく、実施例
の参酌によって明らかなように、アルミニウム基複合材
料の欠点であった切削工具寿命を大幅に改善したものと
なる。従つて、自動車エンジン部品等の素材に適用した
場合にも該部品の良好な切削加工を行いうろこととなり
、各種部品素材としての実用範囲を拡げることができる
Effects of the Invention The aluminum matrix composite material according to the present invention does not impair the high elasticity and heat resistance strength due to being a composite material, and as is clear from consideration of the examples, the aluminum matrix composite material does not suffer from cutting, which is a drawback of aluminum matrix composite materials. This greatly improves tool life. Therefore, even when applied to materials such as automobile engine parts, the parts can be cut well, and the range of practical use as materials for various parts can be expanded.

実施例 次にこの発明の実施例を比較例との対比において示す。Example Next, examples of the present invention will be shown in comparison with comparative examples.

Al−8wt%Fe−5,5wt%s;−4.5wt%
Cu−o、 5wt%Mgの組成からなるアルミニウム
合金を、N2ガスアトマイズ法により粒度150メツシ
ユ以下に微粉化した。次いでこのアルミニウム合金粉末
と、第1表に示す平均粒径、最大粒径の粒子からなる各
種の非金属粉末とを、仝体mが約2Kqでかつ非金属粉
末が同表に示す含有量となるようにヘンシェルミキサー
(高速攪拌機)により混合した。混合条件は雰囲気:N
2ガス、回転数:200Orpm、時間:4分間で行っ
た。
Al-8wt%Fe-5,5wt%s;-4.5wt%
An aluminum alloy having a composition of Cu-O and 5 wt% Mg was pulverized to a particle size of 150 mesh or less by N2 gas atomization. Next, this aluminum alloy powder and various nonmetallic powders consisting of particles having the average particle size and maximum particle size shown in Table 1 were mixed so that the mass m was about 2 Kq and the content of the nonmetallic powder was as shown in the same table. The mixture was mixed using a Henschel mixer (high-speed stirrer) until the mixture was mixed. Mixing conditions are atmosphere: N
The test was carried out using 2 gases, rotation speed: 200 rpm, and time: 4 minutes.

L以下余白コ 第1表 次に、試料N006及び7のものを除いて、アトライタ
ーにより機械的合金化処理を施し、薇械的合金化粉末を
作製した。処理条件は雰囲気:Arガス、分散助剤:エ
タノール、回転数:280rl)m、処理時間:10時
間で行った。
Table 1 (Left space below L) Next, all samples except Samples No. 006 and 7 were subjected to mechanical alloying treatment using an attritor to produce mechanically alloyed powders. The processing conditions were: atmosphere: Ar gas, dispersion aid: ethanol, rotation speed: 280 ml), and processing time: 10 hours.

次に上記により得られた複合粉末、及び試料N006.
7のものについては機械的合金化処理を施さない混合粉
末を、それぞれの処理後Arガス雰囲気の容器に回収し
たのち、真空ホットプレス装置へ移してホットプレスし
、外径75mmx長さ150mmのビレットを作製した
。ホットプレスは、Ar雰囲気の装置内で容器から圧粉
用コンテナに粉末を移したのち、装置内をロータリーポ
ンプにて真空にし、続いてコンテナ内に装着したヒータ
ーにより400’Cに加熱して5000−7000KC
lf/rmの圧力で行った。
Next, the composite powder obtained above and sample N006.
For No. 7, the mixed powder that was not subjected to mechanical alloying treatment was collected into a container with an Ar gas atmosphere after each treatment, and then transferred to a vacuum hot press machine and hot pressed to form a billet with an outer diameter of 75 mm and a length of 150 mm. was created. Hot pressing involves transferring powder from a container to a container for powder compaction in an Ar atmosphere device, then evacuating the device using a rotary pump, then heating it to 400'C with a heater installed in the container to 5,000 degrees Celsius. -7000KC
The pressure was lf/rm.

次に1記により得られたビレットを、400℃に加熱し
、押出10で外径23.7mmの丸棒に押出した。調質
はT1 とした。
Next, the billet obtained in 1 was heated to 400° C. and extruded into a round bar with an outer diameter of 23.7 mm using an extruder 10. The tempering was set to T1.

こうして得られた各種の複合材につき、切削工具寿命を
調゛べた。また試料No、1.3.10.11のものに
ついては室温及び300 ’Cでの機械的性質を・し調
べた。その結果を第2表に示す。
The cutting tool life of the various composite materials thus obtained was investigated. In addition, the mechanical properties of sample No. 1.3.10.11 at room temperature and 300'C were investigated. The results are shown in Table 2.

なお、切削工具寿命は、切削速度: 247m/min
 、送り: 0.2mm/rpm 、切込み:1mmの
条件で、外径23mmx長さ200mmの供試材□を8
回切削したときのに10超硬バイトの横進1□ げ面摩耗幅で評価した。           1[以
下余白]         1 □ 第2表 五!2 印 ■ 万 廿 軽 T ■ 五 可 (注)σ8:引張強さ E:弾性係数 δ:伸び をそれぞれ示す。
In addition, the cutting tool life is determined by cutting speed: 247 m/min.
, feed: 0.2 mm/rpm, depth of cut: 1 mm, test material □ of outer diameter 23 mm x length 200 mm was cut into 8
Evaluation was made based on the wear width of the 1□ side surface of a 10 carbide cutting tool after cutting twice. 1 [Space below] 1 □ Table 2, 5! 2 Seal ■ Wanren Light T ■ Goka (Note) σ8: Tensile strength E: Elastic modulus δ: Elongation.

上記結果から明らかなように、この発明に係るアルミニ
ウム基複合材料は高弾性、高強度を保有するものである
うえに、バイトの横逃げ面摩耗幅がいずれも200μm
以下で実用上何ら問題なく、切削工具寿命に優れたもの
であることを確認しえた。また機械的性質の結果から、
非金属粒子の粒径が微細であるほど、強度、伸びも改善
されることがわかる。
As is clear from the above results, the aluminum matrix composite material according to the present invention has high elasticity and high strength, and the side flank wear width of the cutting tool is 200 μm in both cases.
It was confirmed that there were no practical problems and that the cutting tool had an excellent lifespan. Also, from the results of mechanical properties,
It can be seen that the finer the particle size of the nonmetal particles, the better the strength and elongation.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] アルミニウムマトリクス中に、非金属粒子が均一に分散
されたアルミニウム基複合材料であって、前記非金属粒
子が平均粒径:3.0μm以下、最大粒径:8.0μm
以下、含有量:35.0vol%以下に規定されてなる
切削工具寿命に優れたアルミニウム基複合材料。
An aluminum matrix composite material in which nonmetallic particles are uniformly dispersed in an aluminum matrix, wherein the nonmetallic particles have an average particle size of 3.0 μm or less and a maximum particle size of 8.0 μm.
The following is an aluminum matrix composite material having an excellent cutting tool life and having a content of 35.0 vol% or less.
JP60178797A 1985-08-13 1985-08-13 Aluminum-base composite material excellent in cutting tool life Granted JPS6240339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60178797A JPS6240339A (en) 1985-08-13 1985-08-13 Aluminum-base composite material excellent in cutting tool life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178797A JPS6240339A (en) 1985-08-13 1985-08-13 Aluminum-base composite material excellent in cutting tool life

Publications (2)

Publication Number Publication Date
JPS6240339A true JPS6240339A (en) 1987-02-21
JPH0138858B2 JPH0138858B2 (en) 1989-08-16

Family

ID=16054810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178797A Granted JPS6240339A (en) 1985-08-13 1985-08-13 Aluminum-base composite material excellent in cutting tool life

Country Status (1)

Country Link
JP (1) JPS6240339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057895A (en) * 2017-12-11 2018-05-22 太原理工大学 The preparation method of nuclear reactor degraded neutron composite material tubular part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116851A (en) * 1980-02-21 1981-09-12 Nissan Motor Co Ltd Cylinder liner material for internal combustion engine
JPS58141356A (en) * 1982-02-15 1983-08-22 Nissan Motor Co Ltd Wear resistant sintered aluminum alloy
JPS59219444A (en) * 1983-05-24 1984-12-10 Toyota Motor Corp Dispersion strengthened aluminum alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116851A (en) * 1980-02-21 1981-09-12 Nissan Motor Co Ltd Cylinder liner material for internal combustion engine
JPS58141356A (en) * 1982-02-15 1983-08-22 Nissan Motor Co Ltd Wear resistant sintered aluminum alloy
JPS59219444A (en) * 1983-05-24 1984-12-10 Toyota Motor Corp Dispersion strengthened aluminum alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057895A (en) * 2017-12-11 2018-05-22 太原理工大学 The preparation method of nuclear reactor degraded neutron composite material tubular part

Also Published As

Publication number Publication date
JPH0138858B2 (en) 1989-08-16

Similar Documents

Publication Publication Date Title
EP0990054B1 (en) Method of manufacturing a dispersion-strengthened aluminium alloy
JPH0742536B2 (en) Aluminum-based alloy product having high strength and high toughness and its manufacturing method
JP4698839B2 (en) Metal / ceramic composite molding material
KR100345206B1 (en) Process for producing particle-reinforced titanium alloy
EP0529993B1 (en) Production of Aluminum matrix composite powder
US5865912A (en) SiC-reinforced aluminum alloy composite material
JPH0320452B2 (en)
JPS63169340A (en) Production of ceramic dispersion strengthened aluminum alloy
JPS6240339A (en) Aluminum-base composite material excellent in cutting tool life
RU2640055C1 (en) Metal-ceramic composite and method of its production (versions)
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
Levashov et al. Structure and properties of dispersion-strengthened-with-nanosized particles refractory hard material TiC—Ni-alloy
JP2584488B2 (en) Processing method of wear resistant aluminum alloy
JPS62227057A (en) Aluminum-base composite material excellent in wear resistance and its production
JPH05339659A (en) Production of sintered hard alloy having sheet-like tungsten carbide and coated sintered hard alloy
JPH0372047A (en) Light al-base composite material and its manufacture
JP2564527B2 (en) Method for manufacturing heat-resistant, high-strength, high-ductility aluminum alloy member
JPH0322458B2 (en)
JPH01275052A (en) Dot printer wire of composite metal and its manufacture
JPH02115340A (en) Aluminum matrix composite material having excellent heat resistance and its manufacture
JPH07268401A (en) High strength aluminum alloy (powder) and its production
JPH07331356A (en) 3aluminum-iron dispersed reinforced aluminum alloy and powder and production thereof
JPS62227058A (en) Aluminum-base composite material excellent in wear resistance and its production
JPH05132727A (en) Homogeneous mixing method of sic whisker and al alloy powder
JPH076013B2 (en) Method for producing aluminum- and magnesium-based metal composite material