JPH076013B2 - Method for producing aluminum- and magnesium-based metal composite material - Google Patents

Method for producing aluminum- and magnesium-based metal composite material

Info

Publication number
JPH076013B2
JPH076013B2 JP1219118A JP21911889A JPH076013B2 JP H076013 B2 JPH076013 B2 JP H076013B2 JP 1219118 A JP1219118 A JP 1219118A JP 21911889 A JP21911889 A JP 21911889A JP H076013 B2 JPH076013 B2 JP H076013B2
Authority
JP
Japan
Prior art keywords
composite
magnesium
powder
aluminum
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1219118A
Other languages
Japanese (ja)
Other versions
JPH0382723A (en
Inventor
勝 秋山
秀 竹中
穂高 拓植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP1219118A priority Critical patent/JPH076013B2/en
Publication of JPH0382723A publication Critical patent/JPH0382723A/en
Publication of JPH076013B2 publication Critical patent/JPH076013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック質のウイスカー等の短繊維または
微粒子をアルミニウムおよびマグネシウム系のマトリッ
クス金属に複合化するために有効なアルミニウムおよび
マグネシウム系金属複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum- and magnesium-based metal composite which is effective for composite of short fibers or fine particles such as ceramic whiskers into an aluminum- and magnesium-based matrix metal. The present invention relates to a manufacturing method of wood.

〔従来の技術〕[Conventional technology]

アルミニウムおよびマグネシウムまたはその合金をセラ
ミック質の材料により複合強化する手段としては、粉末
焼結法、溶湯鍛造法(加圧鋳造法)などが実用的方法と
されているが、これらの方法で形成される複合材の特性
はマトリックス金属に対するセラミック質材料の複合界
面における濡れ性ならびに分散性の良否に大きく依存す
ることが知られている。
Powder sintering, molten metal forging (pressure casting), etc. are considered to be practical methods for the composite strengthening of aluminum and magnesium or their alloys by ceramic materials, but they are formed by these methods. It is known that the properties of composite materials depend greatly on the wettability and dispersibility of the composite material at the composite interface of the ceramic material to the matrix metal.

ところが、セラミック質の材料は概して融解したアルミ
ニウムおよびマグネシウム系金属との濡れ性がよくな
い。例えば、炭化けい素ウイスカーをアルミニウムまた
はマグネシウムの溶湯に入れて撹拌しても、界面は全く
濡れず円滑な相互分散は得られない。また、粉末焼結の
場合には複合成分の粒度調整を厳密に管理しないと均質
な分散組織を得ることができない。
However, ceramic materials generally do not have good wettability with molten aluminum and magnesium-based metals. For example, even if silicon carbide whiskers are placed in a molten metal of aluminum or magnesium and stirred, the interfaces are not wet at all and smooth mutual dispersion cannot be obtained. Further, in the case of powder sintering, a uniform dispersion structure cannot be obtained unless the particle size adjustment of the composite components is strictly controlled.

このような濡れ性および分散性を改善することにより複
合性能を向上させる手段については数多く提案されてい
るが、先行技術のうち実用性の高い方法として本出願人
により開発された特公昭61−51618号の発明がある。こ
の発明はSiCウイスカーによるFRMの製造法を対象にした
ものであり、構成上の特徴は、Al,Mgまたはそれらの合
金からなるマトリックス金属をSiCウイスカーで複合強
化する方法において、SiCウイスカーを圧縮した成形体
に800℃以上に加熱融解したマトリックス金属を含浸し
て相互接触させることにより前駆体を形成し、該前駆体
をマトリックス金属の溶湯中に撹拌分散してインゴット
化する点にある。
Although many means for improving the composite performance by improving such wettability and dispersibility have been proposed, Japanese Patent Publication No. 61-51618, which was developed by the present applicant as a highly practical method among the prior art. There is an invention of the issue. This invention is directed to a method for producing FRM by using SiC whiskers, and the structural feature is that Al, Mg, or a matrix metal composed of an alloy thereof is compositely strengthened with SiC whiskers, and the SiC whiskers are compressed. The point is that the molded body is impregnated with a matrix metal heated and melted at 800 ° C. or more and brought into contact with each other to form a precursor, and the precursor is stirred and dispersed in a molten metal of the matrix metal to form an ingot.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記の特公昭61−51618号に係る発明は、特定の条件で
予めFRMの前駆体を形成することによって界面間の濡れ
性を向上させたものであるが、前駆体を形成する過程で
SiCウイスカーの成形体(プリフォーム)を作成する必
要があるうえに、800℃以上に加熱融解したマトリック
ス金属を含浸しなければならないため、この方法で適切
な1100〜1200℃では往々にして複合界面部分のマトリッ
クス金属が界面反応により脆弱な炭化物に転化して材質
劣化を招く問題点がある。
The invention of Japanese Patent Publication No. 61-51618 described above improves the wettability between interfaces by forming a precursor of FRM in advance under specific conditions.
Since it is necessary to make a SiC whisker molded body (preform) and to impregnate the matrix metal that has been heated and melted to 800 ° C or higher, this method often results in a complex interface at 1100 to 1200 ° C. There is a problem that a part of the matrix metal is converted into a brittle carbide due to an interfacial reaction, resulting in material deterioration.

本発明は、上記問題点の解消を課題として鋭意研究を重
ねた結果、前駆体となる複合母材の形成時に一定値以上
の圧力を負荷した場合には複合界面において化学反応を
生じることのない800℃以下の複合化処理によっても十
分に濡れ性が改善され、またセラミック質のウイスカー
等の短繊維または微粒子を強化材とし、予め成形体(プ
リフォーム)を形成しないで形成した複合母材によって
も優れた複合性能が付与される事実等を解明して開発に
至ったものである。
The present invention, as a result of intensive studies aimed at solving the above-mentioned problems, does not cause a chemical reaction at the composite interface when a pressure of a certain value or more is applied during the formation of the precursor composite matrix. The wettability is sufficiently improved even by the composite treatment at 800 ° C or less, and the short matrix or fine particles such as ceramic whiskers are used as the reinforcing material, and the composite base material is formed without forming a preform in advance. Has been developed by elucidating the fact that excellent composite performance is added.

したがって、本発明の目的は、セラミック質ウイスカー
等の短繊維または微粒子を強化材として常に均質で材質
劣化を生じることのない高性能のアルミニウムおよびマ
グネシウム系金属複合材の製造方法を提供するところで
ある。
Therefore, an object of the present invention is to provide a method for producing a high-performance aluminum- and magnesium-based metal composite material which is always homogeneous and does not cause material deterioration by using short fibers or fine particles such as ceramic whiskers as a reinforcing material.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するための本発明によるアルミニウム
およびマグネシウム系金属複合材の製造方法は、セラミ
ック質のウイスカー等の短繊維または微粒子をアルミニ
ウム粉またはマグネシウム粉もしくはその合金粉と混合
したのち、温度400〜800℃、圧力10Kg/cm2以上の条件で
熱圧焼結することによりVf5〜90%の複合母材を作成
し、該複合母材を前記アルミニウム粉またはマグネシウ
ム粉もしくはその合金粉と同一のマトリックス金属と共
にマトリックス金属の溶融温度域で加熱溶融撹拌して全
体を複合化することを構成上の要件とするもので、複合
母材を粉末焼結手段で形成している点に特徴付けられ
る。
The method for producing an aluminum- and magnesium-based metal composite material according to the present invention for achieving the above object is to mix short fibers or fine particles such as ceramic whiskers with aluminum powder or magnesium powder or an alloy powder thereof, and then the temperature of 400 ~ 800 ℃, to create a composite base material of Vf5 ~ 90% by hot pressure sintering under the conditions of pressure 10 Kg / cm 2 or more, the composite base material is the same as the aluminum powder or magnesium powder or its alloy powder The compositional requirement is that the matrix metal is heated and melted and stirred in the melting temperature range of the matrix metal to composite the whole, and it is characterized in that the composite base material is formed by powder sintering means.

本発明の強化材となるセラミック質には、酸化物系、非
酸化物系を問わず広く一般のセラミックス物質が含まれ
るが、特に炭化けい素および窒化けい素のウイスカーま
たは微粒子を用いた場合に効果が高い。
The ceramic material that serves as the reinforcing material of the present invention includes a wide range of general ceramic materials regardless of whether they are oxide-based or non-oxide-based, but especially when silicon carbide and silicon nitride whiskers or fine particles are used. Highly effective.

これらセラミック質のウイスカー等の短繊維または微粒
子をアルミニウム粉およびマグネシウム粉もしくはその
合金粉からなるマトリックス金属粉末と混合するには、
両方の粉末をアルコール、アセトンなどの有機溶媒中で
十分に撹拌分散して、濾過・乾燥する方法が用いられ
る。強化材とマトリックス金属粉末との混合比率は、複
合母材に占める強化材のVfが5〜90%範囲の所望値にな
るように設定する。
To mix short fibers or fine particles such as these ceramic whiskers with a matrix metal powder consisting of aluminum powder and magnesium powder or its alloy powder,
A method is used in which both powders are sufficiently stirred and dispersed in an organic solvent such as alcohol or acetone, and then filtered and dried. The mixing ratio of the reinforcing material and the matrix metal powder is set so that the Vf of the reinforcing material in the composite base material is a desired value in the range of 5 to 90%.

混合粉末は、ついでモールドに充填して一旦室温下で予
備圧縮したのち、温度400〜800℃、圧力10Kg/cm2以上の
条件で熱圧焼結してVf5〜90%の複合母材を作成する。
この場合、温度が400℃未満で圧力が10Kg/cm2を下廻る
と界面の濡れ性は効果的に改善されず、また、温度が80
0℃を越えると界面反応の危険が起こる。
The mixed powder is then filled in a mold and once pre-compressed at room temperature, and then hot-press sintering under conditions of a temperature of 400 to 800 ° C and a pressure of 10 Kg / cm 2 or more to produce a composite base material of Vf 5 to 90%. To do.
In this case, when the temperature is lower than 400 ° C and the pressure is lower than 10 kg / cm 2 , the wettability of the interface is not effectively improved, and the temperature is lower than 80 Kg / cm 2.
Above 0 ° C, there is a risk of interfacial reaction.

このような粉末焼結手段によって作成した複合母材は、
そのままもしくは適宜な粒塊状に加工して複合母材形成
時と同一のマトリックス金属粉と共にマトリックス金属
の溶融温度域で加熱溶融撹拌する。この工程は、予め溶
融しているマトリックス金属の溶湯中に複合母材を投入
して撹拌することも可能であるが、操作の安全性を考慮
すると、複合母材とマトリックス金属を固形状態でルツ
ボに入れて加熱溶融撹拌する処理方法を採ることが望ま
しい。この際のVf値は、複合母材のVfと共溶融するマト
リックス金属の量との関係から所望の比率に調整するこ
とができる。
The composite base material created by such powder sintering means,
As it is or after being processed into an appropriate agglomerate, it is heated, melted and stirred in the melting temperature range of the matrix metal together with the same matrix metal powder as in the formation of the composite base material. In this step, it is possible to add the composite base material to the molten metal of the matrix metal that has been melted in advance and to stir it. However, considering the safety of the operation, the composite base material and the matrix metal are in a solid state in a crucible. It is desirable to adopt a treatment method of heating, melting and stirring in a container. At this time, the Vf value can be adjusted to a desired ratio from the relationship between the Vf of the composite base material and the amount of the matrix metal co-melted.

加熱溶融撹拌した複合溶湯は、鋳型に注入してインゴッ
ト化する。
The composite molten metal that has been heated, melted and stirred is poured into a mold to form an ingot.

このようにして得られた複合材インゴットは、それ自体
セラミック質のウイスカー等の短繊維もしくは微粒子が
均質に分散した複合組織を有するが、使用目的に応じて
鍛造、圧延、押出し等の後加圧が施される。
The composite ingot thus obtained has a composite structure in which short fibers or fine particles such as ceramic whiskers are uniformly dispersed, but after forging, rolling, extruding, etc., depending on the purpose of use, it is pressed. Is applied.

〔作 用〕[Work]

本発明に従えば、強化材に対し一定値以上の圧力により
マトリックス金属を強制的に融着する複合母材の形成段
階で界面の濡れ性が効果的に改善され、もはや両成分が
分離することのない界面密着状態を形成する。このた
め、次段の加熱溶融撹拌の工程においては、強化材を被
包するマトリックス金属層を介して共溶融するマトリッ
クス金属と円滑、迅速に相互分散し、均質な複合組織に
転化する。
According to the present invention, the wettability of the interface is effectively improved in the step of forming the composite base material in which the matrix metal is forcibly fused by the pressure of a certain value or more against the reinforcing material, and the two components are no longer separated. To form an interface-free state with no interface. Therefore, in the subsequent step of heating, melting and stirring, the matrix metal that is co-melted through the matrix metal layer encapsulating the reinforcing material is smoothly and rapidly interdispersed and converted into a homogeneous composite structure.

このような作用に基づいて、界面反応を生ずることのな
い800℃以下の温度域においても高性能の複合組織を付
与することが可能となる。
Based on such an action, it becomes possible to impart a high-performance composite structure even in a temperature range of 800 ° C. or lower at which an interfacial reaction does not occur.

〔実施例〕〔Example〕

以下、実施例によって本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.

実施例1〜2、比較例1 直径0.2〜0.5μm、長さ100〜200μmの炭化けい素ウイ
スカー〔東海カーボン(株)製“トーカウイスカー”〕
とアルミニウム合金粉末(AC8A)を体積比30:70になる
ように秤量してエタノール中に投入し、十分に撹拌混合
したのち濾過・乾燥して1.5kgの混合粉末を得た。混合
粉末を金型に充填して予備圧縮し、引続きこれを450℃
の温度で圧力を変えて5分間熱圧焼結して、Vf30%の複
合母材を形成した。
Examples 1 and 2 and Comparative Example 1 Silicon carbide whiskers having a diameter of 0.2 to 0.5 μm and a length of 100 to 200 μm (“Tokai Carbon” manufactured by Tokai Carbon Co., Ltd.)
And aluminum alloy powder (AC8A) were weighed in a volume ratio of 30:70, put into ethanol, sufficiently stirred and mixed, and then filtered and dried to obtain 1.5 kg of mixed powder. Fill the mold with the mixed powder and pre-compress it, then continue at 450 ℃
The pressure was changed at the temperature of 5 to heat-sinter for 5 minutes to form a Vf 30% composite base material.

該複合母材の500gと前記のアルミニウム合金(AC8A)と
同一のマトリックス金属500gとを黒鉛ルツボに入れ750
℃に加熱して成分を溶融し、撹拌した。撹拌後の溶湯を
金型に注入、凝固させてVf15%の複合インゴットを得
た。
750g of the composite base material and 500g of the same matrix metal as the aluminum alloy (AC8A) were placed in a graphite crucible and 750
The ingredients were melted by heating to ° C and stirred. The molten metal after stirring was poured into a mold and solidified to obtain a Vf15% composite ingot.

表1の結果から、本発明の実施例は界面濡れ性と分散性
の改善が効果的に進行していることが認められた。
From the results in Table 1, it was confirmed that in the examples of the present invention, the interfacial wettability and the dispersibility were effectively improved.

実施例3、比較例2 実施例1の炭化けい素ウイスカーに代えて平均粒径3μ
mの窒化けい素微粉末を強化材とし、その他の工程、条
件等は実施例1と同一の条件でアルミニウム系金属複合
材を製造した。
Example 3, Comparative Example 2 Instead of the silicon carbide whiskers of Example 1, an average particle size of 3μ
An aluminum-based metal composite material was manufactured under the same conditions as in Example 1 except that silicon nitride fine powder of m was used as a reinforcing material.

このようにして得られた複合材の強度特性を表2に示し
た。なお、比較例としてアルミニウム合金単味の強度特
性を表2に併載した。
The strength characteristics of the composite material thus obtained are shown in Table 2. As a comparative example, Table 2 also shows the strength characteristics of the aluminum alloy alone.

実施例4、比較例3 マグネシウム粉(Mg純度99.9%以上、粒度0.2〜1.0ミ
リ)680gと実施例1と同一の炭化けい素ウイスカー540g
をエタノール中で分散混合し、真空乾燥してVf30%に相
当する混合粉体を得た。この粉体を直径100mmの金型に
充填して予備圧縮し、真空炉中で630℃加熱処理後、更
に630℃で熱圧焼結し複合母材を得た。この場合の圧力
は800Kg/cm2とした。
Example 4 and Comparative Example 3 Magnesium powder (Mg purity 99.9% or more, particle size 0.2 to 1.0 mm) 680 g and the same silicon carbide whiskers as Example 1 540 g
Was dispersed and mixed in ethanol and dried in vacuum to obtain a mixed powder corresponding to Vf30%. This powder was filled in a die having a diameter of 100 mm, pre-compressed, heat-treated at 630 ° C. in a vacuum furnace, and further hot-pressed at 630 ° C. to obtain a composite base material. The pressure in this case was 800 Kg / cm 2 .

この母材500gを不活性雰囲気中で280gのマグネシウム塊
と同時加熱して、溶解後撹拌し、Vf17%のマグネシウム
系金属複合材を得た。
500 g of this base material was heated at the same time as 280 g of magnesium lump in an inert atmosphere, dissolved and stirred to obtain a magnesium-based metal composite material with Vf of 17%.

得られた複合材の特性を、マトリックスとして使用した
マグネシウム単味と対比して表3に示した。
The properties of the composite obtained are shown in Table 3 in comparison with the plain magnesium used as matrix.

〔発明の効果〕 以上のとおり、本発明の製造方法を用いれば独特の濡れ
性および分散性の改善機能により、特性劣化を起こさな
い800℃以下の複合化温度において優れた複合性能を備
えるアルミニウムおよびマグネシウム系金属複合材を得
ることができる。そのうえ精密なプリフォーム形成およ
び粒度調整が不要となるから、量産性よく所望Vfの複合
組織体を供給することが可能となる。
[Effects of the Invention] As described above, the use of the manufacturing method of the present invention, due to the unique function of improving the wettability and dispersibility, makes aluminum having excellent composite performance at a composite temperature of 800 ° C. or lower that does not cause characteristic deterioration, and A magnesium-based metal composite material can be obtained. Moreover, since it is not necessary to precisely form a preform and adjust the particle size, it is possible to supply a desired Vf composite structure with good mass productivity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミック質のウイスカー等の短繊維また
は微粒子をアルミニウム粉またはマグネシウム粉もしく
はその合金粉と混合したのち、温度400〜800℃、圧力10
Kg/cm2以上の条件で熱圧焼結することによりVf5〜90%
の複合母材を作成し、該複合母材を前記アルミニウム粉
またはマグネシウム粉もしくはその合金粉と同一のマト
リックス金属と共にマトリックス金属の溶融温度域で加
熱溶融撹拌して全体を複合化することを特徴とするアル
ミニウム系およびマグネシウム系金属複合材の製造方
法。
1. Short fibers or fine particles such as ceramic whiskers are mixed with aluminum powder or magnesium powder or its alloy powder, and then the temperature is 400 to 800 ° C. and the pressure is 10
Vf5 ~ 90% by hot pressure sintering under the condition of Kg / cm 2 or more
A composite base material is prepared, and the composite base material is heated and melted and stirred in the melting temperature range of the matrix metal together with the same matrix metal as the aluminum powder or magnesium powder or its alloy powder to form a composite as a whole. Method for producing aluminum-based and magnesium-based metal composite material.
JP1219118A 1989-08-24 1989-08-24 Method for producing aluminum- and magnesium-based metal composite material Expired - Lifetime JPH076013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219118A JPH076013B2 (en) 1989-08-24 1989-08-24 Method for producing aluminum- and magnesium-based metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219118A JPH076013B2 (en) 1989-08-24 1989-08-24 Method for producing aluminum- and magnesium-based metal composite material

Publications (2)

Publication Number Publication Date
JPH0382723A JPH0382723A (en) 1991-04-08
JPH076013B2 true JPH076013B2 (en) 1995-01-25

Family

ID=16730528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219118A Expired - Lifetime JPH076013B2 (en) 1989-08-24 1989-08-24 Method for producing aluminum- and magnesium-based metal composite material

Country Status (1)

Country Link
JP (1) JPH076013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276323B (en) * 2013-06-29 2015-12-02 泉州晟鑫机械有限公司 The preparation method of high-strength corrosion-resisting compound thermal exchanging tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077945A (en) * 1983-10-04 1985-05-02 Kawasaki Steel Corp Manufacture of metallic material containing dispersed particle
JPS6186064A (en) * 1984-10-05 1986-05-01 Nippon Light Metal Co Ltd Production of composite metallic body compounded with inorganic fibers

Also Published As

Publication number Publication date
JPH0382723A (en) 1991-04-08

Similar Documents

Publication Publication Date Title
CN102260814B (en) In situ nano TiC ceramic particle reinforced aluminum based composite material and preparation method thereof
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
JP4287461B2 (en) Method for producing carbon nanocomposite metal material and method for producing carbon nanocomposite metal molded product
US4699849A (en) Metal matrix composites and method of manufacture
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
CN116287911A (en) Double-scale ceramic particle reinforced aluminum matrix composite material and preparation method thereof
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
CN108034866B (en) A kind of high-performance aluminium silicon nitride based composites and preparation method thereof
US5865912A (en) SiC-reinforced aluminum alloy composite material
EP0380973B1 (en) Reinforced materials
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH10219312A (en) Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
JP2921030B2 (en) Vane pump vane material and manufacturing method thereof
JP4359409B2 (en) Metal composite and method for producing the same
JPH076013B2 (en) Method for producing aluminum- and magnesium-based metal composite material
JP3618106B2 (en) Composite material and method for producing the same
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPS6354056B2 (en)
JPS6151618B2 (en)
JPH0635630B2 (en) Method for producing aluminum borate whisker reinforced metal matrix composite material
KR102444652B1 (en) high volume reinforced aluminum composite and method of manufacturing the same
JPH11100625A (en) Boride and carbine dispersion-strengthened copper and its production
US4985200A (en) Method of making sintered aluminium nickel alloys
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production
JP2906277B2 (en) Method for producing high-strength Al lower 3 Ti-based alloy