JPH0372047A - Light al-base composite material and its manufacture - Google Patents

Light al-base composite material and its manufacture

Info

Publication number
JPH0372047A
JPH0372047A JP20890989A JP20890989A JPH0372047A JP H0372047 A JPH0372047 A JP H0372047A JP 20890989 A JP20890989 A JP 20890989A JP 20890989 A JP20890989 A JP 20890989A JP H0372047 A JPH0372047 A JP H0372047A
Authority
JP
Japan
Prior art keywords
powder
particles
composite material
mg2si
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20890989A
Other languages
Japanese (ja)
Inventor
Tsunemasa Miura
三浦 恒正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP20890989A priority Critical patent/JPH0372047A/en
Publication of JPH0372047A publication Critical patent/JPH0372047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To drastically lighten the composite material in weight, to maintain its thermal strength and wear resistance into good conditions and to improve its machinability by forming the composite material of which a specified ratio of Mg2Si grains having specified grain size are dispersed into Al having specified purity. CONSTITUTION:The Al-base composite material is formed in such a manner that 1 to 40% volumetric rate of Mg2Si grains having <=3mu average grain size as dispersion strengthening grains are uniformly dispersed into pure Al as a matrix. For manufacturing the composite material, mixed powder of Al powder as a matrix and Mg2Si grains as strengthening grains or Al-Mg-Si alloy powder is used as a raw material. The powder is subjected to ball mill treatment into composite powder, which is thereafter subjected to hot forming into a prescribed shape. Since Mg2Si has low specific gravity compared to that of Al, its lightening in weight can be attained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、車輌用のエンジン部品、特にピストン、コ
ンロッド等の耐熱部品に使用されるアルミニウムベース
の複合材料、即ちアルミニウムをマトリックスとして該
マトリックス中に分散強化粒子が均一分散された分散強
化型のアルミニウム基複合材料及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an aluminum-based composite material used for vehicle engine parts, particularly heat-resistant parts such as pistons and connecting rods, in which aluminum is used as a matrix and dispersed in the matrix. The present invention relates to a dispersion-strengthened aluminum matrix composite material in which reinforcing particles are uniformly dispersed, and a method for manufacturing the same.

従来の技術と課題 上記のような内燃機関用の耐熱部品は、150〜400
℃の高温下にあって物理的に苛酷な条件で使用される部
品であるところから、その材料は耐熱強度、靭性、耐摩
耗性のいずれにも優れ、かつ低熱膨張率のものであるこ
とが要請される。
Conventional technology and issues The heat-resistant parts for internal combustion engines as described above are
Since the parts are used under physically harsh conditions at temperatures as high as ℃, it is important that the materials have excellent heat resistance, toughness, and wear resistance, as well as a low coefficient of thermal expansion. requested.

一方において、ピストンやコンロッドは高速で往復運動
するため慣性力が大きくなる。従って振動を少なくし、
機関の出力を高め応答性を向上するためには、可及的軽
量であることが望まれる。
On the other hand, since the piston and connecting rod reciprocate at high speed, the inertia force becomes large. Therefore, it reduces vibration,
In order to increase engine output and improve responsiveness, it is desirable that the engine be as light as possible.

このような要請に対し、アルミニウムマトリックス中に
、強化粒子相を均一に分散させた複合材、とくにメカニ
カルアロイングと称されるような高エネルギーボールミ
ル処理によってマトリックスと強化粒子相との間に強い
結合を生じさせた複合粉末を用い、粉末冶金の技術に従
って製造した複合材料は、優れた耐熱強度を有し、かつ
耐摩耗性にも優れたものであることが知られている。而
して、か\るA4基複合材料からなる耐熱部品にあって
も、その軽量化をはかるためには、高強度を利用した薄
肉化のほかに、材料自身の比重を可及的小さいものとす
ることが要望される。
In response to these demands, we have created a composite material in which a reinforcing particle phase is uniformly dispersed in an aluminum matrix, and in particular, a strong bond between the matrix and the reinforcing particle phase is achieved through a high-energy ball milling process called mechanical alloying. It is known that composite materials manufactured using powder metallurgy techniques using composite powders having the following properties have excellent heat resistance and wear resistance. Therefore, in order to reduce the weight of heat-resistant parts made of A4-based composite materials, in addition to making the walls thinner by taking advantage of their high strength, it is also necessary to reduce the specific gravity of the material itself as much as possible. It is requested that

ところが、従来のこの種のAnn基金合材、その分散強
化粒子として一般に/1203やSIC等が用いられて
おり、これらの比重はそれぞれA塁203:3.97、
SIC:3.17と、Alの比重2.70より相対的に
大きいものであるため、複合材自体の比重がA、12の
それより大きいものとなり、必ずしも軽量化の要請に対
して十分な満足が得られるものではなかった。
However, in conventional Ann-based composite materials of this type, /1203 and SIC are generally used as dispersion-strengthening particles, and the specific gravity of these materials is 203:3.97 and 3.97, respectively.
SIC: 3.17, which is relatively larger than the specific gravity of Al, which is 2.70, so the specific gravity of the composite material itself is greater than that of A and 12, which does not necessarily satisfy the request for weight reduction. was not something that could be obtained.

この発明は、上記背景に鑑み、従来−膜内には予測し得
なかった特定の分散強化粒子相の材料選択を基礎として
、顕著な軽量化をはかりつ\、耐熱強度、耐摩耗性を良
好に保ち、かつ切削加工性を向上しうる粒子分散型Al
基複基材合材供することを目的とする。
In view of the above-mentioned background, this invention aims to significantly reduce weight and improve heat-resistant strength and abrasion resistance based on the material selection of a specific dispersion-strengthening particle phase that could not be predicted in the conventional membrane. Particle-dispersed Al that can maintain and improve machinability
The purpose is to provide composite base materials.

課題を解決するための手段 而して、この発明は、分散強化粒子に、Apより比重の
小さいMg251粒子を選択することを主たる特徴とす
るものであり、更に具体的には、A4純度99.0%以
上の純アルミニウムをマトリックスとし、かつ平均粒径
3μm以下のMg2Si粒子を分散強化粒子として、上
記分散強化粒子が体積率Vf (Mg2Si )におい
て1〜40%の割合で均一に分散されていることを特徴
とする軽量なAl基複基材合材旨とする。
As a means for solving the problem, the main feature of the present invention is to select Mg251 particles, which have a smaller specific gravity than Ap, as dispersion-strengthening particles, and more specifically, A4 purity of 99. 0% or more of pure aluminum is used as a matrix, and Mg2Si particles with an average particle size of 3 μm or less are used as dispersion-strengthening particles, and the dispersion-strengthening particles are uniformly dispersed at a volume fraction Vf (Mg2Si) of 1 to 40%. This is a lightweight Al-based composite material.

この発明はまた、複合材の製造工程中、とくにボールミ
ル処理時に不可避的にマトリックス中に導入され微細な
AU203及びAU+ C3粒子として分散されるO及
びCの合計含有量が、好適には体積率Vf (O+C)
において1〜20%の範囲に制御され、かつ分散強化粒
子とO及びCの合計含有量が体積率Vf (Mg2Si
 )十Vf (O+C)において40%以下に制御され
る。
The present invention also provides that the total content of O and C, which are inevitably introduced into the matrix during the manufacturing process of the composite material, particularly during ball milling and are dispersed as fine AU203 and AU+C3 particles, preferably has a volume fraction of Vf. (O+C)
is controlled within the range of 1 to 20%, and the total content of dispersion-strengthening particles and O and C is controlled at a volume fraction Vf (Mg2Si
) is controlled to 40% or less at 10 Vf (O+C).

また、上記A4基複合材の製造は、マトリックスとして
のA4粉末と強化粒子としてのMg2Si粒子との予備
混合粉末またはA匹−Mg−St合金粉末を原料粉末と
して用い、これをボールミルによる強力な機械的摩砕処
理を施してマトリックスと強化粒子としてのMg2Si
粒子とが強固に結合一体化した複合粉末をつくり、該複
合粉末をもって常法に従い熱間成形して所定の成形体を
得るものとする手法が好適に採用される。
In addition, the production of the above-mentioned A4-based composite material uses a pre-mixed powder of A4 powder as a matrix and Mg2Si particles as reinforcing particles or A-Mg-St alloy powder as a raw material powder, which is processed by a powerful machine using a ball mill. Mg2Si as a matrix and reinforcing particles
Preferably, a method is adopted in which a composite powder is made in which the particles are strongly bonded and integrated, and the composite powder is hot-molded according to a conventional method to obtain a predetermined molded body.

構成の具体的な説明 次に、この発明の上記各構成事項について更に詳しく説
明する。
Specific Description of Configuration Next, each of the above-mentioned configuration items of the present invention will be explained in more detail.

マトリックスとするアルミニウム材の純度が99.0%
以上に限定されるのは、次の理由による。即ち、一般に
アルミニウム材の耐熱強度をあげるためには、それを合
金化する手法を採るのが一般的であるが、これに対し粒
子分散型の複合材の場合の耐熱強度を決定する強化機構
は、アルミニラマトリックス中に均一に分散されるセラ
ミックス強化粒子及び微細なアルミニウムの酸化物、炭
化物と、高密度の転位との相互作用である。即ち、分散
強化粒子は高温下でもマトリックス中で安定であるため
、転位のピン止め効果を高温まで持続し、温度が上って
も強度低下を防ぎつることによっている。ところが合金
元素は、たとえばピストンでは150〜400℃の高温
にさらされることも相俟って時間と〜もに析出粗大化し
、転位のビン止め効果による強度の保持に寄与しなくな
るため、添加することに格別意味がない。むしろ逆に、
晶出物、析出物を形成し、靭性を低下させるという有害
性の方が増大する。従って、耐熱強度と靭性とを両立さ
せなければならないピストン等の耐熱部品用の複合材料
としては、高純度のアルミニウム材を用いることの方が
有利であり、靭性の低下の不利益を回避するために少な
くともA塁純度99.0%以上の純アルミニウムを用い
ることを必要とするものである。最も好ましくは純度9
9,5%以上のものを用いるべきであるが、99.9%
をこえる高純度のものを用いても、さほどの効果の増大
は望めず、むしろ材料コストの増大の不利益の方が大き
くなるから、それ以下の純度のもの〜使用で必要かつ充
分である。
The purity of the aluminum material used as the matrix is 99.0%
The above limitations are due to the following reasons. In other words, in order to increase the heat resistance strength of an aluminum material, it is common to alloy it, but on the other hand, the strengthening mechanism that determines the heat resistance strength of a particle-dispersed composite material is , the interaction between the ceramic reinforcing particles and fine aluminum oxides and carbides uniformly dispersed in the alumina matrix and the high density of dislocations. That is, since the dispersion-strengthening particles are stable in the matrix even at high temperatures, they maintain the dislocation pinning effect up to high temperatures, thereby preventing a decrease in strength even when the temperature rises. However, alloying elements, for example, are not added to pistons because they are exposed to high temperatures of 150 to 400°C, and as a result, they precipitate and become coarse over time, and they no longer contribute to maintaining strength through the binning effect of dislocations. has no particular meaning. On the contrary,
The harmful effect of forming crystallized substances and precipitates and reducing toughness increases. Therefore, it is advantageous to use high-purity aluminum materials as composite materials for heat-resistant parts such as pistons that must have both heat-resistant strength and toughness, and to avoid the disadvantage of reduced toughness. It is necessary to use pure aluminum with a purity of at least 99.0% for the A-base. Most preferably purity 9
9.5% or more should be used, but 99.9%
Even if a material with a purity higher than that is used, a significant increase in effectiveness cannot be expected, and the disadvantage of an increase in material cost will be greater, so it is necessary and sufficient to use a material with a purity lower than that.

分散強化粒子として、特にMg251粒子を用いるのは
、強化相形成要素として所要の機能を有しつ\、それ自
体の比重が1.99と/1のそれより小さく、従ってA
(より更に軽量な複合材を得ることができるためである
。該強化粒子の粒度及び分散量は、複合材の耐熱性、耐
摩耗性、切削バイト寿命を決定する支配的要因となる。
In particular, Mg251 particles are used as dispersion-strengthening particles because they have the required function as a reinforcing phase forming element, and their own specific gravity is smaller than that of 1.99/1.
(This is because an even lighter composite material can be obtained.The particle size and the amount of dispersion of the reinforcing particles are the dominant factors that determine the heat resistance, wear resistance, and cutting tool life of the composite material.

而して、強化粒子としてのMg251粒子の平均粒径が
3μmをこえて大きすぎると、それが介在物としてクラ
ックの発生源となり、複合材が脆性的になって靭性が低
下する。しかし平均粒径が0. 1μm未満の小さすぎ
るものでは耐摩耗性が劣化するため好ましくない。従っ
て平均粒径0.1〜3.0μmの範囲で、特に好ましく
は1μm程度のものを用いるのが良い。
If the average particle size of the Mg251 particles as reinforcing particles is too large, exceeding 3 μm, they act as inclusions and become a source of cracks, making the composite material brittle and reducing its toughness. However, the average particle size is 0. If the diameter is too small (less than 1 μm), wear resistance deteriorates, which is not preferable. Therefore, it is preferable to use particles with an average particle size in the range of 0.1 to 3.0 μm, particularly preferably about 1 μm.

また、上記Mg251粒子の複合材中の分散含有量は、
ソノ体積率Vf (Mg2Si )が1%未満では、所
期する十分な耐熱性、耐摩耗性を付与することができな
い。一方、40%をこえて分散量が多いと、複合材の脆
性が増し、靭性に乏しいものとなると共に、切削加工性
、特に切削バイト寿命も劣るものとなる。従って、Mg
25I粒子は体積率Vfl〜40%の範囲で分散せしめ
るものとすることが必要であり、好ましくはVf5〜3
0%、特に好ましくは10〜25%程度の範囲で分散せ
しめるのが良い。
Furthermore, the dispersion content of the Mg251 particles in the composite material is as follows:
If the volume fraction Vf (Mg2Si) is less than 1%, the desired sufficient heat resistance and abrasion resistance cannot be imparted. On the other hand, if the amount of dispersion exceeds 40%, the composite material will become brittle and have poor toughness, and the machinability, especially the life of the cutting tool, will be poor. Therefore, Mg
It is necessary that the 25I particles be dispersed at a volume fraction of Vfl to 40%, preferably Vf5 to 3.
It is preferable to disperse it in a range of about 0%, particularly preferably about 10 to 25%.

この発明によるAfl基複基材合材、その製造工程中特
にボールミル処理によりマトリックス中に導入されるO
及びCの含有量は、結果的にそれらが粒径30μm以下
の微細なAl220+、Al4C3粒子となって分散し
、複合材の物性に影響を及ぼすところから、それらの合
計における体積率Vf (O+C)を1〜20%の範囲
に制御することが望ましい。上記の体積率Vf(O+ 
C)は、O及びCの含有量の重量面分率を次式により換
算して求められるものである。
Afl base composite material according to the present invention, O introduced into the matrix during the manufacturing process, especially by ball milling
The content of C and C is determined by the volume fraction Vf (O+C) of their total, since they eventually disperse as fine Al220+ and Al4C3 particles with a particle size of 30 μm or less and affect the physical properties of the composite material. It is desirable to control the amount within the range of 1 to 20%. The above volume fraction Vf(O+
C) is obtained by converting the weight surface fraction of the content of O and C using the following formula.

Vf (O+C)−1,71x O* w t%+3. 71XC・wt%このOとCの
合計含有量の体積率がVf(O+C)が1%未満である
と複合材に十分な耐熱性を付与することができない。一
方、それが20%をこえると、複合材中において平均粒
子間距離が短くなり転移の拘束力が高まる結果、延性の
低下、脆化を招き、所期する高弾性を得ることができな
い。最も好ましくは、O及びCの含有量は、それらの体
積率Vf (O+C)で5〜10%程度に制御すべきで
ある。
Vf (O+C)-1,71x O* w t%+3. 71XC·wt% If the volume fraction of the total content of O and C (Vf(O+C)) is less than 1%, sufficient heat resistance cannot be imparted to the composite material. On the other hand, if it exceeds 20%, the average interparticle distance in the composite material becomes shorter and the restraining force for dislocation increases, resulting in decreased ductility and embrittlement, making it impossible to obtain the desired high elasticity. Most preferably, the contents of O and C should be controlled to about 5 to 10% in terms of their volume fraction Vf (O+C).

また、強化粒子のMg2Si粒子と、0及びCとの複合
材中の合計含有量は、これがまた体積率V f (Mg
 2 Sl ) 十V f (O+C) lニオいて4
0%をこえると、上記同様複合材の延性の低下、脆化を
招く点で好ましくない。従ってこれもまた40%以下に
制御することが望ましい。
In addition, the total content of Mg2Si particles as reinforcing particles and O and C in the composite material is also the volume fraction V f (Mg
2 Sl) 10V f (O+C) 4
If it exceeds 0%, it is not preferable because it causes a decrease in ductility and embrittlement of the composite material as described above. Therefore, it is also desirable to control this to 40% or less.

なお、上記のようなO及びCの含有量の制御は、ボール
ミル処理時に用いるエタノール等の分散助剤の添加量、
及び製造工程中の雰囲気の酸素濃度を調節することによ
って行うことができる。
The content of O and C as described above can be controlled by adjusting the amount of dispersion aid such as ethanol used during ball milling,
This can also be done by adjusting the oxygen concentration of the atmosphere during the manufacturing process.

この発明によるA4基複合材の製造は、原料粉末として
、各別に製造されたアルミニウム粉末とMg251粒子
との混合物を用いても良いし、あるいはまた、Mg25
lの体積率Vf(Mg2Si)が1〜40%の範囲とな
るように組成を調整したAl−Mg−S1合金の粉末、
例えばそのアトマイズ粉末を用いて行うものとしても良
い。そして、強化粒子の均一分散性を向上する目的から
、上記原料粉末をボールミル処理によって強力に摩砕し
、強化粒子がマトリックス中に包み込まれる形で結合し
た複合粉末をつくり、この複合粉末を熱間成形して所定
の成形体を得るものとする。
In the production of the A4-based composite material according to the present invention, a mixture of separately produced aluminum powder and Mg251 particles may be used as the raw material powder, or alternatively, a mixture of aluminum powder and Mg251 particles produced separately may be used.
Al-Mg-S1 alloy powder whose composition is adjusted so that the volume fraction Vf (Mg2Si) of l is in the range of 1 to 40%,
For example, the atomized powder may be used. Then, in order to improve the uniform dispersibility of the reinforcing particles, the above raw material powder was strongly ground by ball milling to create a composite powder in which the reinforcing particles were combined in a manner that they were wrapped in a matrix. A predetermined molded body shall be obtained by molding.

上記の成形には、脱ガス処理、熱間圧粉処理によるビレ
ットの作成、そしてこのビレットからの押出し、押出材
からの鍛造、さらには粉末鍛造等の粉末冶金の通常の工
程が包含される。
The above-mentioned forming includes the usual steps of powder metallurgy such as degassing, creating a billet by hot compaction, extrusion from this billet, forging from an extruded material, and further powder forging.

そして、内燃機関のピストン、コンロッド等の耐熱部品
は、上記により得られる成形体に更に鍛造、切削、研磨
等の所要の二次加工を施して製作される。
Heat-resistant parts such as pistons and connecting rods for internal combustion engines are manufactured by further performing necessary secondary processing such as forging, cutting, and polishing on the molded bodies obtained as described above.

実施例 原料粉末として、An−Mg−S1合金をアトマイズ法
によって粉末に製造したものを用いた。こ〜に、上記合
金の調製は、マトリックスとしてのアルミニウム材に純
度99.8%の純アルミニウムを用い、これにMgとS
lを、添加量を種々異にして、それぞれ311モルに対
してMg 2モルの割合に添加するものとした。
An An-Mg-S1 alloy produced into powder by an atomization method was used as the raw material powder for the examples. To prepare the above alloy, pure aluminum with a purity of 99.8% is used as the aluminum material as a matrix, and Mg and S are added to it.
1 was added in various amounts in a ratio of 311 mol to 2 mol of Mg.

そして、この各原料粉末を、A「ガス雰囲気中でスチー
ルボール30に!Jを用いたボールミルにより、280
rpsx1時間のボールミル処理を施して複合粉末に製
造した。なお、このボールミル処理工程において分散助
剤としてエタノールを3vt%の割合に添加した。
Then, each of these raw material powders was milled using a ball mill using a steel ball 30 in a gas atmosphere.
A composite powder was prepared by ball milling at rpsx for 1 hour. In this ball milling step, ethanol was added as a dispersion aid at a ratio of 3vt%.

次に、上記によって得た複合粉末をArガス雰囲気中で
Al製圧粉容器に充填し、500℃で3 X 10−3
torrx 5時間の真空加熱脱ガス処理を行ったのち
、熱間プレス機により500℃X700ONgf/ad
の条件で圧粉成形を行い、得られたビレットを押出比1
0:1、押出温度450℃で押出し成形し、丸棒形状の
各種のアルミニウム基複合材料を得た。
Next, the composite powder obtained above was filled into an Al powder container in an Ar gas atmosphere, and heated to 3×10−3 at 500°C.
torrx After 5 hours of vacuum heating and degassing treatment, 500°C x 700 ONgf/ad using a hot press
The resulting billet was compacted under the conditions of extrusion ratio 1
By extrusion molding at a ratio of 0:1 and an extrusion temperature of 450° C., various aluminum matrix composite materials in the shape of round bars were obtained.

一方、比較のため、強化粒子に平均粒径0゜5μmのA
、Q203粉末を15vol 96(7)割合ニ分散含
有せしめた複合材(試料No、13)、及び強化粒子を
含まないアルミニウム材の試料(試料No、 14 )
も前記に準じて製作した。
On the other hand, for comparison, A with an average particle size of 0°5 μm was added to the reinforcing particles.
, a composite material containing Q203 powder dispersed in 15 vol 96(7) ratio (sample No. 13), and an aluminum material sample containing no reinforcing particles (sample No. 14)
was also manufactured in accordance with the above.

そして、上記により得た各種の試料につき、それに分散
含有するMg2Si粒子の体積率Vf1直径を調べると
共に、O及びCの含有量を調べた。その結果を第1表に
示す。なお、Mg251粒子の分散体積率Vf (Mg
2 Si ) +、t、Mg25jの固溶量をOとし、
その比重を1゜99として求めた。
Then, for the various samples obtained above, the volume ratio Vf1 diameter of the Mg2Si particles dispersed therein was investigated, and the O and C contents were also investigated. The results are shown in Table 1. In addition, the dispersion volume fraction Vf of Mg251 particles (Mg
2 Si) +, t, the solid solution amount of Mg25j is O,
The specific gravity was determined as 1°99.

第1表 〔以下余白〕 そして、上記各試料No、1〜16につき、300℃の
熱間での引張り強度、室温での伸び、耐摩耗性、切削加
工性を調べた。その結果を第2表に示す。なお、耐摩耗
試験は、入超式乾式摩耗試験機により、相手材: Fe
12、無潤滑、摩擦速度: 1. 991′rL/S、
摩擦距離:600m、最終荷重:2.IK9の条件で測
定した。また切削加工性は、使用バイト:に10、切削
速度=247TrL/S1送り: 0.2m/rev 
、切込み=IM1切削回数:8回、無潤滑、試料寸法:
直径23mX長さ200mIRの条件で切削を行い、バ
イトの逃げ面の摩耗幅を測定した。
Table 1 [Margin below] Each of the above samples No. 1 to 16 was examined for tensile strength at 300° C. hot, elongation at room temperature, abrasion resistance, and machinability. The results are shown in Table 2. In addition, the wear resistance test was carried out using an ultra-thin dry abrasion tester using a mating material: Fe.
12. No lubrication, friction speed: 1. 991′rL/S,
Friction distance: 600m, final load: 2. Measured under IK9 conditions. In addition, the cutting workability is as follows: Bit used: 10, Cutting speed = 247TrL/S1 Feed: 0.2m/rev
, Depth of cut = IM1 Number of cuts: 8 times, No lubrication, Sample dimensions:
Cutting was performed under the conditions of 23 m in diameter and 200 m in length, and the width of wear on the flank of the cutting tool was measured.

〔以下余白〕[Margin below]

第2表 上記第2表に示す結果から分かるように、強化粒子とし
て平均粒径3μm以下のMg251粒子が用いられ、か
つその分散量の体積率Vf(Mg2Si)が1〜40%
の範囲に分散されたこの発明に係るAQ基基金合材試料
N011〜10)は、いずれも、耐熱強度、伸び、耐摩
耗性、切削加工性がいずれも比較的良好な状態にバラン
ス良く調和したものであるのに対し、比較例の試料No
、11〜16は、上記性質のいずれか1つ以上に重大な
難点を有するものであった。また、もちろんこの発明に
係る複合材は、比重がアルミニウムよりも小さく、強化
粒子にA、Q20s粒子を用いた比較例の試料No、1
5の複合材に較べ、顕著に軽量なものであった。
Table 2 As can be seen from the results shown in Table 2 above, Mg251 particles with an average particle size of 3 μm or less are used as reinforcing particles, and the volume fraction Vf (Mg2Si) of the dispersed amount is 1 to 40%.
All of the AQ-based composite material samples No. 11 to 10) according to the present invention, which were dispersed in the range of In contrast, sample No. of the comparative example
, Nos. 11 to 16 had serious drawbacks in any one or more of the above-mentioned properties. Moreover, of course, the composite material according to the present invention has a specific gravity smaller than that of aluminum, and sample No. 1 of the comparative example uses A and Q20s particles as reinforcing particles.
It was significantly lighter than the composite material No. 5.

発明の効果 この発明は上述のように、粒子分散型Afl基複基材合
材ての固有の緒特性、とくに耐熱性を有しつ\、耐摩耗
性、切削バイト寿命にも優れた複合材であって、しかも
特に比重がAl1より小さい軽量なA[基材合材を提供
することができる。従って、該複合材は、内燃機関のピ
ストン、コンロッド等の苛酷な条件下で使用さ丘る耐熱
部品の用途に好適し、その−層の軽量化を達成しつる。
Effects of the Invention As described above, the present invention provides a composite material that has the unique characteristics of a particle-dispersed Afl base composite material, particularly heat resistance, and has excellent wear resistance and cutting tool life. Furthermore, it is possible to provide a lightweight A base material composite material having a specific gravity smaller than Al1. Therefore, the composite material is suitable for use in heat-resistant parts such as pistons and connecting rods of internal combustion engines that are used under severe conditions, and can reduce the weight of the layers.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)Al純度99.0%以上の純アルミニウムをマト
リックスとし、 かつ平均粒径3μm以下のMg_2Si粒子を分散強化
粒子として、 上記分散強化粒子が体積率Vf(Mg_2Si)におい
て1〜40%の割合で均一に分散されていることを特徴
とする軽量なAl基複合材。
(1) Pure aluminum with an Al purity of 99.0% or more is used as a matrix, and Mg_2Si particles with an average particle size of 3 μm or less are used as dispersion-strengthening particles, and the proportion of the dispersion-strengthening particles is 1 to 40% in the volume fraction Vf (Mg_2Si). A lightweight Al-based composite material characterized by being uniformly dispersed.
(2)Al_2O_3及びAl_4C_3粒子として不
可避的に存在せられるO及びCの合計含有量が体積率V
f(O+C)において1〜20%の範囲に制御され、か
つ分散強化粒子とO及びCの合計含有量がそれらの体積
率Vf(Mg_2Si)+Vf(O+C)において40
%以下に制御されてなる請求項(1)記載の軽量なAl
基複合材。
(2) The total content of O and C, which are inevitably present as Al_2O_3 and Al_4C_3 particles, is the volume ratio V
f(O+C) is controlled in the range of 1 to 20%, and the total content of dispersion-strengthening particles and O and C is 40% at their volume fraction Vf(Mg_2Si)+Vf(O+C).
% or less.
Base composite.
(3)マトリックスとしてのAl粉末と強化粒子として
のMg_2Si粒子との混合粉末またはAl−Mg−S
i合金粉末を原料粉末として用いボールミル処理によっ
て複合粉末としたのち、該複合粉末を所定形状に熱間成
形することを特徴とする請求項(1)または(2)に記
載の軽量なAl基複合材の製造方法。
(3) Mixed powder of Al powder as a matrix and Mg_2Si particles as reinforcing particles or Al-Mg-S
The lightweight Al-based composite according to claim (1) or (2), characterized in that the i-alloy powder is used as a raw material powder to form a composite powder by ball milling, and then the composite powder is hot-formed into a predetermined shape. Method of manufacturing wood.
JP20890989A 1989-08-11 1989-08-11 Light al-base composite material and its manufacture Pending JPH0372047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20890989A JPH0372047A (en) 1989-08-11 1989-08-11 Light al-base composite material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20890989A JPH0372047A (en) 1989-08-11 1989-08-11 Light al-base composite material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0372047A true JPH0372047A (en) 1991-03-27

Family

ID=16564131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20890989A Pending JPH0372047A (en) 1989-08-11 1989-08-11 Light al-base composite material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0372047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433862A1 (en) * 2001-09-25 2004-06-30 Center for Advanced Science and Technology Incubation, Ltd. Magnesium base composite material
JP2008075127A (en) * 2006-09-21 2008-04-03 Chiba Inst Of Technology Method of producing magnesium alloy
CN110938766A (en) * 2019-12-06 2020-03-31 Oppo广东移动通信有限公司 Aluminum alloy material and processing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1433862A1 (en) * 2001-09-25 2004-06-30 Center for Advanced Science and Technology Incubation, Ltd. Magnesium base composite material
EP1433862A4 (en) * 2001-09-25 2006-05-31 Toudai Tlo Ltd Magnesium base composite material
JP2008075127A (en) * 2006-09-21 2008-04-03 Chiba Inst Of Technology Method of producing magnesium alloy
CN110938766A (en) * 2019-12-06 2020-03-31 Oppo广东移动通信有限公司 Aluminum alloy material and processing method thereof

Similar Documents

Publication Publication Date Title
US5744254A (en) Composite materials including metallic matrix composite reinforcements
US4946500A (en) Aluminum based metal matrix composites
JPH0742536B2 (en) Aluminum-based alloy product having high strength and high toughness and its manufacturing method
US5435825A (en) Aluminum matrix composite powder
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
US5865912A (en) SiC-reinforced aluminum alloy composite material
JPH0320452B2 (en)
JPH0372047A (en) Light al-base composite material and its manufacture
JPH0578762A (en) Tial-based composite material having excellent strength and its production
JP2006328492A (en) Damping sintered alloy
JP3139649B2 (en) High heat and wear resistant aluminum-based composite material
WO1990002824A1 (en) Reinforced composite material
US4933007A (en) Heat-resistant aluminum-base composites and process of making same
JPH06192780A (en) High heat and wear resistance aluminum alloy and powder thereof
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH01240633A (en) Aluminum-based composite material, its manufacture and piston
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
CA3239799A1 (en) Hot deformation processing of a precipitation hardening powder metal alloy
Chealvan et al. Investigation on wear properties of Aluminum reinforced with ZrO2 and Rice Husk Ash
JPH05287426A (en) Heat resistant aluminum alloy and heat resistant aluminum alloy powder
JPH07305130A (en) High strength wear resistant aluminum alloy
JPH02247350A (en) Connecting rod
JPS63145725A (en) Heat resistant aluminum alloy member having high strength and ductility