JPH01240633A - Aluminum-based composite material, its manufacture and piston - Google Patents
Aluminum-based composite material, its manufacture and pistonInfo
- Publication number
- JPH01240633A JPH01240633A JP6525788A JP6525788A JPH01240633A JP H01240633 A JPH01240633 A JP H01240633A JP 6525788 A JP6525788 A JP 6525788A JP 6525788 A JP6525788 A JP 6525788A JP H01240633 A JPH01240633 A JP H01240633A
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- thermal expansion
- particles
- composite material
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 24
- 229910052782 aluminium Inorganic materials 0.000 title claims description 21
- 239000000919 ceramic Substances 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims abstract description 31
- 239000000843 powder Substances 0.000 claims abstract description 16
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims description 68
- 238000005728 strengthening Methods 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000009849 vacuum degassing Methods 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract 2
- 238000005299 abrasion Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910000826 Lo-Ex Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F7/00—Casings, e.g. crankcases or frames
- F02F7/0085—Materials for constructing engines or their parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/04—Thermal properties
- F05C2251/042—Expansivity
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、車輌用のエンジン部品、特にピストンに使
用されるアルミニウムベースの1M合材料、即ちアルミ
ニウムをマトリックスとして該マトリックス中に分散強
化粒子が均一分散された分散強化型のピストン用アルミ
ニウム基複合材料及びその製造方法、並びに該複合材料
を用いた内燃機関用ピストンに関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an aluminum-based 1M composite material used for vehicle engine parts, particularly pistons, in which aluminum is used as a matrix and dispersed reinforcing particles are uniformly dispersed in the matrix. The present invention relates to a dispersion-strengthened aluminum matrix composite material for pistons, a method for manufacturing the same, and a piston for internal combustion engines using the composite material.
従来の技術と課題
内燃機関用ピストンは、150〜400℃の高温下にあ
って物理的に苛酷な条件で使用される部品であるところ
から、その材料は耐熱強度、靭性、耐摩耗性のいずれに
も優れ1.かつ低熱膨張率のものであることが要請され
る。Conventional Technologies and Issues Pistons for internal combustion engines are parts that are used under physically harsh conditions at high temperatures of 150 to 400 degrees Celsius, so the materials used for them are highly resistant to heat, toughness, and wear resistance. Excellent for 1. It is also required to have a low coefficient of thermal expansion.
一方において、ピストンは高速で往復運動するため慣性
力が大きくなる。従って振動を少なくし、機関の出力を
高め応答性を向上するためには、可及的軽量であること
が望まれる。On the other hand, since the piston reciprocates at high speed, the inertia force becomes large. Therefore, in order to reduce vibration, increase engine output, and improve responsiveness, it is desirable that the engine be as light as possible.
このような要請に対処するための軽量なピストン材料と
して、従来最も一般的にはAC8A。AC8A has been the most commonly used lightweight piston material to meet these demands.
AC8B等のAfl−Si −Cu −Mg−Nl系の
Lo −Ex A0合金が知られている。Afl-Si-Cu-Mg-Nl-based Lo-Ex A0 alloys such as AC8B are known.
しかしながら、上記のようなLo−Ex系アルミニウム
合金は、高温強度の面で今1つ不充分である。たとえば
引張り強度として200℃で17Kgf/−1300℃
で7八ff’/−程度の強度しか有しないため、充分に
満足すべきピストンの薄肉化、軽量化を達成することが
できなかった。もとより、他の要求特性である耐摩耗性
、靭性、低熱膨張率等の点でも更なる改善が望まれると
ころであった。However, the above-mentioned Lo-Ex aluminum alloys are still insufficient in terms of high-temperature strength. For example, the tensile strength is 17Kgf at 200℃/-1300℃
Since the piston has a strength of only about 78 ff'/-, it has not been possible to achieve sufficiently satisfactory thinning and weight reduction of the piston. Of course, further improvements have been desired in terms of other required properties such as wear resistance, toughness, and low coefficient of thermal expansion.
この発明は、上記のような技術的背景のもと、従来のL
o −Ex A2合金よりも更に一層前記の要求諸特性
に対して高い満足度を得ることができる特にピストン用
のアルミニウム基複合材料と、その製造方法、及び該複
合材料によって製造されたピストンを提供することを目
的としてなされたものである。Based on the above technical background, this invention has been developed based on the conventional L
To provide an aluminum-based composite material especially for pistons that can obtain even higher satisfaction with the above-mentioned required properties than the o-Ex A2 alloy, a method for manufacturing the same, and a piston manufactured using the composite material. It was done for the purpose of
課題を解決するための手段
上記の目的において、本発明者らは、種々実験と研究の
結果、粒子分散強化型のアルミニウム基複合材料におい
て、マトリックスとして用いるアルミニウム粉末の1純
度、強化粒子として用いるセラミックス粒子の硬さ、熱
膨張係数、粒子径、及び分散含有量の特定範囲の組合わ
せによって、前記従来合金にもまして卓越した耐熱強度
、靭性、耐摩耗性、低熱膨張率の諸特性を得ることがで
きることを見出し、この発明を完成した。Means for Solving the Problems For the above-mentioned purpose, the present inventors, as a result of various experiments and research, found that in a particle dispersion reinforced aluminum matrix composite material, the purity of the aluminum powder used as the matrix and the ceramic used as the reinforcing particles were determined. By combining particle hardness, coefficient of thermal expansion, particle size, and dispersion content within specific ranges, properties such as heat resistance strength, toughness, wear resistance, and low coefficient of thermal expansion that are superior to those of the conventional alloys can be obtained. He discovered that this could be done and completed this invention.
而して、この発明は、l純度99.0%以上の純アルミ
ニウム材をマトリックスとし、かつ硬さHv1000以
上、熱膨張係数10×10−6/℃以下、平均粒子径3
〜0..1μmのセラミックス粒子を分散強化粒子とし
て、該分散強化粒子が体積率Vr5〜20%の割合でマ
トリックス中に均一分散されてなることを特徴とする、
アルミニウム基複合材料を基本的な要旨とする。Therefore, this invention uses a pure aluminum material with a purity of 99.0% or more as a matrix, and has a hardness of Hv1000 or more, a thermal expansion coefficient of 10 x 10-6/℃ or less, and an average particle size of 3.
~0. .. 1 μm ceramic particles are used as dispersion-strengthening particles, and the dispersion-strengthening particles are uniformly dispersed in a matrix at a volume fraction Vr of 5 to 20%.
The basic gist is aluminum matrix composite materials.
更に好ましい条件を列挙すれば、マトリックスとするア
ルミニウム材の純度は99.5%以上であり、強化粒子
の硬さはHv1500以上、同然膨張係数8 X 10
−6/’C以下、平均粒子径1〜0.3μmの範囲であ
る。また、強化粒子の分散体積率V「は10〜18%の
範囲である。To enumerate more preferable conditions, the purity of the aluminum material used as the matrix is 99.5% or more, the hardness of the reinforcing particles is Hv1500 or more, and the expansion coefficient is 8 x 10.
-6/'C or less, and the average particle diameter is in the range of 1 to 0.3 μm. Further, the dispersed volume fraction V'' of the reinforcing particles is in the range of 10 to 18%.
この発明による複合材の製造は、良く知られている粉末
冶金学的手法によるが、強化粒子の均一分散性を向上す
る目的から、マトリックスAQ粉末と強化粒子粉末とを
混合し、ボールミル処理によって上記マトリックス材料
と強化粒子との間に強い結合を有する複合粉末をつくり
、この複合粉末を熱間成形して所定の成形体を得るもの
とする手法が好適に採用しうる。上記の成形には、脱ガ
ス処理、熱間圧粉処理による固化ビレットの作成1.そ
してこのビレットの押出材からの鍛造、さらには粉末鍛
造等の粉末冶金の通常の工程を包含する。ピストンは、
上記により得られる成形体に、更に鍛造、切削、研摩等
の所要の二次加工を施して製作される。The composite material according to the present invention is manufactured by a well-known powder metallurgy method. For the purpose of improving the uniform dispersibility of reinforcing particles, matrix AQ powder and reinforcing particle powder are mixed, and the above-mentioned material is formed by ball milling. Preferably, a method can be adopted in which a composite powder having a strong bond between the matrix material and reinforcing particles is created, and this composite powder is hot-molded to obtain a predetermined molded body. For the above-mentioned forming, preparation of a solidified billet by degassing treatment and hot compaction treatment is required.1. This includes forging from this extruded billet material, as well as normal powder metallurgy processes such as powder forging. The piston is
The molded body obtained in the above manner is further subjected to necessary secondary processing such as forging, cutting, and polishing to produce the molded body.
次に、この発明における構成要件の各限定理由について
説明する。Next, reasons for limiting each of the constituent elements in this invention will be explained.
マトリックスとするアルミニウム材の純度が99.0%
以上、特、に好ましくは99.5%以上に限定されるの
は、体の理由による。即ち、一般にアルミニウム材の耐
熱強度をあげるためには、それを合金化する手法を採る
のが一般的であるが、これに対し粒子分散型の複合材の
場合の耐熱強度を決定する強化機構は、アルミニラマト
リックス中に均一に分散されるセラミックス強化粒子及
び微細なアルミニウムの酸化物、炭化物と、高密度の転
位との相互作用である。The purity of the aluminum material used as the matrix is 99.0%
The reason why it is particularly preferably limited to 99.5% or more is due to physical reasons. In other words, in order to increase the heat resistance strength of an aluminum material, it is common to alloy it, but on the other hand, the strengthening mechanism that determines the heat resistance strength of a particle-dispersed composite material is , the interaction between the ceramic reinforcing particles and fine aluminum oxides and carbides uniformly dispersed in the alumina matrix and the high density of dislocations.
即ち、分散強化粒子は高温下でもマトリックス中で安定
であるため、転位のピン止め効果を高温まで持続し、温
度が上っても強度低下を防ぎうろことによっている。と
ころが合金元素は、ピストンが150〜400℃の高温
にさらされることも相俟って時間と\もに析出粗大化し
、転位のピン止め効果による強度の保持に寄与しなくな
るため、添加することに格別意味がない。That is, since the dispersion-strengthening particles are stable in the matrix even at high temperatures, the dislocation pinning effect is maintained up to high temperatures, and even when the temperature rises, the strength is prevented from decreasing due to the scales. However, as the piston is exposed to high temperatures of 150 to 400°C, alloying elements tend to precipitate and coarsen over time, and they no longer contribute to maintaining strength through the pinning effect of dislocations, so they are not added. There's no particular meaning.
むしろ逆に、晶出物、析出物を形成し、靭性を低下させ
るという有害性の方が増大する。従って、耐熱強度と靭
性とを両立させなければならないピストン用の複合材料
としては、高純度のアルミニウム材を用いることの方が
有利であり、靭性の低下の不利益を回避するために少な
くともAQ純度99.0%以上の純アルミニウムを用い
ることを必要とするものである。最も好ましくは純度9
9.5%以上のものを用いるべきであるが、99.9%
をこえる高純度のものを用いても、さほどの効果の増大
は望めず、むしろ材料コストの増大の不利益の方が大き
くなるから、それ以下の純度のもの1使用で必要かっ充
分である。On the contrary, the harmful effects of forming crystallized substances and precipitates and reducing toughness increase. Therefore, it is advantageous to use a high-purity aluminum material as a composite material for a piston, which must have both heat resistance strength and toughness. This requires the use of 99.0% or more pure aluminum. Most preferably purity 9
9.5% or more should be used, but 99.9%
Even if a material with a purity higher than that is used, no significant increase in effectiveness can be expected, and the disadvantage of increased material cost will be greater, so it is sufficient to use one with a purity lower than that.
強化粒子として用いるセラミックスの硬さ、熱膨張係数
、粒度、及びその分散量は複合材の耐摩耗性と熱膨張係
数を制御する重大な要素となる。セラミックス粒子の硬
さがHv1000未満では複合材料の耐摩性が劣るもの
となる。The hardness, thermal expansion coefficient, particle size, and amount of dispersion of the ceramic used as reinforcing particles are important factors for controlling the wear resistance and thermal expansion coefficient of the composite material. If the hardness of the ceramic particles is less than Hv1000, the wear resistance of the composite material will be poor.
特に好ましくは硬さHv1500以上のものが良い。ま
た、熱膨張係数が10 X 10−6/”Cをこえて大
きいものでは、複合材料の熱膨張係数も大きいものとな
り、摩耗、焼き付き等の不具合のためにピストン材とし
て不適当なものとなる。最も好ましくは熱膨張係数が8
X10’/℃以下のものが良い。上記の硬さ及び熱膨張
係数の要請の点から、セラミックス粒子の種類としては
AQ03 、SI C等が最好適に使用でき、TlO2
、ZrO2等も好適であるが、Mg Oは硬さが不足し
、かつ熱膨張係数も高いため使用に好適しない。Particularly preferably, the hardness is Hv1500 or more. Furthermore, if the coefficient of thermal expansion exceeds 10 x 10-6/''C, the coefficient of thermal expansion of the composite material will also be large, making it unsuitable as a piston material due to problems such as wear and seizure. Most preferably the coefficient of thermal expansion is 8.
It is preferable that the temperature is below X10'/°C. In view of the above-mentioned requirements for hardness and coefficient of thermal expansion, AQ03, SIC, etc. can be optimally used as the type of ceramic particles, and TlO2
, ZrO2, etc. are also suitable, but Mg 2 O is not suitable for use because it lacks hardness and has a high coefficient of thermal expansion.
セラミックス粒子の粒度は、平均粒径が3μmをこえて
大きすぎると複合材料の靭性が低下する。逆に0.1μ
m未満の小さすぎるものでは耐摩耗性が劣化する。従っ
て、靭性、耐摩耗性の両者を満足させるためには平均粒
径3〜0゜1μmの範囲のものを用いるべきであり、最
も好ましくは1〜0.3μmの範囲のものを用いるのが
良い。If the average particle size of the ceramic particles is too large, exceeding 3 μm, the toughness of the composite material will decrease. On the contrary, 0.1μ
If it is too small (less than m), the wear resistance will deteriorate. Therefore, in order to satisfy both toughness and wear resistance, particles with an average particle size in the range of 3 to 0.1 μm should be used, most preferably in the range of 1 to 0.3 μm. .
セラミックス粒子の分散含有量は、体積率においてVr
5〜20%の範囲とすることが必要である。体積率が5
%未満では複合材の耐摩耗性が悪くなり、かつ耐熱強度
の十分な増大効果を望めない。また20%をこえて多い
場合は複合材の靭性の低下をもたらす。最も好ましくは
10〜18%程度の範囲とするのが好適である。The dispersed content of ceramic particles is Vr in volume fraction
It is necessary to set it as the range of 5-20%. volume ratio is 5
If it is less than %, the abrasion resistance of the composite material will deteriorate and a sufficient increase in heat resistance strength cannot be expected. Moreover, when the amount exceeds 20%, the toughness of the composite material is reduced. The most preferred range is about 10 to 18%.
実施例
実施例1
この実施例は、マトリックスとするアルミニウム材のA
l純度と複合材の強度及び靭性との関係を調べたもので
ある。Examples Example 1 In this example, A of the aluminum material used as the matrix
This study investigated the relationship between purity and the strength and toughness of composite materials.
而して、純度を種々異にした平均粒径40μmのアトマ
イズ法によるアルミニウム粉末と、分散強化用のセラミ
ックス粒子としてのへρ03粒子(平均粒径0.5μm
)とを、セラミックス粒子の体積率Vf:15%、全体
重ffi I Kgに秤量し、ミキサーで2000rp
aX4分間予備混合した。Aluminum powder with an average particle size of 40 μm of different purity was produced by atomization, and hep03 particles (average particle size of 0.5 μm) were used as ceramic particles for dispersion strengthening.
) were weighed to give a volume ratio of ceramic particles Vf of 15% and a total weight of ffi I Kg, and the mixture was heated at 2000 rpm with a mixer.
Premixed aX for 4 minutes.
そして、この混合物に、A「ガス雰囲気中で3/8”ス
チールボール30Kgを用いたボールミルにより、28
Orp■×5時間のボールミル処理を施して複合粉を製
造した。このボールミル処理工程において焼付防止剤と
してエタノール30ccを添加した。Then, this mixture was added to A with a ball mill using 30 kg of 3/8” steel balls in a gas atmosphere.
A composite powder was produced by ball milling with Orp ■ for 5 hours. In this ball milling step, 30 cc of ethanol was added as an anti-seize agent.
次に、上記によって得た複合粉をA「ガス雰囲気中でA
JJ製圧粉容器に充填し、3X10−3torrX 5
時間の真空脱ガス処理を行ったのち、熱間ブレス機によ
り500℃X700ONgf/dの条件で圧粉成形を行
い、得られたビレットを押出比10:1、押出温度45
0℃で押出し成形し、丸棒形状の各種のアルミニウム基
曵合材料を得た。Next, the composite powder obtained above was mixed with A in a gas atmosphere.
Filled into a JJ powder container and heated to 3X10-3torrX5
After performing vacuum degassing treatment for several hours, compaction was performed using a hot press machine under the conditions of 500°C x 700ONgf/d, and the resulting billet was extruded at an extrusion ratio of 10:1 and an extrusion temperature of 45°C.
Extrusion molding was carried out at 0° C. to obtain various aluminum-based laminated materials in the shape of round bars.
そして、これらの各種複合材料につき、室温及び300
℃で1000時間保持後の引張り強度を測定すると共に
、シャルピー衝撃値(室温、ノツチ無し)を測定し、現
行材としてのAC8A−T5金型鋳造材のそれと比較し
た。その結果を第1表に示す。なお、マトリックスのA
6061.2014材の調質はいずれもT4とした。For these various composite materials, room temperature and 300℃
In addition to measuring the tensile strength after being held at ℃ for 1000 hours, the Charpy impact value (room temperature, no notch) was measured and compared with that of the current AC8A-T5 mold casting material. The results are shown in Table 1. In addition, A of the matrix
The tempering of all 6061.2014 materials was T4.
第1表 : マトリックスのAn純度と複合材の強度及
び靭性第1表に示される結果から、定量的には現行のA
C8A−T5金型鋳造材より以上の靭性(シャルピー衝
撃値で評価)が得られるのは、マトリックスとしてのア
ルミニウム材に1純度99.0%以上のものを用いた場
合であり、特に99,5%以上であることが好ましく、
99899%の高純度のものを用いても99,596と
の間で差異が小さく格別意味がないことが判る。Table 1: Matrix An purity and composite strength and toughness From the results shown in Table 1, it is quantitatively clear that the current A
Toughness higher than that of C8A-T5 mold casting material (evaluated by Charpy impact value) can be obtained when an aluminum material with a purity of 99.0% or higher is used as the matrix, especially 99.5% or higher. It is preferable that it is % or more,
It can be seen that even if one with a high purity of 99,899% is used, the difference between it and 99,596 is small and has no particular significance.
実施例2
この実施例は、分散セラミック粒子の種類、特にその硬
さと複合材の耐摩耗性との関係を調べたものである。Example 2 This example investigated the relationship between the type of dispersed ceramic particles, particularly their hardness, and the wear resistance of the composite material.
マトリックス・アルミニウム粒子としてはA1050
(純度99.5%、平均粒径40μm)を用い、強化材
としての分散セラミックス粒子(平均粒径0.5μm)
に各種のものを用いて、該セラミックス粒子の分散量を
体積率Vf’:15%の一定として、前記実施例1と同
様の製法により各種の複合材を得た。A1050 as matrix aluminum particles
(purity 99.5%, average particle size 40 μm) and dispersed ceramic particles (average particle size 0.5 μm) as reinforcing material.
Various composite materials were obtained by the same manufacturing method as in Example 1, using various types of ceramic particles and setting the amount of ceramic particles dispersed at a constant volume ratio of 15%.
そして、この各種複合材の比摩耗量を測定し、現行材A
C8A−75金型鋳造材のそれと比較した。耐摩耗試験
は、大越式乾式摩耗試験機により、相手材: Fe12
、摩擦速度:1.99m/S、摩擦距離:600m、最
終荷重:2゜1 Kgの条件で測定した。結果を第2表
に示す。Then, the specific wear amount of these various composite materials was measured, and the current material A
It was compared with that of C8A-75 mold casting material. The wear resistance test was carried out using an Okoshi dry abrasion tester using a mating material: Fe12.
, friction speed: 1.99 m/s, friction distance: 600 m, final load: 2°1 Kg. The results are shown in Table 2.
第2表 : 分散セラミックスの種類と複合材の耐摩耗
性第2表の結果より、現行材AC8A−T5材と同等以
上の耐摩耗性を得るためには、セラミックス粒子として
硬さがHv1000以上のものを用いることが必要であ
り、Hv1500以上ではほとんど変化がないことから
、Hv1500以上のものを用いるのが好ましいことが
判る。Table 2: Types of dispersed ceramics and wear resistance of composite materials From the results in Table 2, in order to obtain wear resistance equivalent to or higher than the current AC8A-T5 material, it is necessary to use ceramic particles with a hardness of Hv1000 or higher. Since there is almost no change at Hv1500 or higher, it is understood that it is preferable to use a Hv1500 or higher.
実施例3
この実施例は、セラミックス粒子の種類、特にその熱膨
張係数と複合材の熱膨張係数との関係を調べたものであ
る。Example 3 In this example, the relationship between the type of ceramic particles, particularly the coefficient of thermal expansion thereof, and the coefficient of thermal expansion of the composite material was investigated.
実施例2と同様の材料及び製造方法で得た各種の複合材
につき、それらの熱膨張係数を測定して現行材AC8A
−75材と比較した。その結果を下記第3表に示す。The thermal expansion coefficients of various composite materials obtained using the same materials and manufacturing methods as in Example 2 were measured, and the current material AC8A was measured.
-Compared with 75 material. The results are shown in Table 3 below.
第3表 : 分散セラミックスの種類と複合材の熱膨張
係数上記第3表により、現行材AC8A−75材と同等
以下の熱膨張係数のものを得るためには、セラミックス
粒子としてもその熱膨張係数が10 X 10−6/℃
以下のものを用いることが必要であり、従って、Zr
02 、Ti 02 、Al2O3、SIC等のセラミ
ック粒子を用いうるが、なかでも熱膨張係数が8 X
10−6/℃以下のものを用いるのが好適であり、Ti
02 、A[03、SiCが好適性を示すことが分か
る。Table 3: Types of dispersed ceramics and thermal expansion coefficients of composite materials According to Table 3 above, in order to obtain a thermal expansion coefficient that is equal to or lower than the current AC8A-75 material, the thermal expansion coefficient of the ceramic particles must be adjusted. is 10 x 10-6/℃
It is necessary to use the following, therefore Zr
Ceramic particles such as 02, Ti 02, Al2O3, and SIC can be used, among which ceramic particles with a thermal expansion coefficient of 8
It is preferable to use Ti of 10-6/℃ or less.
It can be seen that 02, A[03, and SiC show suitability.
実施例4
この実施例は、分散セラミックス粒子の粒子径と複合材
の靭性及び耐摩耗性を調べたものである。Example 4 In this example, the particle diameter of dispersed ceramic particles and the toughness and wear resistance of the composite material were investigated.
マトリックス:A1050 (粒径40.czm)、セ
ラミックス粒子:AQ203セラミックス粒子の分散体
積率Vf15%とし、セラミックス粒子の平均粒子径を
0.1〜5μmの範囲で各種に変えたものを用いて、前
記実施例1と同様の製法により各種の複合材を製造した
。Matrix: A1050 (particle size 40.czm), ceramic particles: AQ203 The dispersion volume ratio Vf of ceramic particles was 15%, and the average particle diameter of the ceramic particles was varied in the range of 0.1 to 5 μm. Various composite materials were manufactured using the same manufacturing method as in Example 1.
そして、この各種複合材につき、シャルピー衝撃値(室
温、ノツチ無し)、耐摩耗性を測定して現行材AC8A
−T5によるものと比較した。耐摩耗性試験は実施例2
による場合と同[′Qの条件で行った。結果を第4表に
示す。The Charpy impact value (room temperature, no notch) and abrasion resistance of these various composite materials were measured, and the current material AC8A
- compared with that by T5. Wear resistance test is Example 2
It was carried out under the same conditions as in the case ['Q]. The results are shown in Table 4.
第4表 二 分散セラミックス粒子径の変化と複合材の
上記第4表に示されるように、現行AC8A−丁5材よ
りも靭性及び耐摩耗性が劣らないセラミックス粒子の粒
子径範囲は、3〜0,1μmであり、好ましくは1〜0
.3μmであることが分かる。Table 4 2 Changes in Dispersed Ceramic Particle Size and Composite Materials As shown in Table 4 above, the particle size range of ceramic particles that is not inferior in toughness and wear resistance to the current AC8A-C5 material is 3 to 3. 0.1 μm, preferably 1 to 0
.. It can be seen that the diameter is 3 μm.
実施例5
この実施例はセラミックス粒子の分散体積率Vfの変化
と複合材の耐摩耗性、靭性、耐熱強度との関係を調べた
ものである。Example 5 In this example, the relationship between changes in the dispersed volume fraction Vf of ceramic particles and the wear resistance, toughness, and heat resistance strength of a composite material was investigated.
分散セラミックス粒子の体積率vfを0〜25%の範囲
で各種に変えたほかは、実施例4と同様の材料及び製造
方法をもって各種の複合材を製造した。Various composite materials were manufactured using the same materials and manufacturing methods as in Example 4, except that the volume fraction vf of the dispersed ceramic particles was varied in the range of 0 to 25%.
そして、それらの各種複合材について、耐摩耗性、引張
り強度(300℃に1000時間保持後)、シャルピー
衝撃値(室温、ノツチ無し)を測定し、現行材と比較し
た。結果を第5表に示す。The abrasion resistance, tensile strength (after being held at 300° C. for 1000 hours), and Charpy impact value (room temperature, no notch) of these various composite materials were measured and compared with the current materials. The results are shown in Table 5.
第5表 二 分散セラミックスvrが変化した場合の複
合材の耐摩耗性、耐熱強度及び靭性
上記第5表により、現行付以上の耐摩耗性を付与するた
めにはセラミックス粒子の分散体積率5%以上が必要で
あり、また同じく現行付以上の靭性を得るためには同体
積率を20%以下とすべきことが分かる。現行材を超え
て特に良好な結果を得るためには、上記体積率は10〜
18%程度の範囲とするのが好適である。Table 5 2. Abrasion resistance, heat resistance strength, and toughness of composite materials when dispersed ceramic vr changes According to Table 5 above, in order to provide abrasion resistance higher than the current level, the dispersion volume ratio of ceramic particles must be 5%. It can be seen that the above is necessary, and that the same volume fraction should be 20% or less in order to obtain toughness higher than the current one. In order to obtain particularly good results over current materials, the above volume fraction should be between 10 and 10.
A range of approximately 18% is suitable.
実施例6
マトリックスとして平均粒径40μmのA1050アト
マイズ粉末を用い、分散セラミックスとして平均粒径0
.5μmのAQO3粒子を用い、その分散体積率を15
%として実施例1と同様の製造方法で得た複合材により
、添附第1図に示す形状の内燃機関用ピストン(A)を
製作した。Example 6 A1050 atomized powder with an average particle size of 40 μm was used as a matrix, and an average particle size of 0 as a dispersed ceramic.
.. Using 5μm AQO3 particles, the dispersion volume ratio was 15
A piston (A) for an internal combustion engine having the shape shown in attached FIG. 1 was manufactured using a composite material obtained by the same manufacturing method as in Example 1.
該ピストンは、その材料とする複合材が前記実施例4の
Vl’15%の欄に示した物性を有するところから、現
行材のAC8A−T5金型鋳造材を以って製作したピス
トンに比較して、薄肉化により50%を超える軽量化を
達成することができた。Since the composite material used for this piston has the physical properties shown in the column of Vl'15% in Example 4, it was compared with a piston manufactured using the current AC8A-T5 mold casting material. By making the wall thinner, we were able to achieve a weight reduction of over 50%.
発明の効果
請求項(1)〜(3)に記載のこの発明によれば、耐熱
強度、靭性、熱膨張係数、耐摩耗性において、従来汎用
のAC8A材に較べ総合的に卓越した諸特性を有する複
合材を提供することができ、苛酷な条件下で使用される
機械部品の用途に好適し、その大幅な軽量化の達成を可
能とする。Effects of the Invention According to the invention described in claims (1) to (3), it has comprehensively superior properties in heat resistance strength, toughness, coefficient of thermal expansion, and wear resistance compared to conventional general-purpose AC8A material. This makes it possible to provide a composite material having the following characteristics, which is suitable for use in mechanical parts used under severe conditions, and which makes it possible to achieve significant weight reduction.
また、請求項(4)に記載のピストンは、前記実施例5
のように従来のAC8A合金製のものに較べて顕著な軽
量化を実現できるところから、内燃機関の特性改善、特
に騒音低下、出力向上、振動低下に貢献を果しうる。Further, the piston according to claim (4) is the piston according to the fifth embodiment.
Since it is significantly lighter in weight than conventional AC8A alloy products, it can contribute to improving the characteristics of internal combustion engines, particularly reducing noise, increasing output, and reducing vibration.
第1図はこの発明の実施例による内燃機関用ピストンの
正面図である。
(A)・・・ピストン。
以上FIG. 1 is a front view of a piston for an internal combustion engine according to an embodiment of the present invention. (A)... Piston. that's all
Claims (4)
トリックスとし、かつ硬さHv1000以上、熱膨張係
数10×10^−^6/℃以下、平均粒子径3〜0.1
μmのセラミックス粒子を分散強化粒子として、該分散
強化粒子が体積率Vf5〜20%の割合でマトリックス
中に均一分散されてなることを特徴とする、アルミニウ
ム基複合材料。(1) Pure aluminum material with Al purity of 99.0% or more is used as a matrix, hardness is Hv1000 or more, thermal expansion coefficient is 10×10^-^6/℃ or less, and average particle size is 3 to 0.1.
An aluminum matrix composite material, characterized in that the dispersion-strengthened particles are uniformly dispersed in a matrix at a volume fraction Vf of 5 to 20% using micrometer ceramic particles as dispersion-strengthened particles.
、かつ分散強化粒子が硬さHv1500以上、熱膨張係
数8×10^−^6/℃以下、平均粒子径1〜0.3μ
mであり、強化粒子の分散体積率がVf10〜18%で
ある請求項(1)に記載のアルミニウム基複合材料。(2) The Al purity of the matrix is 99.5% or more, and the dispersion-strengthening particles have a hardness of Hv1500 or more, a thermal expansion coefficient of 8 x 10^-^6/℃ or less, and an average particle diameter of 1 to 0.3μ.
The aluminum matrix composite material according to claim 1, wherein the reinforcing particles have a dispersed volume fraction of Vf of 10 to 18%.
化粒子としてのセラミックス粒子とを混合し、ボールミ
ル処理法によって複合粉末としたのち、該複合粉末を所
定形状に熱間成形することを特徴とする請求項(1)ま
たは(2)に記載のアルミニウム基複合材料の製造方法
。(3) A claim characterized in that pure aluminum powder as a matrix and ceramic particles as reinforcing particles are mixed to form a composite powder by a ball milling method, and then the composite powder is hot-formed into a predetermined shape. The method for producing an aluminum matrix composite material according to (1) or (2).
なるピストン。(4) A piston made of the composite material according to claim (1) or (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6525788A JPH01240633A (en) | 1988-03-17 | 1988-03-17 | Aluminum-based composite material, its manufacture and piston |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6525788A JPH01240633A (en) | 1988-03-17 | 1988-03-17 | Aluminum-based composite material, its manufacture and piston |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01240633A true JPH01240633A (en) | 1989-09-26 |
JPH0368096B2 JPH0368096B2 (en) | 1991-10-25 |
Family
ID=13281678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6525788A Granted JPH01240633A (en) | 1988-03-17 | 1988-03-17 | Aluminum-based composite material, its manufacture and piston |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01240633A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068106A1 (en) * | 2004-01-20 | 2005-07-28 | Honda Motor Co., Ltd. | Method for manufacturing formed article made from metal based composite material |
-
1988
- 1988-03-17 JP JP6525788A patent/JPH01240633A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005068106A1 (en) * | 2004-01-20 | 2005-07-28 | Honda Motor Co., Ltd. | Method for manufacturing formed article made from metal based composite material |
US7516772B2 (en) | 2004-01-20 | 2009-04-14 | Honda Motor Co., Ltd. | Method of forming a product of metal-based composite material |
Also Published As
Publication number | Publication date |
---|---|
JPH0368096B2 (en) | 1991-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4853179A (en) | Method of manufacturing heat resistant, high-strength structural members of sintered aluminum alloy | |
US5435825A (en) | Aluminum matrix composite powder | |
JP2546660B2 (en) | Method for producing ceramics dispersion strengthened aluminum alloy | |
JPS6342344A (en) | Al alloy for powder metallurgy excellent in high temperature strength characteristic | |
JPH01294833A (en) | Production of aluminum alloy powder sintered compact body | |
EP1690953B1 (en) | Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts | |
JPH01240633A (en) | Aluminum-based composite material, its manufacture and piston | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JP2006328492A (en) | Damping sintered alloy | |
JPH0372047A (en) | Light al-base composite material and its manufacture | |
WO1990002824A1 (en) | Reinforced composite material | |
JP3128041B2 (en) | Cylinder block and its manufacturing method | |
JP3104309B2 (en) | Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness | |
JPS60121203A (en) | Manufacture of aluminum alloy material | |
JPH07305130A (en) | High strength wear resistant aluminum alloy | |
JPH06172903A (en) | Aluminum matrix composite with high heat resistance and high wear resistance | |
JPH03122201A (en) | Aluminum cmosite powder green compact and manufacture thereof | |
JPH02115340A (en) | Aluminum matrix composite material having excellent heat resistance and its manufacture | |
CN117604363A (en) | Heat-resistant aluminum-based composite material and preparation method thereof | |
JPS62188740A (en) | Sliding member made of high strength sintered al alloy and its production | |
JPS6342343A (en) | High-strength aluminum alloy for member for machine structural use | |
JPS63307240A (en) | High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production | |
JPH03173741A (en) | Aluminum matrix composite excellent in service life of cutting tool and its manufacture | |
JPH079050B2 (en) | Connecting rod for internal combustion engine | |
JPH05287426A (en) | Heat resistant aluminum alloy and heat resistant aluminum alloy powder |