JPS6240135A - Inline-type electron gun - Google Patents

Inline-type electron gun

Info

Publication number
JPS6240135A
JPS6240135A JP17971485A JP17971485A JPS6240135A JP S6240135 A JPS6240135 A JP S6240135A JP 17971485 A JP17971485 A JP 17971485A JP 17971485 A JP17971485 A JP 17971485A JP S6240135 A JPS6240135 A JP S6240135A
Authority
JP
Japan
Prior art keywords
main lens
axis direction
point
components
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17971485A
Other languages
Japanese (ja)
Inventor
Naohisa Yoshida
直久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17971485A priority Critical patent/JPS6240135A/en
Publication of JPS6240135A publication Critical patent/JPS6240135A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct the imbalance of the diffractive force of the convergent electrode by installing walls of given height extending in the Y axis direction outside side penetrating holes formed in the first acceleration electrode and making the point on which the outer X axis components of side electron beams are diverged more apart from the main lens than the point on which the inner components are diverged. CONSTITUTION:Since the outer wall surfaces of rectangular recesses 17r and 17b surrounding penetrating holes 5r and 5b are nearer to the holes 5r and 5b than the inner wall surfaces, the outer X axis direction divergence angles of electron beam (R) and (B) are larger than their inner X axis direction divergence angles. Therefore, the cross over point of the outer components of the electron beams (R) and (B) become more apart from a cathode 3 and nearer to a main lens 12 than their inner components. As the result, the point on which the outer components are diverged by a main lens 12 becomes more apart from the point on which the inner components are diverged and as the result the imbalance of the main lens 12 is corrected. Since this correctioni effect increases as the wall surfaces of the recesses 17r and 17b are closer to the penetrating holes 5r and 5b and as the depth of the recesses 17r and 17b or the height of the wall surfaces is larger, the size of each recess is properly adjusted.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はカラー陰極線管のインライン型電子銃に関し
、特にその収束特性の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an in-line electron gun for a color cathode ray tube, and particularly relates to improving its convergence characteristics.

[従来の技術] t52図は従来のインライン型電子銃(1)の縦断面図
で、(2)はヒータ、(3)はカソード、(4)は制御
電極G+、(5)は第1の加速電極G2 、 (8)、
(7)は収束電極G3を構成する第1.第2の部材、(
8)、(9)は第2の加速電極G4を構成する第1.第
2の部材、(10)は取付電極、(II+?) 。
[Prior Art] Figure t52 is a vertical cross-sectional view of a conventional in-line electron gun (1), in which (2) is a heater, (3) is a cathode, (4) is a control electrode G+, and (5) is a first electrode. Accelerating electrode G2, (8),
(7) is the first electrode constituting the focusing electrode G3. The second member, (
8) and (9) are the first. The second member (10) is an attached electrode (II+?).

(1IG) 、  (11B)は部材(8)に形成され
ている透孔(8r) 、 (8g) 、 (8b)の部
分で形成される電界レンズ(以下、ブリレンズという)
 、 (12)は部材(7)。
(1IG) and (11B) are electric field lenses (hereinafter referred to as brilenses) formed at the through holes (8r), (8g), and (8b) formed in the member (8).
, (12) is member (7).

(8)で形成される電界レンズ(以下、主レンズという
)である。
(8) is an electric field lens (hereinafter referred to as the main lens) formed by the lens.

第3図(a)は従来の制御電極G1の正面図、同図(b
)はそのb−b矢視断面図で、電子ビームR、G、Bが
通る透孔(4r)、(4g) 、 (4b)は円形であ
り、これらの透孔を通過した各電子ビームの断面形状も
円形で、第1の加速電極G2の円形の透孔およびプリレ
ンズ(IIR) 、 (IIG) 、 (11B)を通
ったのち、それぞれ各方向に一様に発散する円形断面の
電子ビームとなって主レンズ(12)に入射し。
FIG. 3(a) is a front view of the conventional control electrode G1, and FIG. 3(b) is a front view of the conventional control electrode G1.
) is a cross-sectional view taken along line B-B, and the through holes (4r), (4g), and (4b) through which the electron beams R, G, and B pass are circular, and the electron beams passing through these holes are The cross-sectional shape is also circular, and after passing through the circular through-hole of the first accelerating electrode G2 and the pre-lenses (IIR), (IIG), and (11B), the electron beams have a circular cross-section and diverge uniformly in each direction. and enters the main lens (12).

収束されて蛍光面に射突する。第2図中の一点鎖線は、
それぞれ電子ビームR,G、Bの中心経路を示す。以下
、電子ビームR,G、Bの配列方向をX軸、X軸と直交
する方向をY軸、各電子ビームの進む方向をX軸として
主レンズ(12)の収束作用を説明する。
It converges and hits the fluorescent screen. The dash-dotted line in Figure 2 is
The central paths of electron beams R, G, and B are shown, respectively. Hereinafter, the convergence effect of the main lens (12) will be described with the direction in which the electron beams R, G, and B are arranged as the X axis, the direction perpendicular to the X axis as the Y axis, and the direction in which each electron beam advances as the X axis.

第4図(a)は主レンズ(12)を構成する部材(7)
、(8)の拡大断面図、同図(b)はb−b線に沿う矢
視図で、部材(7)の正面図である。透孔(7r) 。
Figure 4(a) shows the member (7) constituting the main lens (12).
, (8) is an enlarged cross-sectional view, and (b) is a front view of the member (7), taken along the line bb. Through hole (7r).

(7g) 、 (?b)はX軸上に等間隔で形成され、
長円形の壁面(7w)がそれらをとり囲む形状に形成さ
れている。なお主レンズ(12)を構成する他方の部材
(8)も1部材(7)と対称形に形成されている0図中
の破線は等電位面を示し、この主レンズ(12)はX軸
方向がY軸方向よりも長い回転非対称の電界レンズを形
成する。
(7g) and (?b) are formed at equal intervals on the X axis,
An oval wall surface (7w) is formed to surround them. The other member (8) constituting the main lens (12) is also formed symmetrically with the first member (7). The broken lines in Figure 0 indicate equipotential surfaces, and this main lens (12) is aligned with the X-axis. A rotationally asymmetric electric field lens whose direction is longer than the Y-axis direction is formed.

第5図は主レンズ(12)の構成を光学レンズ系で表わ
した模式図で、(13R) 、  (13G) 、  
(13B)はそれぞれ透孔(7r) 、 (7g) 、
 (7b)の部分に形成される小レンズ、(14)は部
材(7)  、 (8)の間に形成される回転非対称の
共通レンズ、(15R) 、  (15G) 。
FIG. 5 is a schematic diagram showing the configuration of the main lens (12) as an optical lens system, with (13R), (13G),
(13B) are through holes (7r), (7g), and
(14) is a rotationally asymmetric common lens formed between members (7) and (8), (15R) and (15G).

(15B)はそれぞれ部材(8)の透孔(8r) 、 
(8g) 。
(15B) are the through holes (8r) of the member (8),
(8g).

(8b)の部分に形成される小レンズである。This is a small lens formed in the part (8b).

[発明が解決しようとする問題点] 共通レンズ(14)が回転非対称の電界レンズであるた
め、収束電極G3には次のような屈折力の不均衡がある
[Problems to be Solved by the Invention] Since the common lens (14) is a rotationally asymmetric electric field lens, the focusing electrode G3 has the following refractive power imbalance.

■X軸方向の屈折力より、Y軸方向の屈折力の方が強い
(非点収差)。
■The refractive power in the Y-axis direction is stronger than the refractive power in the X-axis direction (astigmatism).

■X軸方向の屈折力は、中央より両側の方が強い(球面
収差)。
■The refractive power in the X-axis direction is stronger on both sides than in the center (spherical aberration).

■両側の透孔を通る電子ビームR,Bに作用するX軸方
向の屈折力は、外側から中心に向う方向の屈折力の方が
、中心から外側に向う屈折力よりも強い。
(2) Regarding the refractive power in the X-axis direction that acts on the electron beams R and B passing through the through holes on both sides, the refractive power in the direction from the outside to the center is stronger than the refractive power in the direction from the center to the outside.

第4図(a)および第5図中の矢印Fl、F2゜F3は
、各電子ビームR,G、Hに作用するX軸方向の屈折力
の強さを示しており、上記■、■の理由から、Fl>F
2>F3の関係となる。
Arrows Fl, F2°F3 in Fig. 4(a) and Fig. 5 indicate the strength of the refractive power in the X-axis direction acting on each electron beam R, G, H, and For the reason, Fl>F
The relationship is 2>F3.

第6図は、蛍光面上に収束された電子ビームR、G、B
のスポット形状の一例を示す図で、上記■、■の原因で
各電子ビームのスポット形状は、円形とはならず、さら
に電子ビームR,Hには、上記■の原因で屈折力F1の
向きの/\ローHが加わる。
Figure 6 shows electron beams R, G, and B focused on the phosphor screen.
This is a diagram showing an example of the spot shape of the electron beam.Due to the above reasons, the spot shape of each electron beam is not circular.Furthermore, the electron beams R and H have different directions of refractive power F1 due to the above reason. /\Row H joins.

・このように各電子ビームのスポット形状が円形となら
ないため、解像度の低下、コントラストの低下および色
ずれを生じるという問題点があった。
- Since the spot shape of each electron beam is not circular in this way, there are problems in that resolution decreases, contrast decreases, and color shift occurs.

この発明はこのような問題点の解決を目的としてなされ
たもので、上記■の不平衡を補正した電子銃を得ること
を目的とする。
The present invention was made to solve these problems, and aims to provide an electron gun that corrects the imbalance described in (2) above.

[問題点を解決するための手段] この発明に係るインライン型電子銃は、第1の加速電極
に形成されている3つの電子ビームが通る透子のうち両
側の電子ビームが通る透孔の外側の収束電極に対向する
面上に、それぞれY軸方向に延在する壁体を設けたもの
である。
[Means for Solving the Problems] In the in-line electron gun according to the present invention, the three electron beams are formed in the first accelerating electrode, and the holes on both sides of the throughhole through which the electron beams pass are formed on the outside of the throughhole through which the electron beams pass. Wall bodies extending in the Y-axis direction are provided on the surfaces facing the focusing electrodes.

[作用] 両側の透孔の外側に設けた壁体は、電子ビームのX軸外
側成分の発散角度を、内側成分の発散角度より小さくシ
、外側成分のクロスオー7(ポイント(物点)を内側成
分のそれよりカソードから遠ざけ(主レンズに近づく)
、主レンズによる外側成分の収束点(像点)を、内側成
分の収束点より主レンズから遠ざけるように作用する。
[Function] The walls provided on the outside of the through holes on both sides make the divergence angle of the outside component of the X-axis of the electron beam smaller than the divergence angle of the inside component, and the farther away from the cathode than that of the component (closer to the main lens)
, acts to move the convergence point (image point) of the outer component by the main lens farther from the main lens than the convergence point of the inner component.

この結果、主レンズ(12)の上記■の不均衡を補正す
ることができる。
As a result, the above imbalance of the main lens (12) can be corrected.

[発明の実施例] 第1図(a)はこの発明の要部を構成する第1の加速電
極G2の一実施例の正面図、同図(b)はそのb−b矢
視断面図である0図において、(17r)、 (1?b
)はそれぞれ透孔(5r) 、 (5b)につづいて収
束電極G3に対向する面上に形成されている方形の凹部
で、それぞれ中央寄りに偏心した位置に設けられている
。 (17g)は透孔(5g)につづいて形成されてい
る方形の凹部で2透孔(5g)と同軸に設けられている
壷 次にこの凹部の作用を説明する。
[Embodiments of the Invention] FIG. 1(a) is a front view of an embodiment of the first accelerating electrode G2 constituting the main part of the present invention, and FIG. 1(b) is a sectional view taken along the line bb. In a certain 0 diagram, (17r), (1?b
) are rectangular recesses formed on the surface facing the focusing electrode G3 following the through holes (5r) and (5b), respectively, and are provided at eccentric positions toward the center. (17g) is a rectangular recess formed following the through hole (5g), and is coaxial with the second through hole (5g).Next, the function of this recess will be explained.

中央の透孔(5g)に設けた凹部(17g)は、透孔(
5g)からみてX軸上の壁面、Y軸上の壁面ともそれぞ
れ等距離に位置しており、電子ビームGの発散角度に不
均衡を生じない。しかし、両側の透孔(5r) 、 (
5b)では、方形の凹部(17r)  、  (1?b
)の壁面は、外側が透孔(5r) 、 (5b)に近く
内側が遠いので、電子ビームR,BのX軸方向の発散角
度は外側が小さく、内側が大きくなる。これは、電子ビ
ームR,Bの外側成分のクロスオーバポイントが、内側
成分のそれよりカソード(3)から遠くなること、即ち
、主レンズ(12)に近づくことであるので、主レンズ
(12)による外側成分の収束点が、内側成分の収束点
より主レンズから遠ざかるので、主レンズ(I2)の上
記■の不均衡を補正する作用がある。
The recess (17g) provided in the center hole (5g) is
5g), the wall surface on the X axis and the wall surface on the Y axis are located at the same distance from each other, so that there is no imbalance in the divergence angle of the electron beam G. However, the through holes (5r) on both sides, (
5b), the rectangular recess (17r), (1?b)
), the outside is close to the through holes (5r) and (5b) and the inside is far away, so the divergence angle of the electron beams R and B in the X-axis direction is small on the outside and large on the inside. This is because the crossover point of the outer components of the electron beams R, B is farther from the cathode (3) than that of the inner component, that is, closer to the main lens (12). Since the convergence point of the outer component is farther away from the main lens than the convergence point of the inner component, there is an effect of correcting the above-mentioned imbalance of the main lens (I2).

この作用は、凹部(17r)  、 (17b)の壁面
が、透孔に近づくほど、また凹部(17r)  、 (
17b)の深さ。
This effect increases as the wall surfaces of the recesses (17r), (17b) approach the through holes, and the wall surfaces of the recesses (17r), (17b)
17b) depth.

即ち壁面の高さが高いほど強くなるので、各凹部の大き
さを適当に設定すれば、上記■の不均衡を補正した電子
銃が得られる。
That is, the higher the height of the wall surface, the stronger it becomes, so by appropriately setting the size of each recess, it is possible to obtain an electron gun that corrects the imbalance described in (2) above.

なお、上記実施例では、方形の凹部(1?r)  。In the above embodiment, the rectangular recess (1?r) is used.

(17g)  、 (+7b)を形成した例を示したが
、凹部(+7r)  、 (17b)の外側の凹部の壁
面の位置を固定したまま、各凹部(17r)  、 (
17g)  、 (17b)のX軸方向およびY軸方向
の大きさを大きくしてゆくと、透孔(5r) 、 (5
b)の外側にY軸方向に延在する壁体を形成したものと
なり、この場合も上記実施例と同様の作用・効果が得ら
れることは明らかである。
(17g) and (+7b) are shown, but each recess (17r), (
17g), (17b) in the X-axis direction and Y-axis direction, the through holes (5r), (5
In this case, a wall extending in the Y-axis direction is formed on the outside of b), and it is clear that the same functions and effects as in the above embodiment can be obtained in this case as well.

[発明の効果] この発明は以上説明したとおり、収束電極に対向する第
1の加速電極面の、その加速電極に形成されている透孔
のうち両側の透孔の外側にそれぞれ所定高さのY軸方向
に延在する壁体を設け1両側の電子ビームのX軸外側成
分の収束点を内側成分の収束点より主レンズから遠ざけ
るようにしたので、収束電極電極G3の上記(■の屈折
力の不均衡を補正した電子銃が得られる効果がある。
[Effects of the Invention] As explained above, this invention has a predetermined height on the outside of the through holes on both sides of the through holes formed in the first accelerating electrode facing the focusing electrode. A wall body extending in the Y-axis direction is provided so that the convergence point of the X-axis outer component of the electron beam on both sides is made to be farther from the main lens than the convergence point of the inner component. This has the effect of providing an electron gun that corrects the force imbalance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の要部である第1の加速電極G
2の一実施例の正面図、同図(b)はそのb−b矢視断
面図、第2図はインライン型電子銃の縦断面図、第3図
(a)は従来の制御電極G1の正面図、同図(b)はそ
のb−b矢視断面図、第4図(a)は電子銃の主レンズ
部分の拡大断面図、同図(b)はそのb−b線に沿う矢
視正面図、第5図は主レンズを光学レンズで表わした模
式図、第6図は蛍光面上の各電子ビームスポットの形状
を示す図である。 (1)・・・インライン型111子銃、(5)・・・第
1の加速電極G 2 、 (5r) 、 (5g) 、
 (5b)=透孔、 (Ill)  、 (7)・・・
収束電極G3 、 (8)  、 (9)・・・第2の
加速電極、(12)−・・主レンズ、(+ 4 ) ・
・・共通レンズ、(+7r)  。 (17g)  、 (17b)・・・方形の凹部。 なお、各図中、同一符号はそれぞれ同一、または、相当
部分を示す9
FIG. 1(a) shows the first accelerating electrode G, which is the main part of this invention.
2, FIG. 3(b) is a sectional view taken along the line bb arrow, FIG. 2 is a longitudinal sectional view of the in-line electron gun, and FIG. 3(a) is a front view of the conventional control electrode G1. 4(b) is an enlarged sectional view of the main lens portion of the electron gun, and FIG. 4(b) is a sectional view taken along line bb. A front view, FIG. 5 is a schematic diagram showing the main lens as an optical lens, and FIG. 6 is a diagram showing the shape of each electron beam spot on the phosphor screen. (1)... In-line type 111 subgun, (5)... First accelerating electrode G 2 , (5r), (5g),
(5b)=through hole, (Ill), (7)...
Focusing electrode G3, (8), (9)...second accelerating electrode, (12)--main lens, (+4)
・・Common lens, (+7r). (17g), (17b)...square recess. In addition, in each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)電子ビームR、G、Bが並んでいるX軸方向がY
軸方向よりも長い回転非対称の電界レンズを形成する収
束電極を有するインライン型電子銃において、第1の加
速電極に形成されている上記電子ビームが通る3つの透
孔のうち両側の透孔の外側の上記収束電極に対向する面
上にそれぞれ設けられているY軸方向に延在する壁体を
備えたことを特徴とするインライン型電子銃。
(1) The X-axis direction in which electron beams R, G, and B are lined up is Y
In an in-line electron gun having a focusing electrode that forms a rotationally asymmetric electric field lens that is longer than the axial direction, the outer side of the through-holes on both sides of the three through-holes formed in the first accelerating electrode through which the electron beam passes. An in-line electron gun characterized by comprising walls extending in the Y-axis direction, each of which is provided on a surface facing the focusing electrode.
(2)壁体が、透孔に連通している第1の加速電極の面
に形成されている中心寄りに偏心して形成されている方
形の凹部の周壁面である特許請求の範囲第1項記載のイ
ンライン型電子銃。
(2) Claim 1, wherein the wall is a peripheral wall surface of a rectangular recess formed eccentrically toward the center and formed on the surface of the first accelerating electrode communicating with the through hole. The in-line electron gun described.
JP17971485A 1985-08-14 1985-08-14 Inline-type electron gun Pending JPS6240135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17971485A JPS6240135A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17971485A JPS6240135A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Publications (1)

Publication Number Publication Date
JPS6240135A true JPS6240135A (en) 1987-02-21

Family

ID=16070585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17971485A Pending JPS6240135A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Country Status (1)

Country Link
JP (1) JPS6240135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000009418A (en) * 1998-07-24 2000-02-15 김영남 Inline type electron gun using integral electrode sphere
KR20030037210A (en) * 2001-11-03 2003-05-12 삼성에스디아이 주식회사 Screen electrode for CPT, electron gun and CPT therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000009418A (en) * 1998-07-24 2000-02-15 김영남 Inline type electron gun using integral electrode sphere
KR20030037210A (en) * 2001-11-03 2003-05-12 삼성에스디아이 주식회사 Screen electrode for CPT, electron gun and CPT therewith

Similar Documents

Publication Publication Date Title
GB2112564A (en) Electron gun for color picture tube
JPS6329376B2 (en)
JP3726402B2 (en) In-line electron gun for color cathode ray tube
JPH0129299B2 (en)
JPS6240135A (en) Inline-type electron gun
JPS6019103B2 (en) In-line electron gun for color picture tube
JPS6240134A (en) Inline-type electron gun
JP2690913B2 (en) Color picture tube
JPH0452586B2 (en)
JPH0546655B2 (en)
JPS6386224A (en) Inline type electron gun
JPH0546656B2 (en)
KR100291923B1 (en) Electron gun for color cathode ray tube
JPH0410693B2 (en)
JPH0337941A (en) Electron gun for color television picture tube
JPS6381737A (en) In-line type electron gun
JP3457545B2 (en) Cathode ray tube
KR100351854B1 (en) Electric gun for Color Cathod Ray Tube
JPH11185658A (en) Electron gun for color cathode-ray tube
JPH05266822A (en) Color picture tube device
JP3053820B2 (en) Electron gun for color picture tube
JPH0158620B2 (en)
JP3360498B2 (en) In-line type electron gun
JP2962893B2 (en) In-line type electron gun
JPH0680580B2 (en) Inline electron gun