JPH0546655B2 - - Google Patents

Info

Publication number
JPH0546655B2
JPH0546655B2 JP60179715A JP17971585A JPH0546655B2 JP H0546655 B2 JPH0546655 B2 JP H0546655B2 JP 60179715 A JP60179715 A JP 60179715A JP 17971585 A JP17971585 A JP 17971585A JP H0546655 B2 JPH0546655 B2 JP H0546655B2
Authority
JP
Japan
Prior art keywords
axis direction
holes
hole
axis
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60179715A
Other languages
Japanese (ja)
Other versions
JPS6240136A (en
Inventor
Naohisa Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17971585A priority Critical patent/JPS6240136A/en
Publication of JPS6240136A publication Critical patent/JPS6240136A/en
Publication of JPH0546655B2 publication Critical patent/JPH0546655B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はカラー陰極線管のインライン型電子
銃に関し、特にその収束特性の改善に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an in-line electron gun for a color cathode ray tube, and particularly relates to improvement of its convergence characteristics.

〔従来の技術〕[Conventional technology]

第2図は従来のインライン型電子銃1の縦断面
図で、2はヒータ、3はカソード、4は制御電極
G1、5は第1の加速電極G2、6,7は収束電極
G3を構成する第1、第2の部材、8,9は第2
の加速電極G4を構成する第1、第2の部材、1
0は取付電極、11R,11G,11Bは部材6
に形成されている透孔6r,6g,6bの部分で
形成される電界レンズ(以下、プリレンズとい
う)、12は部材7,8で形成される電界レンズ
(以下、主レンズという)である。
Figure 2 is a longitudinal cross-sectional view of a conventional in-line electron gun 1, where 2 is a heater, 3 is a cathode, and 4 is a control electrode.
G 1 and 5 are the first accelerating electrodes G 2 , and 6 and 7 are the focusing electrodes
The first and second members constituting G 3 , 8 and 9 are the second members
The first and second members constituting the accelerating electrode G4 , 1
0 is the mounting electrode, 11R, 11G, 11B are the members 6
An electric field lens 12 is formed by the through holes 6r, 6g, and 6b (hereinafter referred to as a pre-lens), and 12 is an electric field lens formed by the members 7 and 8 (hereinafter referred to as a main lens).

第3図aは従来の制御電極G1の正面図、同図
bはそのb−b矢視断面図で、電子ビームR,
G,Bが通る透孔4r,4g,4bは円形であ
り、これらの透孔4r,4g,4bを通過した各
電子ビームR,G,Bの断面形状も円形で、第1
の加速電極G2の円形の透孔5r,5g,5bお
よびプリレンズ11R,11G,11Bを通つた
のち、それぞれ各方向に一様に発散する円形断面
の電子ビームとなつて主レンズ12に入射し、収
束されて蛍光面に射突する。第2図中の一点鎖線
は、それぞれ電子ビームR,G,Bの中心経路を
示す。以下、電子ビームR,G,Bの配列方向を
X軸、X軸と直交する方向をY軸、各電子ビーム
の進む方向をz軸として主レンズ12の収束作用
を説明する。
FIG. 3a is a front view of the conventional control electrode G1 , and FIG.
The through holes 4r, 4g, and 4b through which G and B pass are circular, and the cross-sectional shapes of the electron beams R, G, and B that have passed through these through holes 4r, 4g, and 4b are also circular.
After passing through the circular through holes 5r, 5g, 5b of the accelerating electrode G2 and the pre-lenses 11R, 11G, 11B, the electron beams enter the main lens 12 as electron beams with a circular cross section that diverge uniformly in each direction, respectively. It converges and hits the fluorescent screen. The dash-dotted lines in FIG. 2 indicate the center paths of the electron beams R, G, and B, respectively. Hereinafter, the convergence effect of the main lens 12 will be described with the arrangement direction of the electron beams R, G, and B as the X axis, the direction perpendicular to the X axis as the Y axis, and the direction in which each electron beam advances as the z axis.

第4図aは主レンズ12を構成する部材7,8
の拡大断面図、同図bはb−b線に沿う矢視図
で、部材7の正面図である。透孔7r,7g,7
bはX軸上に等間隔で形成され、長円形の壁面7
wがそれらをとり囲む形状に形成されている。な
お主レンズ12を構成する他方の部材8も、部材
7と対称形に形成されている。図中の破線は等電
位面を示し、この主レンズ12はX軸方向がY軸
方向よりも長い回転非対称の電界レンズを形成す
る。
FIG. 4a shows the members 7 and 8 constituting the main lens 12.
Figure b is a front view of the member 7, taken along line bb. Through holes 7r, 7g, 7
b is an oval wall surface 7 formed at equal intervals on the X axis.
w is formed in a shape surrounding them. Note that the other member 8 constituting the main lens 12 is also formed symmetrically with the member 7. The broken lines in the figure indicate equipotential surfaces, and the main lens 12 forms a rotationally asymmetric electric field lens in which the X-axis direction is longer than the Y-axis direction.

第5図は主レンズ12の構成を光学レンズ系で
表わした模式図で、13R,13G,13Bはそ
れぞれ透孔7r,7g,7bの部分に形成される
小レンズ、14は部材7,8の間に形成される回
転非対称の共通レンズ、15R,15G,15B
はそれぞれ部材8の透孔8r,8g,8bの部分
に形成される小レンズである。
FIG. 5 is a schematic diagram showing the structure of the main lens 12 as an optical lens system, in which 13R, 13G, and 13B are small lenses formed in the through holes 7r, 7g, and 7b, respectively, and 14 is the small lens formed in the parts 7 and 8. Rotationally asymmetric common lenses formed between 15R, 15G, 15B
are small lenses formed in the through holes 8r, 8g, and 8b of the member 8, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明した従来のインライン型電子銃は、共
通レンズ14が回転非対称の電界レンズであるた
め、収束電極G3には次のような屈折力の不均衡
がある。
In the conventional in-line electron gun described above, the common lens 14 is a rotationally asymmetric electric field lens, and therefore the focusing electrode G3 has the following refractive power imbalance.

X軸方向の屈折力より、Y軸方向の屈折力の
方が強い(非点収差)。
The refractive power in the Y-axis direction is stronger than the refractive power in the X-axis direction (astigmatism).

X軸方向の屈折力およびY軸方向の屈折力
は、それぞれ中央より両側の方が強い(球面収
差)。
The refractive power in the X-axis direction and the refractive power in the Y-axis direction are stronger on both sides than at the center (spherical aberration).

両側の透孔を通る電子ビームR,Bに作用す
るX軸方向の屈折力は、外側から中心に向う方
向の屈折力の方が、中心から外側に向う屈折力
よりも強い。
Regarding the refractive power in the X-axis direction that acts on the electron beams R and B passing through the through holes on both sides, the refractive power in the direction from the outside to the center is stronger than the refractive power in the direction from the center to the outside.

第4図aおよび第5図中の矢印F1,F2,F3は、
各電子ビームR,G,Bに作用するX軸方向の屈
折力の強さを示しており、上記,の理由か
ら、F1>F2>F3の関係となる。
Arrows F 1 , F 2 , F 3 in Fig. 4a and Fig. 5 are
It shows the strength of the refractive power in the X-axis direction acting on each of the electron beams R, G, and B, and for the above reason, the relationship is F 1 >F 2 >F 3 .

第6図は、蛍光面上に収束された電子ビーム
R,G,Bのスポツト形状の一例を示す図で、上
記,の原因で各電子ビームのスポツト形状
は、円形とはならず、さらに電子ビームR,Bに
は、上記の原因で屈折力F1の向きのハローH
が加わる。
FIG. 6 is a diagram showing an example of the spot shape of electron beams R, G, and B converged on a phosphor screen. Due to the above reasons, the spot shape of each electron beam is not circular, and furthermore, the spot shape of each electron beam is not circular. Beams R and B have a halo H in the direction of refractive power F 1 due to the above reasons.
is added.

このように各電子ビームのスポツト形状が円形
とならないため、解像度の低下、コントラストの
低下および色ずれを生じるという問題点があつ
た。
Since the spot shape of each electron beam is not circular as described above, there are problems in that resolution is lowered, contrast is lowered, and color shift occurs.

このような問題点を解決するため、制御電極
G1に透孔につづいて細長い平面形状の凹部を形
成して共通レンズの回転非対称性を補正した先行
技術がある。
In order to solve these problems, the control electrode
There is a prior art technique that corrects the rotational asymmetry of a common lens by forming an elongated planar concave portion following the through hole in G1 .

第7図aはその正面図、同図bはb−b矢視断
面図である。この例は、円形の透孔4r,4g,
4bにつづいて第1の加速電極G2に対向する面
にY軸方向がX軸方向よりも長い長方形の凹部1
6をそれぞれ形成したものである。
FIG. 7a is a front view thereof, and FIG. 7b is a sectional view taken along line bb. In this example, circular through holes 4r, 4g,
4b, a rectangular recess 1 whose Y-axis direction is longer than the X-axis direction is formed on the surface facing the first accelerating electrode G2 .
6, respectively.

この凹部16は、各電子ビームのX軸方向の成
分のクロスオーバポイントを、Y軸成分のそれよ
りカソード3に近づけ、主レンズ12によるX軸
成分の収束位置を、Y軸成分の収束位置より主レ
ンズ12側に近づける作用をするから、上記の
不均衡を補正する効果がある。
This concave portion 16 brings the crossover point of the X-axis component of each electron beam closer to the cathode 3 than that of the Y-axis component, and moves the convergence position of the X-axis component by the main lens 12 from the convergence position of the Y-axis component. Since it acts to bring the lens closer to the main lens 12 side, it has the effect of correcting the above-mentioned imbalance.

しかし、制御電極G1は狭い間隙でカソード3
および第1の加速電極G2に対向しており、寸法
上の制約等もあつて、十分な補正をなしえず、ま
た加工が困難であるという問題点があつた。
However, the control electrode G 1 is connected to the cathode 3 with a narrow gap.
and facing the first accelerating electrode G2 , and there were also dimensional constraints, which caused problems in that sufficient correction could not be made and machining was difficult.

この発明はこのような問題点の解決を目的とし
てなされたもので、上記およびの不均衡を補
正した電子銃を得ることを目的とする。
The present invention has been made to solve these problems, and it is an object of the present invention to provide an electron gun that corrects the above imbalance.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子銃は、電子ビームR,G,
Bが配列されているX軸方向がY軸方向よりも長
く、上記電子ビームR,G,Bに共通な回転非対
称の電界レンズを形成する収束電極を有するイン
ライン型電子銃において、上記収束電極に形成さ
れている電子ビームが通る3つの透孔を、それぞ
れX軸方向がY軸方向より小さく、かつ、中央の
透孔を両側の透孔よりX軸方向およびY軸方向と
も小さい寸法に形成したものである。
The electron gun according to the present invention has electron beams R, G,
In an in-line electron gun, the X-axis direction in which the electron beams B are arranged is longer than the Y-axis direction, and the in-line electron gun has a focusing electrode that forms a rotationally asymmetric electric field lens common to the electron beams R, G, and B. The three through holes through which the electron beam passes are each smaller in the X-axis direction than in the Y-axis direction, and the central through-hole is smaller in both the X-axis and Y-axis directions than the through-holes on both sides. It is something.

〔作用〕[Effect]

この発明によれば、収束電極に形成されている
透孔は、その内周面が通過する電子ビームに近い
ほど(孔径が小さいほど)当該透孔で形成される
小レンズの屈折力が強くなり、当該透孔を通つた
電子ビームの収束点を3つの電子ビームに共通な
主レンズに近づける作用をする。
According to this invention, the closer the inner peripheral surface of the through hole formed in the focusing electrode is to the passing electron beam (the smaller the hole diameter), the stronger the refractive power of the small lens formed by the through hole becomes. , acts to bring the convergence point of the electron beam passing through the through hole closer to the main lens common to the three electron beams.

したがつて、各透孔は、X軸方向がY軸方向よ
り小さいので、各透孔を通る電子ビームのX軸成
分の方がY軸成分より強い屈折を受けるので、主
レンズの上記の不均衡を補正することができ
る。
Therefore, since the X-axis direction of each through-hole is smaller than the Y-axis direction, the X-axis component of the electron beam passing through each through-hole is refracted more strongly than the Y-axis component, so the above-mentioned imperfection of the main lens is Balance can be corrected.

また、中央の透孔は両側の透孔よりX軸方向お
よびY軸方向とも小さいので、中央の透孔を通る
電子ビームは、両側の透孔を通る電子ビームよ
り、X軸方向およびY軸方向とも強い屈折力を受
けるので、主レンズの上記の不均衡を補正する
ことができる。
Also, since the center hole is smaller in both the X-axis and Y-axis directions than the holes on both sides, the electron beam passing through the center hole is smaller in the X-axis and Y-axis directions than the electron beam passing through the holes on both sides. Since both lenses receive strong refractive power, the above-mentioned imbalance of the main lens can be corrected.

〔発明の実施例〕[Embodiments of the invention]

第1図aはこの発明の要部を構成する収束電極
G3を構成する一方の部材7の正面図、同図bは
そのb−b矢視断面図である。
Figure 1a shows a focusing electrode that constitutes the main part of this invention.
A front view of one member 7 constituting G3 , and FIG.

図において、中央の透孔7gは、両側の透孔7
r,7bよりX軸方向およびY軸方向の大きさと
も小さい形状に形成されており、また各透孔7
g,7r,7bはそれぞれX軸方向がY軸方向よ
りも小さく、X軸およびY軸対称の長円形に形成
されている。
In the figure, the central through hole 7g is the same as the through holes 7g on both sides.
It is formed to have a smaller size in both the X-axis direction and the Y-axis direction than r and 7b, and each through hole 7
g, 7r, and 7b are each smaller in the X-axis direction than in the Y-axis direction, and are formed into oval shapes symmetrical to the X- and Y-axes.

このように、中央の透孔7gを、両側の透孔7
r,7bより小さくすると、その透孔7gで形成
される小レンズ13Gの屈折力は両側の透孔7
r,7bで形成される小レンズ13R,13Bよ
りX軸方向およびY軸方向とも強まる。
In this way, the central through hole 7g is replaced with the through hole 7g on both sides.
When r is smaller than 7b, the refractive power of the small lens 13G formed by the through hole 7g is equal to that of the through hole 7 on both sides.
It is stronger in both the X-axis direction and the Y-axis direction than the small lenses 13R and 13B formed by r and 7b.

また、各透孔のX軸方向の屈折力とY軸方向の
屈折力も、小径のX軸の方がY軸の屈折力よりも
強まる。
Further, the refractive power in the X-axis direction and the refractive power in the Y-axis direction of each through hole is also stronger in the X-axis having a smaller diameter than in the Y-axis.

したがつて、主レンズ12の上記の不均衡は
後者で、上記の不均衡は前者でそれぞれ補正さ
れる。
Therefore, the above-mentioned imbalance of the main lens 12 is corrected by the latter, and the above-mentioned imbalance is corrected by the former.

なお、上記,の不均衡をバランスよく補正
するには、次式の関係とすることで達成できる。
Note that the above imbalance can be corrected in a well-balanced manner by establishing the following relationship.

Yc/Xc<Ys/Xs 但し、Yc:中央の透孔のY軸方向の寸法 Xc:中央の透孔のX軸方向の寸法 Ys:両側の透孔のY軸方向の寸法 Xs:両側の透孔のX軸方向の寸法 なお、上記実施例では、各透孔の形状を長円形
としたが、だ円形でもよい。
Yc/Xc<Ys/Xs However, Yc: Dimension in the Y-axis direction of the central through-hole Xc: Dimension in the X-axis direction of the central through-hole Ys: Dimension in the Y-axis direction of the through-holes on both sides Dimensions of holes in the X-axis direction In the above embodiments, each through hole has an oval shape, but it may also be an oval shape.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、収束電極の
電子ビーム通過用の3つの透孔を、それぞれX軸
方向がY軸方向より小さく、かつ、中央の透孔を
両側の透孔よりX軸方向およびY軸方向とも小さ
い寸法に形成したので、収束電極G3における問
題点として冒頭で説明したところのおよびの
屈折力の不均衡を補正することができ、これによ
つて、解像度およびコントラストの向上、色ずれ
の発生もない電子銃を提供することができるとい
う効果を奏する。
As described above, according to the present invention, the three through holes for electron beam passage in the focusing electrode are each smaller in the X-axis direction than in the Y-axis direction, and the central through-hole is smaller than the through-holes on both sides in the X-axis. Since it is formed to have small dimensions in both the direction and the Y-axis direction, it is possible to correct the imbalance in refractive power between and, which was explained at the beginning as a problem with the focusing electrode G3, thereby improving resolution and contrast. , it is possible to provide an electron gun that does not cause color shift.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはこの発明の要部である第1の加速電
極G2の一実施例の正面図、同図bはそのb−b
矢視断面図、第2図はインライン型電子銃の縦断
面図、第3図aは従来の制御電極G1の正面図、
同図bはそのb−b矢視断面図、第4図aは電子
銃の主レンズ部分の拡大断面図、同図bはそのb
−b線に沿う矢視正面図、第5図は主レンズを光
学レンズで表わした模式図、第6図は蛍光面上の
各電子ビームスポツトの形状を示す図、第7図a
は先行技術に係る制御電極G1の一例の正面図、
同図bはそのb−b矢視断面図である。 1……インライン型電子銃、6,7……収束電
極G3、7r,7g,7b……透孔、8,9……
第2の加速電極、12……主レンズ、14……共
通レンズ。なお、各図中、同一符号はそれぞれ同
一、または相当部分を示す。
FIG. 1a is a front view of an embodiment of the first accelerating electrode G2 which is the essential part of this invention, and FIG.
2 is a longitudinal sectional view of the in-line electron gun, FIG. 3 a is a front view of the conventional control electrode G1 ,
Figure 4b is a cross-sectional view taken along the line b-b, Figure 4a is an enlarged cross-sectional view of the main lens of the electron gun, and figure b is a cross-sectional view of the electron gun.
5 is a schematic diagram of the main lens represented by an optical lens, FIG. 6 is a diagram showing the shape of each electron beam spot on the phosphor screen, and FIG. 7 a
is a front view of an example of control electrode G 1 according to the prior art,
Figure b is a sectional view taken along line b-b. 1... In-line electron gun, 6, 7... Focusing electrode G 3 , 7r, 7g, 7b... Through hole, 8, 9...
Second accelerating electrode, 12... main lens, 14... common lens. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 電子ビームR,G,Bが配列されているX軸
方向がY軸方向よりも長く、上記電子ビームR,
G,Bに共通な回転非対称の電界レンズを形成す
る収束電極を有するインライン型電子銃におい
て、上記収束電極に形成されている電子ビーム通
過用の3つの透孔はそれぞれX軸方向がY軸方向
よりも小さく、かつ、中央の透孔が両側の透孔よ
りX軸方向およびY軸方向とも小さい寸法に形成
されていることを特徴とするインライン型電子
銃。 2 上記3つの透孔がそれぞれX軸およびY軸対
称の長円形またはだ円形である特許請求の範囲第
1項記載のインライン型電子銃。
[Claims] 1. The X-axis direction in which the electron beams R, G, and B are arranged is longer than the Y-axis direction, and the electron beams R,
In an in-line electron gun that has a focusing electrode that forms a rotationally asymmetric electric field lens common to G and B, the three through holes for electron beam passage formed in the focusing electrode have their X-axis direction aligned with their Y-axis direction. An in-line electron gun characterized in that the central through-hole is smaller in both the X-axis direction and the Y-axis direction than the through-holes on both sides. 2. The in-line electron gun according to claim 1, wherein each of the three through holes has an oval or oval shape symmetrical with the X and Y axes.
JP17971585A 1985-08-14 1985-08-14 Inline-type electron gun Granted JPS6240136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17971585A JPS6240136A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17971585A JPS6240136A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Publications (2)

Publication Number Publication Date
JPS6240136A JPS6240136A (en) 1987-02-21
JPH0546655B2 true JPH0546655B2 (en) 1993-07-14

Family

ID=16070604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17971585A Granted JPS6240136A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Country Status (1)

Country Link
JP (1) JPS6240136A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174570A (en) * 1974-12-25 1976-06-28 Hitachi Ltd KARAAJUZOKAN
JPS5816446A (en) * 1981-07-10 1983-01-31 ア−ルシ−エ−・コ−ポレ−シヨン Color picture tube
JPS58103752A (en) * 1981-12-16 1983-06-20 Hitachi Ltd Electron gun for color picture tube
JPS59111235A (en) * 1982-12-15 1984-06-27 Hitachi Ltd Electron gun for color picture tube
JPS59215640A (en) * 1983-05-23 1984-12-05 Hitachi Ltd Electron gun for color picture tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449862U (en) * 1977-09-14 1979-04-06

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174570A (en) * 1974-12-25 1976-06-28 Hitachi Ltd KARAAJUZOKAN
JPS5816446A (en) * 1981-07-10 1983-01-31 ア−ルシ−エ−・コ−ポレ−シヨン Color picture tube
JPS58103752A (en) * 1981-12-16 1983-06-20 Hitachi Ltd Electron gun for color picture tube
JPS59111235A (en) * 1982-12-15 1984-06-27 Hitachi Ltd Electron gun for color picture tube
JPS59215640A (en) * 1983-05-23 1984-12-05 Hitachi Ltd Electron gun for color picture tube

Also Published As

Publication number Publication date
JPS6240136A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
KR0173722B1 (en) Color ray tube
US5146133A (en) Electron gun for color cathode ray tube
JPS62172635A (en) Color display tube
JP3726402B2 (en) In-line electron gun for color cathode ray tube
JPH0546655B2 (en)
JPH01236554A (en) Color image receiving tube
JPS6240135A (en) Inline-type electron gun
JPH0452586B2 (en)
JPH0546656B2 (en)
JP2690930B2 (en) Electron gun for color cathode ray tube
JPS6065433A (en) Cathode-ray tube electron gun electrode body structure
JPH0125183B2 (en)
JPS6381737A (en) In-line type electron gun
JPS6353664B2 (en)
JPH0158620B2 (en)
JPH0410693B2 (en)
JPS6240134A (en) Inline-type electron gun
JPH11185658A (en) Electron gun for color cathode-ray tube
JPS58216342A (en) Electron gun for color picture tube
JP3053820B2 (en) Electron gun for color picture tube
JP2710880B2 (en) Centralized adjustment method for in-line type cathode ray tube using quadrupole magnetic field generator
JPH0337941A (en) Electron gun for color television picture tube
JPH039579B2 (en)
KR950002263B1 (en) Electron gun for c-crt
JPH0680580B2 (en) Inline electron gun

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term