JPH0546656B2 - - Google Patents
Info
- Publication number
- JPH0546656B2 JPH0546656B2 JP60179716A JP17971685A JPH0546656B2 JP H0546656 B2 JPH0546656 B2 JP H0546656B2 JP 60179716 A JP60179716 A JP 60179716A JP 17971685 A JP17971685 A JP 17971685A JP H0546656 B2 JPH0546656 B2 JP H0546656B2
- Authority
- JP
- Japan
- Prior art keywords
- axis direction
- electrode
- holes
- main lens
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims description 29
- 230000005684 electric field Effects 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はカラー陰極線管のインライン型電子
銃に関し、特にその収束特性の改善に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an in-line electron gun for a color cathode ray tube, and particularly relates to improvement of its convergence characteristics.
第2図は従来のインライン型電子銃1の縦断面
図で、2はヒータ、3はカソード、4は制御電極
G1、5は第1の加速電極G2、6,7は収束電極
G3を構成する第1、第2の部材、8,9は第2
の加速電極G4を構成する第1、第2の部材、1
0は取付電極、11R,11G,11Bは部材6
に形成されている透孔6r,6g,6bの部分で
形成される電界レンズ(以下、プリレンズとい
う)、12は部材7,8で形成される電界レンズ
(以下、主レンズという)である。
FIG. 2 is a longitudinal cross-sectional view of a conventional in-line electron gun 1, where 2 is a heater, 3 is a cathode, and 4 is a control electrode.
G 1 and 5 are the first accelerating electrodes G 2 , and 6 and 7 are the focusing electrodes
The first and second members forming G 3 , 8 and 9 are the second members
The first and second members constituting the accelerating electrode G4 , 1
0 is the mounting electrode, 11R, 11G, 11B are the members 6
An electric field lens 12 is formed by the through holes 6r, 6g, and 6b (hereinafter referred to as a pre-lens), and 12 is an electric field lens formed by the members 7 and 8 (hereinafter referred to as a main lens).
第3図aは従来の制御電極G1の正面図、同図
bはそのb−b矢視断面図で、電子ビームR,
G,Bが通る透孔4r,4g,4bは円形であ
り、これら各透孔4r,4g,4bを通過した各
電子ビームの断面形状も円形で、第1の加速電極
G2の円形の透孔およびプリレンズ11R,11
G,11Bを通つたのち、それぞれ各方向に一様
に発散する円形断面の電子ビームとなつて主レン
ズ12に入射し、収束されて蛍光面に射突する。
第2図中の一点鎖線は、それぞれ電子ビームR,
G,Bの中心経路を示す。以下、電子ビームR,
G,Bの配列方向をX軸、X軸と直交する方向を
Y軸、各電子ビームの進む方向をZ軸として主レ
ンズ12の収束作用を説明する。 FIG. 3a is a front view of the conventional control electrode G1 , and FIG.
The through holes 4r, 4g, 4b through which G and B pass are circular, and the cross-sectional shape of each electron beam passing through each of these through holes 4r, 4g, 4b is also circular, and the first accelerating electrode
G 2 circular hole and pre-lens 11R, 11
After passing through G and 11B, the electron beams enter the main lens 12 as electron beams with a circular cross section that are uniformly diverging in each direction, and are converged and impinge on the phosphor screen.
The dashed-dotted lines in FIG. 2 indicate the electron beams R and
The center paths of G and B are shown. Below, electron beam R,
The convergence effect of the main lens 12 will be described with the direction in which G and B are arranged as the X axis, the direction orthogonal to the X axis as the Y axis, and the direction in which each electron beam advances as the Z axis.
第4図aは主レンズ12を構成する部材7,8
の拡大断面図、同図bはb−b線に沿う矢視図
で、部材7の正面図である。透孔7r,7g,7
bはX軸上に等間隔で形成され、長円形の壁面7
wがそれらをとり囲む形状に形成されている。な
お主レンズ12を構成する他方の部材8も、部材
7と対称形に形成されている。図中の破線は等電
位面を示し、この主レンズ12はX軸方向がY軸
方向よりも長い回転非対称の電界レンズを形成す
る。 FIG. 4a shows the members 7 and 8 constituting the main lens 12.
Figure b is a front view of the member 7, taken along line bb. Through holes 7r, 7g, 7
b is an oval wall surface 7 formed at equal intervals on the X axis.
w is formed in a shape surrounding them. Note that the other member 8 constituting the main lens 12 is also formed symmetrically with the member 7. The broken lines in the figure indicate equipotential surfaces, and the main lens 12 forms a rotationally asymmetric electric field lens in which the X-axis direction is longer than the Y-axis direction.
第5図は主レンズ12の構成を光学レンズ系で
表わした模式図で、13R,13G,13Bはそ
れぞれ透孔7r,7g,7bの部分に形成される
小レンズ、14は部材7,8の間に形成される回
転非対称の共通レンズ、15R,15G,15B
はそれぞれ部材8の透孔8r,8g,8bの部分
に形成される小レンズである。 FIG. 5 is a schematic diagram showing the structure of the main lens 12 as an optical lens system, in which 13R, 13G, and 13B are small lenses formed in the through holes 7r, 7g, and 7b, respectively, and 14 is the small lens formed in the parts 7 and 8. Rotationally asymmetric common lenses formed between 15R, 15G, 15B
are small lenses formed in the through holes 8r, 8g, and 8b of the member 8, respectively.
以上説明した従来のインライン型電子銃は、共
通レンズ14が回転非対称の電界レンズであるた
め、収束電極G3には次のような屈折力の不均衡
がある。
In the conventional in-line electron gun described above, the common lens 14 is a rotationally asymmetric electric field lens, and therefore the focusing electrode G3 has the following refractive power imbalance.
X軸方向の屈折力より、Y軸方向の屈折力の
方が強い(非点収差)。 The refractive power in the Y-axis direction is stronger than the refractive power in the X-axis direction (astigmatism).
X軸方向の屈折力およびY軸方向の屈折力
は、それぞれ中央より両側の方が強い(球面収
差)。 The refractive power in the X-axis direction and the refractive power in the Y-axis direction are stronger on both sides than at the center (spherical aberration).
両側の透孔を通る電子ビームR,Bに作用す
るX軸方向の屈折力は、外側から中心に向う方
向の屈折力の方が、中心から外側に向う屈折力
よりも強い。 Regarding the refractive power in the X-axis direction that acts on the electron beams R and B passing through the through holes on both sides, the refractive power in the direction from the outside to the center is stronger than the refractive power in the direction from the center to the outside.
第4図aおよび第5図中の矢印F1,F2,F3は、
各電子ビームR,G,Bに作用するX軸方向の屈
折力の強さを示しており、上記,の理由か
ら、F1>F2>F3の関係となる。 Arrows F 1 , F 2 , F 3 in Fig. 4a and Fig. 5 are
It shows the strength of the refractive power in the X-axis direction acting on each of the electron beams R, G, and B, and for the above reason, the relationship is F 1 >F 2 >F 3 .
第6図は、蛍光面上に収束された電子ビーム
R,G,Bのスポツト形状の一例を示す図で、上
記,の原因で各電子ビームのスポツト形状
は、円形とはならず、さらに電子ビームR,Bに
は、上記の原因で屈折力F1の向きのハローH
が加わる。 FIG. 6 is a diagram showing an example of the spot shape of electron beams R, G, and B converged on a phosphor screen. Due to the above reasons, the spot shape of each electron beam is not circular, and furthermore, the spot shape of each electron beam is not circular. Beams R and B have a halo H with refractive power F 1 due to the above reasons.
is added.
このように各電子ビームのスポツト形状が円形
とならないため、解像度の低下、コントラストの
低下および色ずれを生じるという問題点があつ
た。 Since the spot shape of each electron beam is not circular as described above, there are problems in that resolution is lowered, contrast is lowered, and color shift occurs.
この発明はこのような問題点の解決を目的とし
てなされたもので、上記の不均衡を補正するこ
とができるインライン型電子銃を得ることを目的
とする。 The present invention has been made to solve these problems, and it is an object of the present invention to provide an in-line electron gun that can correct the above imbalance.
この発明に係る電子銃は、電子ビーム通過用の
3つの透孔を有する第1の加速電極と、この加速
電極に対向し、且つ電子ビームR,G,Bが配列
されているX軸方向がY軸方向よりも長く、上記
電子ビームR,G,Bに共通な回転非対称の電界
レンズを形成する収束電極とを有するインライン
型電子銃において、上記第一の加速電極の収束電
極側の面上に、中央の透孔に連通する凹部を形成
したものである。
The electron gun according to the present invention includes a first accelerating electrode having three through holes for passing the electron beam, and an X-axis direction facing the accelerating electrode and in which the electron beams R, G, and B are arranged. In an in-line electron gun having a focusing electrode that is longer than the Y-axis direction and forms a rotationally asymmetric electric field lens common to the electron beams R, G, and B, on the surface of the first accelerating electrode on the focusing electrode side. A recessed portion communicating with the central through-hole is formed in the top.
この発明によれば、第一の加速電極の収束電極
側の面上に形成した、中央の透孔に連通する凹部
は、電子ビームのX軸成分の発散角度を大きく、
クロスオーバポイント(物点に相当)をY軸成分
のそれよりカソードに近づける、つまり3つの電
子ビームに共通な主レンズから遠ざける戸を有す
るので、主レンズによるX成分の収束点(像点)
をY軸成分の収束点より主レンズに近づける効果
を生じる。
According to this invention, the recess formed on the surface of the first accelerating electrode on the focusing electrode side and communicating with the central through hole increases the divergence angle of the X-axis component of the electron beam.
Since the crossover point (corresponding to the object point) is moved closer to the cathode than that of the Y-axis component, that is, it is moved away from the main lens common to the three electron beams, the main lens converges the X component (image point).
This produces the effect of bringing the Y-axis component closer to the main lens than the convergence point of the Y-axis component.
したがつて、中央の透孔のみに上記凹部を設け
た場合、および3つの透孔にそれぞれ凹部を形成
し、両側の凹部を中央の凹部よりX軸方向および
Y軸方向がそれぞれ小さい平面形状とした場合に
は、中央の透孔を通る電子ビームの収束点を両側
の透孔を通る電子ビームの収束点より主レンズに
近づくので、中央の凹部と両側の凹部の大きさの
比率を適当に設定することにより、主レンズの上
記の不均衡を補正することができる。 Therefore, when the above-mentioned recess is provided only in the central through hole, or when recesses are formed in each of the three through holes, the recesses on both sides have a planar shape that is smaller in the X-axis direction and the Y-axis direction than the central recess. In this case, the convergence point of the electron beam passing through the central through-hole will be closer to the main lens than the convergence point of the electron beam passing through the through-holes on both sides, so the ratio of the size of the central recess and the recesses on both sides should be adjusted appropriately. By setting, the above-mentioned imbalance of the main lens can be corrected.
第1図aはこの発明の要部を構成する第1の加
速電極G2の一実施例の正面図、同図bはそのb
−b矢視断面図である。図において、17r,1
7g,17bはそれぞれ円形の透孔5r,5g,
5bにつづいて収束電極G3に対向する面上に形
成されている方形の凹部で、中央の凹部17gの
X軸方向の寸法XcおよびY軸方向の寸法Ycは、
両側の凹部17r,17bのX軸方向の寸法Xs
およびY軸方向の寸法Ysよりもそれぞれ大きい
平面形状で、かつその深さは同じ寸法に形成され
ている。
Figure 1a is a front view of an embodiment of the first accelerating electrode G2 constituting the main part of the present invention, and Figure 1b is the
-B is a sectional view taken along the arrow. In the figure, 17r,1
7g and 17b are circular through holes 5r and 5g, respectively.
5b is a rectangular recess formed on the surface facing the focusing electrode G3 , and the dimension Xc in the X-axis direction and the dimension Yc in the Y-axis direction of the central recess 17g are as follows.
Dimension Xs of the recesses 17r and 17b on both sides in the X-axis direction
and Ys in the Y-axis direction, and have the same depth.
次に凹部の作用を説明する。 Next, the function of the recess will be explained.
透孔に連通し、収束電極G3に対向する面に形
成された凹部は、その透孔を通る電子ビームの発
散角度を小さくし、そのクロオーバーポイントを
カソード面から遠ざけ(主レンズに近づく)、主
レンズによる収束点を主レンズから遠ざける作用
がある。 A recess formed on the surface communicating with the through hole and facing the focusing electrode G3 reduces the divergence angle of the electron beam passing through the through hole, and moves its crossover point away from the cathode surface (closer to the main lens). , has the effect of moving the convergence point of the main lens away from the main lens.
この作用は、凹部で形成される壁面が透孔に近
づくほど強まり、透孔の長さが長いほど、また、
凹部の深さが深いほど(壁面の高さが高いほど)
強まる。 This effect becomes stronger as the wall surface formed by the recess approaches the hole, and the longer the hole is, the more
The deeper the recess is (the higher the wall height)
Get stronger.
したがつて、3つの透孔5r,5g,5bにそ
れぞれ凹部を形成した上記実施例においても、中
央の凹部17gより、両側の凹部17r,17b
の方が、X軸方向およびY軸方向の寸法が小さ
く、その壁面までの距離が近いので、電子ビーム
Gの収束点より電子ビームR,Bの収束点の方を
より主レンズ12に近づけるように作用するの
で、両者の大きさの比率を適当に設定することに
より、主レンズ12の上記の不均衡を補正する
ことができる。 Therefore, even in the embodiment described above in which recesses are formed in the three through holes 5r, 5g, and 5b, the recesses 17r and 17b on both sides are smaller than the central recess 17g.
has smaller dimensions in the X- and Y-axis directions and is closer to the wall surface, so the convergence points of the electron beams R and B are closer to the main lens 12 than the convergence point of the electron beam G. Therefore, by appropriately setting the ratio of both sizes, the above-mentioned imbalance of the main lens 12 can be corrected.
なお、各凹部17r,17g,17bの大きさ
を小さくしてゆくと、中央の凹部17gのみを形
成した場合に帰着するが、この場合も同様の作用
効果が得られることは明らかである。 It should be noted that if the size of each of the recesses 17r, 17g, and 17b is made smaller, the result will be a case where only the central recess 17g is formed, but it is clear that similar effects can be obtained in this case as well.
また、上記実施例では凹部の形状を方形とした
が、円形、長円形、またはだ円形であつてもよ
い。 Further, although the shape of the recessed portion is square in the above embodiment, it may be circular, oval, or oval.
以上のように、この発明によれば、第一の加速
電極の収束電極側の面上に、中央の透孔に連通す
る凹部を形成したので、この中央の透孔を通過す
る電子ビームの収束点を、その両側の透孔を通過
する電子ビームの収束点よりも主レンズに近づけ
ることが可能となり、したがつて、収束電極にお
ける問題点の一つとして冒頭で説明したの屈折
力の不均衡を補正することができ、電子ビームの
スポツト形状を円形にして解像度、コントラスト
の低下および色ずれの発生をなくすることができ
るという効果を奏する。
As described above, according to the present invention, the concave portion communicating with the central through hole is formed on the surface of the first accelerating electrode on the focusing electrode side, so that the electron beam passing through the central through hole is focused. This makes it possible to bring the point closer to the main lens than the convergence point of the electron beam passing through the holes on both sides of the main lens. This has the effect of making it possible to correct the spot shape of the electron beam, thereby eliminating deterioration in resolution, contrast, and occurrence of color shift.
第1図aはこの発明の要部である第1の加速電
極G2の一実施例の正面図、同図bはそのb−b
矢視断面図、第2図はインライン型電子銃の縦断
面図、第3図aは従来の制御電極G1の正面図、
同図bはそのb−b矢視断面図、第4図aは電子
銃の主レンズ部分の拡大断面図、同図bはそのb
−b線に沿う矢視正面図、第5図は主レンズを光
学レンズで表わした模式図、第6図は蛍光面上の
各電子ビームスポツトの形状を示す図である。
1……インライン型電子銃、5……第1の加速
電極G2、5r,5g,5b……透孔、6,7…
…収束電極G3、8,9……第2の加速電極、1
2……主レンズ、14……共通レンズ、17r,
17g,17b……方形の凹部。なお、各図中、
同一符号はそれぞれ同一、または相当部分を示
す。
FIG. 1a is a front view of an embodiment of the first accelerating electrode G2 which is the essential part of this invention, and FIG.
2 is a longitudinal sectional view of the in-line electron gun, FIG. 3 a is a front view of the conventional control electrode G1 ,
Figure 4b is a cross-sectional view taken along the line b-b, Figure 4a is an enlarged cross-sectional view of the main lens of the electron gun, and figure b is a cross-sectional view of the electron gun.
5 is a schematic diagram showing the main lens as an optical lens, and FIG. 6 is a diagram showing the shape of each electron beam spot on the phosphor screen. DESCRIPTION OF SYMBOLS 1... In-line electron gun, 5... First accelerating electrode G 2 , 5r, 5g, 5b... Through hole, 6, 7...
...Focusing electrode G3 , 8, 9...Second accelerating electrode, 1
2...Main lens, 14...Common lens, 17r,
17g, 17b...square recesses. In addition, in each figure,
The same reference numerals indicate the same or corresponding parts.
Claims (1)
の加速電極と、この加速電極に対向し、且つ電子
ビームR,G,Bが配列されているX軸方向がY
軸方向よりも長く、上記電子ビームR,G,Bに
共通な回転非対称の電界レンズを形成する収束電
極とを有するインライン型電子銃において、上記
第一の加速電極の収束電極側の面上に、中央の透
孔に連通する凹部を形成したことを特徴とするイ
ンライン型電子銃。 2 上記第1の加速電極に形成された3つの透孔
のそれぞれに連通させて凹部を形成し、両側の凹
部はX軸方向およびY軸方向とも中央の凹部より
小さい平面形状に形成したことを特徴とする特許
請求の範囲第1項記載のインライン型電子銃。[Claims] 1. A first hole having three through holes for electron beam passage.
, and the X-axis direction facing this acceleration electrode and in which the electron beams R, G, and B are arranged is Y.
In an in-line electron gun having a focusing electrode that is longer than the axial direction and forms a rotationally asymmetric electric field lens common to the electron beams R, G, and B, on the surface of the first accelerating electrode on the focusing electrode side. , an in-line electron gun characterized by forming a recess that communicates with a central through hole. 2. Concave portions are formed in communication with each of the three through holes formed in the first accelerating electrode, and the concave portions on both sides are formed in a planar shape smaller than the central concave portion in both the X-axis direction and the Y-axis direction. An in-line electron gun according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17971685A JPS6240137A (en) | 1985-08-14 | 1985-08-14 | Inline-type electron gun |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17971685A JPS6240137A (en) | 1985-08-14 | 1985-08-14 | Inline-type electron gun |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6240137A JPS6240137A (en) | 1987-02-21 |
JPH0546656B2 true JPH0546656B2 (en) | 1993-07-14 |
Family
ID=16070621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17971685A Granted JPS6240137A (en) | 1985-08-14 | 1985-08-14 | Inline-type electron gun |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6240137A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5546397A (en) * | 1978-09-25 | 1980-04-01 | Rca Corp | Electron gun |
JPS5823148A (en) * | 1981-07-10 | 1983-02-10 | アールシーエー ライセンシング コーポレーシヨン | Color picture display unit |
JPS5859534A (en) * | 1981-10-01 | 1983-04-08 | Matsushita Electronics Corp | In-line-type color picture tube |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5449862U (en) * | 1977-09-14 | 1979-04-06 |
-
1985
- 1985-08-14 JP JP17971685A patent/JPS6240137A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5546397A (en) * | 1978-09-25 | 1980-04-01 | Rca Corp | Electron gun |
JPS5823148A (en) * | 1981-07-10 | 1983-02-10 | アールシーエー ライセンシング コーポレーシヨン | Color picture display unit |
JPS5859534A (en) * | 1981-10-01 | 1983-04-08 | Matsushita Electronics Corp | In-line-type color picture tube |
Also Published As
Publication number | Publication date |
---|---|
JPS6240137A (en) | 1987-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940010986B1 (en) | Electron gun for c-crt | |
US5034653A (en) | Electron gun having unipotential focusing lenses for color picture tube | |
EP0119276B1 (en) | In-line type electron gun | |
US4833365A (en) | Electron gun structure for converging electron beams | |
JPH1074467A (en) | Inline electron gun for color cathode-ray tube | |
JPH0341936B2 (en) | ||
JPH0546656B2 (en) | ||
JPH05251014A (en) | Electron gun for color picture tube | |
JP3975764B2 (en) | Electron gun and color picture tube device | |
KR0123933B1 (en) | Color cathode ray tube with reduced halo | |
JPS6240135A (en) | Inline-type electron gun | |
JPH0546655B2 (en) | ||
JPH076707A (en) | Color picture tube device | |
KR100351854B1 (en) | Electric gun for Color Cathod Ray Tube | |
JPS6240134A (en) | Inline-type electron gun | |
JPS6381737A (en) | In-line type electron gun | |
JPH0452586B2 (en) | ||
KR100291923B1 (en) | Electron gun for color cathode ray tube | |
JPH0574367A (en) | Electron gun for inline type color picture tube | |
JPS6331891B2 (en) | ||
JPH0680580B2 (en) | Inline electron gun | |
JPS6255262B2 (en) | ||
KR100303837B1 (en) | Electron gun | |
JP3053820B2 (en) | Electron gun for color picture tube | |
JP2962893B2 (en) | In-line type electron gun |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |