JPS6240134A - Inline-type electron gun - Google Patents

Inline-type electron gun

Info

Publication number
JPS6240134A
JPS6240134A JP17971385A JP17971385A JPS6240134A JP S6240134 A JPS6240134 A JP S6240134A JP 17971385 A JP17971385 A JP 17971385A JP 17971385 A JP17971385 A JP 17971385A JP S6240134 A JPS6240134 A JP S6240134A
Authority
JP
Japan
Prior art keywords
recesses
axis direction
electron beam
electrode
main lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17971385A
Other languages
Japanese (ja)
Inventor
Naohisa Yoshida
直久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17971385A priority Critical patent/JPS6240134A/en
Publication of JPS6240134A publication Critical patent/JPS6240134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the imbalance of the diffractive force of a convergent electrode to be corrected by forming recesses, having a flat shape the X axis direction length of which is larger than the Y axis direction length and continuous with the electron beam holes of the first acceleration electrode, on its surface facing the convergent electrode. CONSTITUTION:Recesses 17r, 17g and 17b are adjacent to circular penetrating holes 5r, 5g and 5b respectively and are formed on a surface facing a convergent electrode (G3). They have a rectangular shape the X axis direction length of which is larger than the Y axis direction length. Since the point on which the X axis component of the electron beam is converged by a main lens 12 is more apart from the main lens 12 than the point on which the Y axis component of the electron beam is con verged, the imbalance of the main lens 12 can be corrected by properly adjusting the ratio between the vertical and the horizontal lengths of the flat shape of the recesses 17r, 17g and 17b. The diameter of circular recesses 18 is made sufficiently large in order to make the wall surface sufficiently apart from the electron beam admitted by the penetrating hole and the rectangular recesses. The circular recesses 18 control the height of the wall surfaces of the rectangular recesses 17r, 17g and 17g while maintaining a thickness necessary for maintaining the physical strength of a first acceleration electrode (G2).

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はカラー陰極線管の一インライン型電子銃に関
し、特にその収束特性の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an in-line type electron gun for a color cathode ray tube, and particularly relates to improvement of its convergence characteristics.

[従来の技術] 第2図は従来のインライン型電子銃(1)の縦断面図で
、(2)はヒータ、(3)はカソード、(4)は制御電
極G1.(5)は第1の加速電極G2 、 (8)、(
7)は収束電極G3を構成する第1.第2の部材、(8
)  、 (9)は第2の加速電極G4を構成する第1
.第2の部材、(10)は取付電極、(IIR) 。
[Prior Art] FIG. 2 is a longitudinal sectional view of a conventional in-line electron gun (1), in which (2) is a heater, (3) is a cathode, and (4) is a control electrode G1. (5) is the first accelerating electrode G2, (8), (
7) is the first electrode constituting the focusing electrode G3. second member, (8
), (9) is the first acceleration electrode that constitutes the second acceleration electrode G4.
.. The second member (10) is an attached electrode (IIR).

(IIG)、 (11B)は部材(6)に形成されてい
る透孔(Sr) 、 (8g) 、 (8b)の部分で
形成される電界レンズ(以下、プリレンズという) 、
 (12)は部材(7)。
(IIG) and (11B) are electric field lenses (hereinafter referred to as pre-lenses) formed at the through holes (Sr), (8g), and (8b) formed in the member (6),
(12) is member (7).

(8)で形成される電界レンズ(以下、主レンズという
)である。
(8) is an electric field lens (hereinafter referred to as the main lens) formed by the lens.

第3図(a)は従来の制御電極G1の正面図、同図(b
)はそのb−b矢視断面図で、電子ビームR、G、Bが
通る透孔(4r) 、 (4g) 、 (4b)は円形
であり、これらの透孔を通過した各電子ビームの断面形
状も円形で、第1の加速電極G2の円形の透孔およびブ
リレンズ(IIR)  、 (11G)、 (11B)
を通ったのち、それぞれ各方向に一様に発散する円形断
面の電子ビームとなって主レンズ(12)に入射し、収
束されて蛍光面に射突する。第2図中の一点鎖線は、そ
れぞれ電子ビームR,G、Bの中心経路を示す。以下、
電子ビームR,G、Hの配列方向をX軸、X軸と直交す
る方向をY軸、各電子ビームの進む方向をX軸として主
レンズ(12)の収束作用を説明する。
FIG. 3(a) is a front view of the conventional control electrode G1, and FIG. 3(b) is a front view of the conventional control electrode G1.
) is a cross-sectional view taken along the line b-b, and the through holes (4r), (4g), (4b) through which electron beams R, G, and B pass are circular. The cross-sectional shape is also circular, and the circular through hole of the first accelerating electrode G2 and the Brilens (IIR), (11G), (11B)
After passing through the electron beams, they become electron beams with a circular cross section that uniformly diverge in each direction and enter the main lens (12), where they are converged and impinge on the phosphor screen. The dash-dotted lines in FIG. 2 indicate the center paths of the electron beams R, G, and B, respectively. below,
The convergence effect of the main lens (12) will be described with the direction in which the electron beams R, G, and H are arranged as the X axis, the direction orthogonal to the X axis as the Y axis, and the direction in which each electron beam advances as the X axis.

第4図(a)は主レンズ(12)を構成する部材(7)
、(8)の拡大断面図、同図(b)はb−b線に沿う矢
視図で、部材(7)の正面図である。透孔(?r) 。
Figure 4(a) shows the member (7) constituting the main lens (12).
, (8) is an enlarged cross-sectional view, and (b) is a front view of the member (7), taken along the line bb. Through hole (?r).

(7g) 、 (7b)はX軸上に等間隔で形成され、
長円形の壁面(7w)がそれらをとり囲む形状に形成さ
れている。なお主レンズ(12)を構成する他方の部材
(8)も、部材(7)と対称形に形成されている0図中
の破線は等電位面を示し、この主レンズ(12)はX軸
方向がY軸方向よりも長い回転非対称の電界レンズを形
成する。
(7g) and (7b) are formed at equal intervals on the X axis,
An oval wall surface (7w) is formed to surround them. The other member (8) constituting the main lens (12) is also formed symmetrically with the member (7). The broken lines in Figure 0 indicate equipotential surfaces, and this main lens (12) is aligned with the X-axis. A rotationally asymmetric electric field lens whose direction is longer than the Y-axis direction is formed.

第5図は主レンズ(12)の構成を光学レンズ系で表わ
した模式図で、(13R)  、 (13G)  、 
(13B)はそれぞれ透孔(7r) 、 (7g) 、
 (7b)の部分に形成される小レンズ、(14)は部
材(7)  、 (8)の間に形成される回転非対称の
共通レンズ、(15R)  、 (15G)  。
FIG. 5 is a schematic diagram showing the configuration of the main lens (12) as an optical lens system, with (13R), (13G),
(13B) are through holes (7r), (7g), and
(14) is a rotationally asymmetric common lens formed between members (7) and (8), (15R) and (15G).

(15B)はそれぞれ部材(8)の透孔(8r) 、 
(8g) 。
(15B) are the through holes (8r) of the member (8),
(8g).

(8b)の部分に形成される小レンズである。This is a small lens formed in the part (8b).

[発明が解決しようとする問題点] 共通レンズ(14)が回転非対称の電界レンズであるた
め、収束電極G3には次のような屈折力の不均衡がある
[Problems to be Solved by the Invention] Since the common lens (14) is a rotationally asymmetric electric field lens, the focusing electrode G3 has the following refractive power imbalance.

■X軸方向の屈折力より、Y軸方向の屈折力の方が強い
(非点収差)。
■The refractive power in the Y-axis direction is stronger than the refractive power in the X-axis direction (astigmatism).

■X軸方向の屈折力は、中央より両側の方が強い(球面
収差)。
■The refractive power in the X-axis direction is stronger on both sides than in the center (spherical aberration).

■両側の透孔を通る電子ビームR,Hに作用するX軸方
向の屈折力は、外側から中心に向う方向の屈折力の方が
、中心から外側に向う屈折力よりも強い。
(2) Regarding the refractive power in the X-axis direction that acts on the electron beams R and H passing through the through holes on both sides, the refractive power in the direction from the outside to the center is stronger than the refractive power in the direction from the center to the outside.

第4図(a)および第5図中の矢印Fl、F2゜F3は
、各電子ビームR,G、Hに作用するX軸方向の屈折力
の強さを示しており、上記■、■の理由から、Fl>F
2>F3の関係となる。
Arrows Fl, F2°F3 in Fig. 4(a) and Fig. 5 indicate the strength of the refractive power in the X-axis direction acting on each electron beam R, G, H, and For the reason, Fl>F
The relationship is 2>F3.

第6図は、蛍光面上に収束された電子ビームR’、 G
 、 Hのスポット形状の一例を示す図で、上記■、■
の原因で各電子ビームのスポット形状は、円形とはなら
ず、さらに電子ビームR,G、Bには、上記■の原因で
屈折力Flの向きのハローHが加わる。
Figure 6 shows electron beams R', G focused on the phosphor screen.
, is a diagram showing an example of the spot shape of H, and the above ■, ■
Due to the above reason, the spot shape of each electron beam is not circular, and furthermore, a halo H in the direction of the refractive power Fl is added to the electron beams R, G, and B due to the above reason.

このように各電子ビームのスポット形状が円形とならな
いため、解像度の低下、コントラストの低下および色ず
れを生じるという問題点があった。
Since the spot shape of each electron beam is not circular in this way, there are problems in that resolution is lowered, contrast is lowered, and color shift occurs.

このような問題点を解決するため、制御電極G!に透孔
につづて細長い平面形状の四部を形成して共通レンズの
回転非対象性を補正した先行技術がある。
In order to solve these problems, control electrode G! There is a prior art technique in which rotational asymmetry of a common lens is corrected by forming four elongated planar parts following a through hole.

第7図(a)はその正面図、同図(b)はb−b矢視断
面図である。この例は、円形の透孔(4r) 。
FIG. 7(a) is a front view thereof, and FIG. 7(b) is a sectional view taken along line bb. This example is a circular hole (4r).

(4g) 、 (4b)につづいて第1の加速電極G?
に対向する面にY軸方向がX軸方向よりも長い長方形の
凹部(16)をそれぞれ形成したものである。
Following (4g) and (4b), the first accelerating electrode G?
A rectangular recess (16) whose Y-axis direction is longer than the X-axis direction is formed on the surface facing the .

この凹部(16)は、各電子ビームのX軸方向の成分の
クロスオーバポイントを、Y軸成分のそれよりカソード
(3)に近づけ、主レンズ(12)によるX軸成分の収
束位置を、Y軸成分の収束位置より主レンズ(12)側
に近づける作用をするから、上記■の不均衡を補正する
効果がある。
This recess (16) brings the crossover point of the X-axis component of each electron beam closer to the cathode (3) than that of the Y-axis component, and shifts the convergence position of the X-axis component by the main lens (12) to the Y-axis component. Since it acts to bring the axial component closer to the main lens (12) than the convergence position, it has the effect of correcting the imbalance described in (2) above.

しかし、制御電極G1は狭い間隙でカソード(3)およ
び第1の加速電極G2に対向しており、寸法上の制約等
もあって、十分な補正をなしえず、また加工が困難であ
るという問題点があった。
However, the control electrode G1 faces the cathode (3) and the first accelerating electrode G2 with a narrow gap, and due to dimensional constraints, it is not possible to make sufficient corrections, and processing is difficult. There was a problem.

この発明はこのような問題点の解決を目的としてなされ
たもので、上記■の不均衡を補正した電子銃を得ること
を目的とする。
The present invention was made to solve these problems, and aims to provide an electron gun that corrects the imbalance described in (2) above.

[問題点を解決するための手段] この発明に係る電子銃は、第1の加速電極の収束電極と
対向する面に、その加速電極に形成されている電子ビー
ムが通る3つの透孔にそれぞれ連通しているX軸方向が
Y軸方向よりも大きい平面形状の3つの凹部を形成した
ものである。
[Means for Solving the Problems] The electron gun according to the present invention has three through holes formed in the first accelerating electrode on the surface facing the focusing electrode, through which the electron beam passes. Three concave portions are formed in a planar shape in which the X-axis direction is larger than the Y-axis direction and communicate with each other.

[作用] 第1の加速電極の収束電極に対向する面に形成され、透
孔に連通している凹部は、透孔から凹部が形成する側壁
面までの距離が近いほど、通過する電子ビームの発散角
度を小さくし、そのクロスオーバポイント(物点)をカ
ソード面から遠ざけ(主レンズに近づく)、主レンズに
よる収束点(像点)を主レンズから遠ざけるように作用
する。
[Function] The concave portion formed on the surface of the first accelerating electrode facing the focusing electrode and communicating with the through hole is such that the shorter the distance from the through hole to the side wall surface formed by the concave portion, the more the passing electron beam It acts to reduce the divergence angle, move the crossover point (object point) away from the cathode surface (closer to the main lens), and move the convergence point (image point) of the main lens away from the main lens.

また、この作用は、凹部の深さが深いほど、つまり側壁
面の高さが高いほど強まる。
Moreover, this effect becomes stronger as the depth of the recess becomes deeper, that is, as the height of the side wall surface becomes higher.

したがって、X軸方向がY軸方向よりも大きい平面形状
の凹部は、電子ビームのY軸成分の収束点の方がX軸成
分の集束点より主レンズから遠ざかるので、主レンズの
上記■の不均衡を補正することができる。
Therefore, in a planar concave portion where the X-axis direction is larger than the Y-axis direction, the convergence point of the Y-axis component of the electron beam is farther from the main lens than the convergence point of the X-axis component. Balance can be corrected.

[発明の実施例] 第1図(a)はこの発明の要部を構成する第1の加速電
極G2の一実施例の正面図、同図(b)はそのb−b矢
視断面図である1図において、(17r)、 (17g
)  、 (17b)はそれぞれ円形の透孔(5r)。
[Embodiments of the Invention] FIG. 1(a) is a front view of an embodiment of the first accelerating electrode G2 constituting the main part of the present invention, and FIG. 1(b) is a sectional view taken along the line bb. In one figure, (17r), (17g
) and (17b) are circular through holes (5r), respectively.

(5g) 、 (5b)につづいて収束電極G3に対向
する面上に形成されているX軸方向がY軸方向よりも大
きい長刀形の凹部、(18)は凹部(17r)  、 
(17g)  。
Continuing from (5g) and (5b), there is a long sword-shaped recess formed on the surface facing the focusing electrode G3 in which the X-axis direction is larger than the Y-axis direction, and (18) is a recess (17r).
(17g).

(+7b)につづいてそれぞれ形成されている十分に大
きい径の円形の凹部である。
(+7b) are circular recesses each having a sufficiently large diameter.

次に長方形の凹部の作用を説明する。Next, the function of the rectangular recess will be explained.

長方形の凹部(17r)  、 (17g)  、 (
17b)をX軸方向がY軸方向よりも大きい長方形とし
たので、主レンズ(12)の上記■の不均衡を補正する
作用効果を生じる。即ち、実験結果によれば、電子ビー
ムのY軸の発散角度は、X軸の発散角より小さくなり、
Y軸成分のクロスオーバポイントは、X軸成分のそれよ
り主レンズ(12)に近づく。その結果、主レンズ(1
2)によるY軸成分の収束点は、Y軸成分の収束点より
主レンズ(12)から遠ざかるので、四部の平面形状の
縦横比を適当値に設定することにより、主レンズ(12
)の上記■の不均衡を補正することができる。
Rectangular recess (17r), (17g), (
17b) is made into a rectangle whose X-axis direction is larger than the Y-axis direction, so that an effect of correcting the above-mentioned imbalance of the main lens (12) is produced. That is, according to the experimental results, the Y-axis divergence angle of the electron beam is smaller than the X-axis divergence angle,
The crossover point for the Y-axis component is closer to the main lens (12) than that for the X-axis component. As a result, the main lens (1
The convergence point of the Y-axis component according to 2) is farther from the main lens (12) than the convergence point of the Y-axis component, so by setting the aspect ratio of the four-part planar shape to an appropriate value, the main lens (12)
) can correct the imbalance described in (2) above.

円径の四部(18)は、透孔および長方形の凹部を通過
する電子ビームに影響を与えないよう、その壁面が電子
ビームから十分に離れるよう、十分に大きな径に形成さ
れており、第1の加速電極G2の強度を保つのに必要な
厚さを保持しながら長方形の凹部の壁面の高さを調節す
る機能を有する。
The four portions (18) of the circular diameter are formed to have a sufficiently large diameter so that the wall surface is sufficiently far away from the electron beam so as not to affect the electron beam passing through the through hole and the rectangular recess. It has a function of adjusting the height of the wall surface of the rectangular recess while maintaining the thickness necessary to maintain the strength of the accelerating electrode G2.

なお、上記実施例では、凹部(1?r) 、 (17g
) 。
In the above embodiment, the recess (1?r), (17g
).

(17b)の形状を長方形とした例を示したが、X軸対
称の多角形、長円形、またはだ円形であってもよい。
Although the example in which the shape of (17b) is a rectangle is shown, it may be a polygon, an ellipse, or an ellipse symmetrical with the X axis.

[発明の効果] この発明は以上説明したとおり、第1の加速電極の収束
電極に対向する面上に、その加速電極に形成されている
電子ビームが通る透孔に連通しているX軸方向がY軸方
向よりも大きい平面形状の凹部を形成したので、電子ビ
ームのY軸成分のクロスオーバポイントはX軸成分のそ
れより主レンズに近づき、主レンズによる収束点は主レ
ンズから遠ざかるので、収束電極G3の上記■の屈折力
の付均衡を補正した電子銃が得られる効果がある。
[Effects of the Invention] As explained above, the present invention provides an X-axis direction on the surface of the first accelerating electrode facing the focusing electrode, which is connected to the through hole through which the electron beam passes, which is formed in the accelerating electrode. has formed a planar concave portion that is larger than the Y-axis direction, so the crossover point of the Y-axis component of the electron beam is closer to the main lens than that of the X-axis component, and the convergence point by the main lens is farther away from the main lens. This has the effect of providing an electron gun in which the refractive power balance described in (1) of the focusing electrode G3 is corrected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はこの発明の要部である第1の加速電極G
2の一実施例の正面図、同図(b)はそのb−b矢視断
面図、第2図はインライン型電子銃の縦断面図、第3図
(a)は従来の制御電極G1の正面図、同図(b)はそ
のb−b矢視断面図、第4図(a)は電子銃の主レンズ
部分の拡大断面図、同図(b)はそのb−b線に沿う矢
視正面図、第5図は主レンズを光学レンズで表わした模
式図、第6図は蛍光面上の各電子ビームスポットの形状
を示す図、第7図(a)は先行技術に係る制御電極G1
の一例の正面図、同図(b)はそのb−b矢視断面図で
ある。 (1)・・・インライン型電子銃、(5)・・・第1の
加速電極G 2 、 (5r) 、 (5g) 、 (
5bl・・透孔、(8)  、 (7)・・・収束電極
G3 、 (8)  、 (9)・・・第2の加速電極
、(12)・・・主レンズ、(14)・・・共通レンズ
、(18) 、  (17r) 、 (17g) 、 
 (17b)−長方形の凹部。 なお、各図中、同一符号はそれぞれ同一、または相当部
分を示す。
FIG. 1(a) shows the first accelerating electrode G, which is the main part of this invention.
2, FIG. 3(b) is a sectional view taken along the line bb arrow, FIG. 2 is a longitudinal sectional view of the in-line electron gun, and FIG. 3(a) is a front view of the conventional control electrode G1. 4(b) is an enlarged sectional view of the main lens portion of the electron gun, and FIG. 4(b) is a sectional view taken along line bb. 5 is a schematic diagram showing the main lens as an optical lens, FIG. 6 is a diagram showing the shape of each electron beam spot on the fluorescent screen, and FIG. 7(a) is a control electrode according to the prior art. G1
A front view of an example, and the same figure (b) is the bb arrow cross-sectional view. (1)... In-line electron gun, (5)... First accelerating electrode G 2 , (5r), (5g), (
5bl...Through hole, (8), (7)...Focusing electrode G3, (8), (9)...Second acceleration electrode, (12)...Main lens, (14)...・Common lens, (18), (17r), (17g),
(17b) - Rectangular recess. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)電子ビームR、G、Bが並んでいるX軸方向がY
軸方向よりも長い回転非対称の電界レンズを形成する収
束電極を有するインライン型電子銃において、上記収束
電極に対向する第1の加速電極の面上に、X軸方向がY
軸方向より大きい平面形状であつて、かつ、上記各電子
ビームが通る透孔に各別に連通している3つの凹部を形
成してなるインライン型電子銃。
(1) The X-axis direction in which electron beams R, G, and B are lined up is Y
In an in-line electron gun having a focusing electrode that forms a rotationally asymmetric electric field lens that is longer than the axial direction, the X-axis direction is
An in-line electron gun formed with three recesses each having a planar shape larger than the axial direction and communicating with the through holes through which each of the electron beams passes.
(2)凹部の平面形状がX軸対称の長方形、長円形また
はだ円である特許請求の範囲第1項記載のインライン型
電子銃。
(2) The in-line electron gun according to claim 1, wherein the planar shape of the recess is a rectangle, an oval, or an ellipse that is symmetrical about the X axis.
JP17971385A 1985-08-14 1985-08-14 Inline-type electron gun Pending JPS6240134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17971385A JPS6240134A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17971385A JPS6240134A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Publications (1)

Publication Number Publication Date
JPS6240134A true JPS6240134A (en) 1987-02-21

Family

ID=16070570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17971385A Pending JPS6240134A (en) 1985-08-14 1985-08-14 Inline-type electron gun

Country Status (1)

Country Link
JP (1) JPS6240134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484981B2 (en) 2020-06-01 2022-11-01 Honda Motor Co., Ltd. Machining method implemented by machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484981B2 (en) 2020-06-01 2022-11-01 Honda Motor Co., Ltd. Machining method implemented by machine tool

Similar Documents

Publication Publication Date Title
JPH0427656B2 (en)
US5146133A (en) Electron gun for color cathode ray tube
EP0489432B1 (en) Electron gun for color cathode-ray tube
JPH0129299B2 (en)
JP3726402B2 (en) In-line electron gun for color cathode ray tube
JPS6240134A (en) Inline-type electron gun
JPS6240135A (en) Inline-type electron gun
JPS6019103B2 (en) In-line electron gun for color picture tube
KR100266620B1 (en) In-line symmetrical outer beam electron gun
JPH0546656B2 (en)
JPS6381737A (en) In-line type electron gun
KR100291923B1 (en) Electron gun for color cathode ray tube
JPH039579B2 (en)
JPH0546655B2 (en)
JPH0337941A (en) Electron gun for color television picture tube
JP2743400B2 (en) Electron gun for color picture tube
KR950002263B1 (en) Electron gun for c-crt
KR100351854B1 (en) Electric gun for Color Cathod Ray Tube
JPS6065433A (en) Cathode-ray tube electron gun electrode body structure
KR920001983Y1 (en) Electron gun of color crt
JPH0410693B2 (en)
JPH0680580B2 (en) Inline electron gun
JPH0427655B2 (en)
JP3053820B2 (en) Electron gun for color picture tube
JPH0381934A (en) Dynamic focus electron gun