JPS6238647B2 - - Google Patents

Info

Publication number
JPS6238647B2
JPS6238647B2 JP15447276A JP15447276A JPS6238647B2 JP S6238647 B2 JPS6238647 B2 JP S6238647B2 JP 15447276 A JP15447276 A JP 15447276A JP 15447276 A JP15447276 A JP 15447276A JP S6238647 B2 JPS6238647 B2 JP S6238647B2
Authority
JP
Japan
Prior art keywords
objective lens
lens
image plane
distance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15447276A
Other languages
Japanese (ja)
Other versions
JPS5378872A (en
Inventor
Akira Watanabe
Hiroo Sugai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP15447276A priority Critical patent/JPS5378872A/en
Publication of JPS5378872A publication Critical patent/JPS5378872A/en
Publication of JPS6238647B2 publication Critical patent/JPS6238647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 本発明は、物体面の輝度測定装置、殊にレンズ
系を用いて物体面からの光束を受光器に投影する
ようになつた輝度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brightness measuring device for an object surface, and particularly to a brightness measuring device that uses a lens system to project a beam of light from the object surface onto a light receiver.

この種の輝度測定装置は、物体面からの光束を
対物レンズにより像面に結像させ、この像面に設
けた穴あき板を通過する光を受光器で受けるよう
に構成されているが、像面における照度は、被測
定物体面の輝度だけでなく、対物レンズと被測定
物体面との距離によつても変化し、この距離が小
さくなるほど輝度測定誤差が大きくなるという問
題がある。
This type of brightness measurement device is configured such that a light beam from an object plane is focused on an image plane by an objective lens, and a light receiver receives the light that passes through a perforated plate provided on this image plane. The illuminance at the image plane varies not only depending on the brightness of the object surface to be measured but also depending on the distance between the objective lens and the object surface to be measured, and there is a problem that the smaller this distance, the larger the brightness measurement error becomes.

このような問題を解決するため、対物レンズと
像面との間または像面と受光器との間に一定大き
さの穴を有する遮光板すなわち固定絞りを設け
て、一定の立体角で受光器に光束が入射するよう
に構成することは知られている。
To solve this problem, a light-shielding plate with a hole of a certain size, that is, a fixed diaphragm, is provided between the objective lens and the image plane or between the image plane and the receiver, and the receiver is fixed at a fixed solid angle. It is known that the structure is configured such that a light beam is incident on the light beam.

しかし、このような手段を施した装置では、視
準距離を短かくできるような構成にしたい場合、
固定絞りの直径は最短視準距離における対物レン
ズからの射出立体角で決定されるため、入射光束
が大巾に減少し、検出感度が悪くなるという問題
がある。さらに、被測定面の微小面積測定を行な
う場合、最短視準距離の制約から高倍率光学系も
しくは望遠光学系が必要になり、かつ視野絞りも
微小な穿孔が必要になつて製作上の困難を伴な
う。
However, with a device equipped with such means, if you want to configure it so that the collimation distance can be shortened,
Since the diameter of the fixed diaphragm is determined by the solid angle of exit from the objective lens at the shortest collimation distance, there is a problem that the incident light flux is greatly reduced and the detection sensitivity is deteriorated. Furthermore, when measuring a minute area of a surface to be measured, a high magnification optical system or a telephoto optical system is required due to the minimum collimation distance, and the field diaphragm also requires a minute hole, which creates manufacturing difficulties. Accompany.

本発明は、従来の輝度測定装置の上述した問題
を解決するものであつて、その特徴は、対物レン
ズを合成焦点距離が可変な光学系により構成し
て、対物レンズを通る光束による像面照度を一定
にして輝度測定を行ない得るようにした点にあ
る。本発明においては、対物レンズを前置固定レ
ンズと後置合焦用移動レンズとにより構成する
か、あるいは、対物レンズの光学系の内部に合焦
用移動レンズ系を配置することにより、対物レン
ズ全系の焦点距離を可変にすることが好ましい。
前置対物レンズを繰り出す方式すなわち外焦式を
採用して射出立体角を一定に保とうとすると、該
対物レンズの有効径が非常に大きくなり、かつ対
物レンズの繰り出し量も大きくなり光学性能が悪
くなる。また、機械的な制約から、最短視準距離
に限界が生じる。しかし、前述のように内部光学
素子の移動により合成焦点距離を変化させる場合
には、そのような問題が生じず、好ましい結果が
得られる。
The present invention solves the above-mentioned problems of conventional brightness measurement devices, and its features are that the objective lens is configured by an optical system with a variable synthetic focal length, and the image plane illuminance due to the light flux passing through the objective lens is The key point is that the brightness can be measured while keeping the constant value. In the present invention, the objective lens is configured by a fixed front lens and a moving lens for focusing at the rear, or by arranging a moving lens system for focusing inside the optical system of the objective lens. It is preferable to make the focal length of the entire system variable.
If a method in which the front objective lens is extended, that is, an external focusing method is used to keep the solid angle of exit constant, the effective diameter of the objective lens becomes extremely large, and the amount by which the objective lens is extended also becomes large, resulting in poor optical performance. Become. Furthermore, due to mechanical constraints, there is a limit to the shortest sighting distance. However, when the composite focal length is changed by moving the internal optical elements as described above, such problems do not occur and favorable results can be obtained.

以下、本発明の実施例を図について説明する
と、まず第1図において、1は輝度を測定すべき
物体を示し、この物体1に対面して対物レンズ2
が配置され、この対物レンズ2の後方には、合焦
用移動レンズ3および穴あき板4がこの順で配置
され、板4の穴4aを通る光を受けるように受光
器5がある。このような光学系において、レンズ
2と物体1との距離をS、レンズ2,3の合成焦
点距離をfsとすると像面すなわち穴あき板4の位
置における照度は、 E=K(1/fs−1/s) ……(1) で表わすことができる。此処にKは物体面輝度に
比例する常数である。したがつて、物体面輝度が
一定のもとで像面照度を一定にするには、 1/f−1/s=一定=β ……(2) とすればよく、距離Sが無限大のときのレンズ
2,3の合成焦点距離をfとすれば、 fs=f・S/f+S ……(3) の関係が成立するので、焦点距離fsを、距離S
の変化に応じて上述の関係を満たすように変化さ
せれば、像面照度を一定にすることができる。す
なわち、物体が破線1′で示すようにレンズ2に
接近した場合には、レンズ3を3′で示すように
前進させて射出立体角ωの変動を合成焦点距離f
sを変えることにより像面照度をほぼ一定に保つ
ことが可能になる。上述の式は厚さがゼロの理論
的光学レンズについて成立するものであるが、実
際のレンズにおいては、上述のようにレンズの焦
点距離を変化させても、像面照度を完全には一定
にすることができず、距離Sの変化に応じて像面
照度に或る程度の変化が生ずる。
Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. First, in FIG.
A moving lens 3 for focusing and a perforated plate 4 are arranged in this order behind the objective lens 2, and a light receiver 5 is provided to receive the light passing through the hole 4a of the plate 4. In such an optical system, if the distance between lens 2 and object 1 is S, and the combined focal length of lenses 2 and 3 is fs, the illuminance at the image plane, that is, the position of perforated plate 4, is E=K(1/fs -1/s) 2 ...(1) Here, K is a constant proportional to the object surface brightness. Therefore, in order to make the image plane illuminance constant when the object plane luminance is constant, 1/f-1/s=constant=β...(2), and when the distance S is infinite, If the combined focal length of lenses 2 and 3 at this time is f , then the relationship f s = f ・S/f + S ...(3) holds, so the focal length f s can be changed to the distance S
The image plane illuminance can be made constant by changing it so as to satisfy the above-mentioned relationship in accordance with the change in . That is, when an object approaches the lens 2 as shown by the broken line 1', the lens 3 is moved forward as shown by 3' and the variation in the solid angle of exit ω is converted into the composite focal length f.
By changing s , it is possible to keep the image plane illuminance almost constant. The above formula holds true for a theoretical optical lens with zero thickness, but in an actual lens, even if the focal length of the lens changes as described above, the image surface illuminance cannot be kept completely constant. Therefore, as the distance S changes, the image plane illuminance changes to some extent.

次に、第2図に示す二枚構成レンズにおいて、
被測定物体1の像を第1レンズ2により点Aに結
像する場合、次の関係が成立する。
Next, in the two-element lens shown in FIG.
When the image of the object to be measured 1 is formed on point A by the first lens 2, the following relationship holds true.

x=f+S/fS ……(4) そして、第1レンズ2と第2レンズ3とを用い
て像を点Bに結像させるとき、レンズ間隔Dは次
式で表わされる。
x=f 1 +S/f 1 S (4) Then, when an image is formed on point B using the first lens 2 and the second lens 3, the lens distance D is expressed by the following equation.

此処で、合成焦点距離fs、倍率m及び距離s
はそれぞれ次式で表わされる。
Here, the composite focal length f s , the magnification m and the distance s
are respectively expressed by the following equations.

s=f/f+f−D ……(6) m=m1×m2=x/S×L−D/x−D ……(7) S=fs(1−1/m)=f/f+f−D(1
−s/x×x−D/L−D)… …(8) (8)式を(3)式に代入すると次式が得られる。
f s = f 1 f 2 / f 1 + f 2 -D ... (6) m = m 1 × m 2 = x / S × L-D / x - D ... (7) S = fs (1-1 /m)=f 1 f 2 /f 1 +f 2 −D(1
−s/x×x−D/LD)… (8) By substituting equation (8) into equation (3), the following equation is obtained.

したがつて、(9)式を満足するようにパワー配分
をすれば、距離Sに関係なく像面照度を一定にす
ることができる。しかし、実際には、距離誤差が
或る程度生じることは避けられない。
Therefore, if the power is distributed so as to satisfy equation (9), the image plane illuminance can be made constant regardless of the distance S. However, in reality, it is inevitable that some distance error will occur.

第3図は、物体距離sと焦点距離fとの比に対
する像面照度比の変化について、本発明と従来の
装置とを比較した図表である。従来は、曲線Aで
示すように、距離比s/fの減少に伴ない像面照
度比が急激に低下していたが、本発明によれば、
像面照度比1.0に対する変動の小さい範囲が非常
に広くなつており、測定可能距離の範囲を大巾に
増加させることができる。たとえば、許容距離誤
差を4%とすると、従来は距離比s/fが20程度
で限界となつたのに対し、本発明においては距離
比s/fを4程度までにすることができる。
FIG. 3 is a chart comparing the present invention and a conventional apparatus with respect to changes in the image plane illuminance ratio with respect to the ratio of the object distance s to the focal length f. Conventionally, as shown by curve A, the image plane illuminance ratio decreased rapidly as the distance ratio s/f decreased, but according to the present invention,
The range of small fluctuations with respect to the image plane illuminance ratio of 1.0 is extremely wide, and the range of measurable distances can be greatly increased. For example, if the allowable distance error is 4%, the conventional distance ratio s/f was limited to about 20, but in the present invention, the distance ratio s/f can be made up to about 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す光学系の概略
図、第2図は本発明に用いることのできる二枚レ
ンズ構成の配置を示す説明図、第3図は本発明の
効果を示す図表である。 1……被測定物体、2,3……レンズ、4……
穴あき板、5……受光器。
Fig. 1 is a schematic diagram of an optical system showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the arrangement of a two-lens configuration that can be used in the present invention, and Fig. 3 shows the effects of the present invention. This is a diagram. 1...Object to be measured, 2, 3...Lens, 4...
Perforated plate, 5... Light receiver.

Claims (1)

【特許請求の範囲】[Claims] 1 対物レンズと前記対物レンズの後方の像面に
配置された穴あき板と前記穴あき板の後方に配置
された受光器とを包含し、被測定面からの光を前
記対物レンズにより前記像面に結像し、前記穴あ
き板を通過した光を前記受光器に受けるようにな
つた輝度測定装置において、前記対物レンズを合
成焦点距離が可変な光学系により構成して前記対
物レンズを通る光束による像面照度を一定の状態
にして輝度測定し得るようにしたことを特徴とす
る輝度測定装置。
1 includes an objective lens, a perforated plate disposed on an image plane behind the objective lens, and a light receiver disposed behind the perforated plate; In the brightness measuring device in which the light that is imaged on a surface and passed through the perforated plate is received by the light receiver, the objective lens is constituted by an optical system with a variable synthetic focal length, and the light passes through the objective lens. A brightness measuring device characterized by being able to measure brightness while keeping image plane illuminance due to a light beam constant.
JP15447276A 1976-12-22 1976-12-22 Luminance meter Granted JPS5378872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15447276A JPS5378872A (en) 1976-12-22 1976-12-22 Luminance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15447276A JPS5378872A (en) 1976-12-22 1976-12-22 Luminance meter

Publications (2)

Publication Number Publication Date
JPS5378872A JPS5378872A (en) 1978-07-12
JPS6238647B2 true JPS6238647B2 (en) 1987-08-19

Family

ID=15584987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15447276A Granted JPS5378872A (en) 1976-12-22 1976-12-22 Luminance meter

Country Status (1)

Country Link
JP (1) JPS5378872A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10827743B2 (en) 2017-02-10 2020-11-10 William Jeffrey Blackford Mosquito breeding prevention device and system

Also Published As

Publication number Publication date
JPS5378872A (en) 1978-07-12

Similar Documents

Publication Publication Date Title
US4488799A (en) Metering system using a focus detecting optical system
US4633072A (en) Focus apparatus for zoom lens system with distance detection
JPS6144244B2 (en)
JPS6238647B2 (en)
US4259688A (en) TV camera
JP2630771B2 (en) Focus detection optical system
JPS6281519A (en) Range finder
US4593188A (en) Apparatus and method for detecting focus condition of an imaging optical system
JPH04165318A (en) Focusing position detecting device
US5289316A (en) Measuring objective
US4511221A (en) Reflex zoom lens having aperture scale
JPH01266503A (en) Focus detecting device
JPS6033377Y2 (en) Light receiving device that can change the angle of incidence
JP2706932B2 (en) Focus detection device for camera
JP2006184321A (en) Focus detecting device and optical equipment equipped with focus detecting device
JPS63139310A (en) Pattern projecting device for detecting focus
JP2565496B2 (en) Imaging device for the object to be inspected
JPS60178414A (en) Focus correcting device of camera
JPH0735545A (en) Optical range finder
JPH0124285B2 (en)
JPS5946502A (en) Phase detecting device for interference light
JPH05134169A (en) Focal point detecting device
JPS6262226A (en) Laser alignment measuring apparatus
JPH0799342B2 (en) Luminance meter focus adjustment device
JPS58106517A (en) Optical splitter