JPS6262226A - Laser alignment measuring apparatus - Google Patents

Laser alignment measuring apparatus

Info

Publication number
JPS6262226A
JPS6262226A JP20235785A JP20235785A JPS6262226A JP S6262226 A JPS6262226 A JP S6262226A JP 20235785 A JP20235785 A JP 20235785A JP 20235785 A JP20235785 A JP 20235785A JP S6262226 A JPS6262226 A JP S6262226A
Authority
JP
Japan
Prior art keywords
image
range view
view image
short
field image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20235785A
Other languages
Japanese (ja)
Inventor
Hiroshi Imoto
井元 拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20235785A priority Critical patent/JPS6262226A/en
Publication of JPS6262226A publication Critical patent/JPS6262226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Abstract

PURPOSE:To obtain a small and accurate laser alignment measuring apparatus, by receiving and displaying a short-range view image and a long-range view image with the same image sensor and an image receiver. CONSTITUTION:An objective lens 11 and an eyepiece lens 12 form a Keplerian image transfer optical system. An image sensor 13 is arranged at a multi-reflection focusing position of the eyepiece lens 12 to receive a short-range view image 15 and a long- range view image 16 simultaneously to be displayed on an image receiver 14 simultaneously. When the position and the direction of travelling of a laser light is aligned accurately with a reference position (C), the centers of the image 16 and the image 15 coincide with a position (C). But when the position and the ongoing direction of the laser light is deviated or inclined, the center of the image 15 and the image 16 deviate from the position (C). The incident plane curvature, thickness, refractive index and focal range of an eyepiece lens are used to calculate a multi-reflection focusing point position f2' and a corresponding object point is calculated with the resulting position as image position of the short-range view image 15 to measure the short-range view image 15 and the long-range view image 16 simultaneously. With such an arrangement, an alignment measuring apparatus can be obtained which can measure the position and ongoing direction of the laser light accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、近視野像と遠視野像を、一つの撮像素子と受
像器によって受光し表示するようにしたレーザアライメ
ント計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser alignment measurement device that receives and displays a near-field image and a far-field image using a single image sensor and image receptor.

〔従来の技術〕[Conventional technology]

近年、多段の増幅器によって構成される高出力レーザシ
ステムは、種々の産業分野で広く利用されるようになっ
てきた。このような高出力レーザシステムにおいてけ、
出力レーザ光の高品質を維持するため、あるいはシステ
ムの安定な動作を確保するために、レーザ光の位置およ
び進行方向を正確に測定するアライメント計測装置が必
要不可欠なものとされている。
In recent years, high-power laser systems configured with multistage amplifiers have come to be widely used in various industrial fields. In such a high power laser system,
In order to maintain high quality of output laser light or ensure stable operation of a system, an alignment measuring device that accurately measures the position and traveling direction of laser light is essential.

従来、この種のアライメント計測装置として社、第4図
に示すような構成のものが用いられている。
Conventionally, as this type of alignment measuring device, one having a configuration as shown in FIG. 4 has been used.

すなわち、対物レンズ41および接眼レンズ421Cよ
り形成されるケプラー凰像転送光学系と、近視野像を結
像する撮像素子43、およびそれを表示する受像器44
と、ビームスプリッタ450反射光の焦点位置に配置し
た遠視野像を結像する撮像素子46、およびそれ全表示
する受像器47とで構成しである。
That is, a Keplerian image transfer optical system formed by an objective lens 41 and an eyepiece lens 421C, an image sensor 43 that forms a near-field image, and an image receptor 44 that displays it.
, an image sensor 46 that forms a far-field image, which is placed at the focal point of the light reflected by the beam splitter 450, and an image receiver 47 that displays the entire image.

そして、レーザ光の位置は、受像器44に表示された近
視野像48の、受像器画面におけるその位置によシレー
ザ光の基準位置からの変移量を計測していた。また、レ
ーザ光の進行方向は、受像器47に表示され友達視野像
49の、受像器画面におけるその位置によりレーザ光の
基準光軸からの傾き角を計測していた。
The position of the laser beam is determined by measuring the amount of displacement of the near-field image 48 displayed on the image receptor 44 from the reference position according to the position on the image receptor screen. Further, the traveling direction of the laser beam is determined by measuring the inclination angle of the laser beam from the reference optical axis based on the position of the friend field image 49 displayed on the image receptor 47 on the image receptor screen.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のレーザアライメント計測装置は、近視野
像と遠視野像がビームスプリッタによりそれぞれ個別の
光路に分岐されるため、二組の撮像素子と受像器を必要
とした。このため、装置が大型化するとともに高価格に
なるといった問題点を有していた。
The conventional laser alignment measuring device described above requires two sets of image pickup elements and image receptors because the near-field image and the far-field image are split into separate optical paths by a beam splitter. For this reason, there have been problems in that the device becomes large and expensive.

本発明は上記の問題点に鑑みてなされたもので、近視野
像と遠視野像を同一の撮像素子と受像器を用いて受光、
表示することにより、装置の小型化を可能ならしめ次し
−ザア2イメント計測装置の提供を目的とする。
The present invention has been made in view of the above-mentioned problems, and uses the same image sensor and image receptor to receive near-field images and far-field images.
It is an object of the present invention to provide a second measurement device that enables the device to be miniaturized by displaying the following information.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明のレーザアライメント計
測装置は、対物レンズと接眼レンズにょつてケプラー型
像転送光学系を形成し、かつ、前記接眼レンズの多重反
射集光位置に近視野像と遠視野像を同時に受光する撮像
素子を配置するとともに、撮像素子で受光した近視野像
と遠視野像を同時に表示する受像器を備えた構成としで
ある。
In order to achieve the above object, the laser alignment measuring device of the present invention forms a Keplerian image transfer optical system with an objective lens and an eyepiece, and a near-field image and a far-field image are formed at the multiple reflection condensing position of the eyepiece. This configuration includes an image sensor that simultaneously receives images, and an image receiver that simultaneously displays a near-field image and a far-field image received by the image sensor.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本実施例のレーザアライメント計測装置の10
ツク図である。本実施例のものは、対物レンズ11と接
眼レンズ12でケブラー型像転送光学系を形成しである
。そして、接眼し/ズ12には平凸レンズを用いている
。撮像素子」3は接眼レンズ12の多重反射集光位置に
配置し、近視野像と遠視野像を同時に受光できるように
しである。また、受像器」4は、撮像素子I3で受光し
た近視野像と遠視野像を同時KN示するよう接続しであ
る。
Figure 1 shows 10 parts of the laser alignment measuring device of this embodiment.
This is a diagram. In this embodiment, an objective lens 11 and an eyepiece lens 12 form a Kevlar type image transfer optical system. A plano-convex lens is used for the eyepiece/lens 12. The image sensor 3 is disposed at the multiple reflection condensing position of the eyepiece 12 so that it can simultaneously receive a near-field image and a far-field image. Further, the image receiver 4 is connected so as to simultaneously display a near-field image and a far-field image received by the image sensor I3.

第1図において、実線で示す光路は近視野像の吃のであ
り、鎖線で示す光路は遠視野像のものである。tfC,
受像器14の画面中、15は近視野像であり、16は遠
視野像である。
In FIG. 1, the optical path indicated by a solid line is for a near-field image, and the optical path indicated by a chain line is for a far-field image. tfC,
In the screen of the image receptor 14, 15 is a near-field image, and 16 is a far-field image.

第2図は接眼レンズ12の多重反射光路ヶ示す拡大図で
ある。第2図において、実線の光路は近視野像に対応し
、接眼レンズ12の出射面より平行に射出する。また、
鎖線の光路は、実線光路のうち接眼レンズ12の出射面
で反射する多重反射光路を示し、遠視野像を撮像素子1
3に与えるものである。
FIG. 2 is an enlarged view showing the multiple reflection optical paths of the eyepiece lens 12. In FIG. 2, the solid line optical path corresponds to a near-field image and exits in parallel from the exit surface of the eyepiece 12. Also,
A chain line optical path indicates a multiple reflection optical path that is reflected at the exit surface of the eyepiece lens 12 among the solid line optical paths, and a far-field image is transmitted to the image sensor 1.
3.

第3図(イ)乃至に)は本実施例のレーザアライメント
計測装置による計測例を示すもので、レーザ光の基準位
置からの変位、傾き状態倉受像器に表示される画面との
対応で示している。すなわち、受像器L4に表示される
近視野@15および遠視野像】6の変移量によシ、レー
ザ光の位置と基準光軸からの傾き角が判るようにしたも
のである。なお、第3図(イ)乃至に)において、Cは
レーザ光の基準位置を示すものである。
Figures 3 (a) to 3) show an example of measurement by the laser alignment measuring device of this embodiment, and show the displacement and inclination of the laser beam from the reference position in correspondence with the screen displayed on the image receptor. ing. That is, the position of the laser beam and the angle of inclination from the reference optical axis can be determined based on the amount of displacement of the near-field image @15 and the far-field image 6 displayed on the image receptor L4. In addition, in FIGS. 3(a) to 3), C indicates the reference position of the laser beam.

第3図G)は、レーザ光の位置、進行方向とも正しくア
ライメントされていることを示している。
FIG. 3G) shows that both the position and traveling direction of the laser beam are correctly aligned.

第3図(ロ)は、レーザ光の進行方向は基準光軸に平行
にアライメントされているが、レーザ光位置が基準位置
より変移している状態を示している。第3図(ハ)は、
レーザ光は基準位置にアライメントされているが、レー
ザ光の進行方向が基準光軸に対して傾いている状態を示
している。第3図に)は、レーザ光の位置、進行方向と
もに基準よ〕変移し、かつ光軸より傾いていることを示
している。
FIG. 3(b) shows a state in which the traveling direction of the laser beam is aligned parallel to the reference optical axis, but the laser beam position is displaced from the reference position. Figure 3 (c) is
Although the laser beam is aligned to the reference position, the traveling direction of the laser beam is tilted with respect to the reference optical axis. Figure 3) shows that both the position and traveling direction of the laser beam are shifted from the reference and are tilted from the optical axis.

次に、第1図および第2図にもとづいて接眼レンズ多重
反射光が集光する位置を求め、この位置を近視野像の像
点位置としたときの対応する物点位置を計算し、近視野
像と遠視野像が同時に計測できることと示す。
Next, based on Figures 1 and 2, find the position where the multiple reflected light from the eyepiece is focused, calculate the corresponding object point position when this position is taken as the image point position of the near-field image, and This shows that the field image and far-field image can be measured simultaneously.

多重反射集光位置は第2図を用いて計算される。The multiple reflection focusing position is calculated using FIG.

ここで、 rl:レンズ入射面曲率 r2:し/ズ出射面曲率 d:レンズ肉厚 n:レンズの屈折率 fz:レンズの焦点距離 f2′:多重反射光集光位置 友だし、f!#の光路は0→P −I Q−4R→S→
OIとする。
Here, rl: Lens entrance surface curvature r2: S/Z exit surface curvature d: Lens thickness n: Lens refractive index fz: Lens focal length f2': Multiple reflected light condensing position, f! The optical path of # is 0→P -I Q-4R→S→
It shall be OI.

まず、接眼レンズが薄肉レンズとして、fzは次式で与
えられる。
First, assuming that the eyepiece lens is a thin lens, fz is given by the following equation.

1/f2=(n−t)(1/r、 −1/r2)   
   tt+さらに、平凸レンズの場合r1=ψである
からfz ;= −ra/(n−1)        
   (2)である。
1/f2=(nt) (1/r, -1/r2)
tt+Furthermore, in the case of a plano-convex lens, r1=ψ, so fz ;= -ra/(n-1)
(2).

次に多重反射集光点位置tABcD行列によシ求める。Next, the multiple reflection focal point position is determined using the tABcD matrix.

ここで h:レンズ入射面の光軸高さ h’sレンズ出射面の光11FI4す O:入射光の傾き角 θ′:多重反射出射光の傾き角 平凸レンズでrl=ψおよび、薄肉レンズとしてd=0
とすると、(31式は次式となる。
where h: height of the optical axis of the lens entrance surface h's light at the lens exit surface d=0
Then, (Equation 31 becomes the following equation.

接眼レンズはケプラー型を構成しているので0は次式で
与えられる。
Since the eyepiece lens has a Keplerian type, 0 is given by the following equation.

#=h/fz(5) ここで、121式より、f2=−rz/(n−u)であ
るので、(5)式は、θ”=−h(n−1)/rzとな
る。
#=h/fz (5) Here, from equation 121, f2=-rz/(nu), so equation (5) becomes θ''=-h(n-1)/rz.

(5)式を(4)式に代入して次式を得る。Substituting equation (5) into equation (4) yields the following equation.

h””h                  16)
a’ = 2h (1−2n )/r2(71故に、 fz’=h’ρ’  = r2/2(1−2n)   
     (8)このとき近視野像の観測位置看は次式
によ如定まる。
h””h 16)
a' = 2h (1-2n)/r2 (71, therefore, fz'=h'ρ' = r2/2(1-2n)
(8) At this time, the observation position of the near-field image is determined by the following equation.

13 = Cft +fz )/M −fz’/ M2
(9)ここで、 M=fz/flQI 以上の解析により、撮像素子[3を(8)式で定まる位
置に配置すれば、遠視野像とともに、(9)式で定まる
位置での近視野像を受光できることが判る。
13 = Cft + fz )/M - fz'/ M2
(9) Here, M=fz/flQI According to the above analysis, if the image sensor [3 is placed at the position determined by formula (8), the near-field image at the position determined by formula (9) as well as the far-field image will be obtained. It can be seen that it is possible to receive light.

なお、上述した実施例において、近視野像と遠視野像の
光景を調整するには、接眼レンズに施される無反射蒸着
膜の反射率ft調整して行なう。
In the above-described embodiment, the near-field image and the far-field image are adjusted by adjusting the reflectance ft of the non-reflection deposited film applied to the eyepiece.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、接眼レンズの多重反射集
光位置に撮像素子を配置し、−組の撮像素子と受像器に
よって近視野像と遠視野像を同時に計測できるようにす
ることにより、装置を構成する部品の減少および装置の
小型化と低価格を図れる効果がある。
As explained above, the present invention arranges an image sensor at the multiple reflection condensing position of the eyepiece lens, and enables simultaneous measurement of a near-field image and a far-field image using a pair of image sensor and image receptor. This has the effect of reducing the number of parts constituting the device and making the device smaller and cheaper.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の基本構成を示すブロック
図、第2図は、接眼レンズの多重反射集光路を示す拡大
図、第3図(イ)乃至に)は、レーザ光の基準位置から
の変位、傾き状態を受像器に表示される画面との対応で
表わした図、第4図社従来例のブロック図である。 11・・・対物レンズ    12・・・接眼レンズ1
3・・・撮像素子     t4・・・受像器15・・
・近視野gI116・・・遠祝野像χ 、                   D@   
      区 rIQ
FIG. 1 is a block diagram showing the basic configuration of an embodiment of the present invention, FIG. 2 is an enlarged view showing the multiple reflection condensing path of the eyepiece, and FIG. FIG. 4 is a block diagram of the conventional example of the company, which shows the displacement from the reference position and the tilt state in correspondence with the screen displayed on the image receiver. 11... Objective lens 12... Eyepiece lens 1
3... Image sensor t4... Image receptor 15...
・Near field gI116...Distant field image χ, D@
Ward rIQ

Claims (1)

【特許請求の範囲】[Claims] 対物レンズと接眼レンズによつてケプラー型像転送光学
系を形成し、かつ、前記接眼レンズの多重反射集光位置
に撮像素子を配置し、さらに、この撮像素子で受光した
近視野像と遠視野像とを同時に表示する受像器を備えた
ことを特徴とするレーザアライメント計測装置。
A Keplerian image transfer optical system is formed by the objective lens and the eyepiece, and an image sensor is arranged at the multiple reflection focusing position of the eyepiece, and the near-field image and far-field image received by the image sensor are A laser alignment measurement device characterized by comprising an image receptor that simultaneously displays an image and an image.
JP20235785A 1985-09-11 1985-09-11 Laser alignment measuring apparatus Pending JPS6262226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20235785A JPS6262226A (en) 1985-09-11 1985-09-11 Laser alignment measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20235785A JPS6262226A (en) 1985-09-11 1985-09-11 Laser alignment measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6262226A true JPS6262226A (en) 1987-03-18

Family

ID=16456173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20235785A Pending JPS6262226A (en) 1985-09-11 1985-09-11 Laser alignment measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6262226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700084A (en) * 1995-08-22 1997-12-23 Hamamatsu Photonics K.K. Optical source position adjustment device
JP2006080458A (en) * 2004-09-13 2006-03-23 Dainichi Shoji Kk Wafer carrier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700084A (en) * 1995-08-22 1997-12-23 Hamamatsu Photonics K.K. Optical source position adjustment device
JP2006080458A (en) * 2004-09-13 2006-03-23 Dainichi Shoji Kk Wafer carrier
JP4509713B2 (en) * 2004-09-13 2010-07-21 大日商事株式会社 Wafer carrier

Similar Documents

Publication Publication Date Title
US7672049B2 (en) Telescope and panfocal telescope comprising planoconvex of planoconcave lens and deflecting means connected thereto
US4534637A (en) Camera with active optical range finder
WO2018056121A1 (en) Stress measuring device for tempered glass, stress measuring method for tempered glass, method for manufacturing tempered glass, and tempered glass
JPH05256647A (en) Inclination measuring device
SU958854A1 (en) Device for simultaneous measurement of misalgnment and direction
JPH06249749A (en) Lens meter
JPS6262226A (en) Laser alignment measuring apparatus
US5546235A (en) Astigmatic lens for use in detecting a focussing error in an optical pickup system
JPS6135485B2 (en)
JP2005031558A (en) Multi-wavelength two or more-screen optical system
JPH08152554A (en) Optical branching optical system
CN106017363B (en) A kind of big working distance autocollimation of high dynamic precision and method
CN106091990B (en) The big working distance autocollimation of portable array zeroing high dynamic precision and method
JP2754415B2 (en) Photoelectric autocollimator
CN112762817B (en) Tilted fizeau wave number scanning interferometer
SU1244616A1 (en) Autocollimation device
CN106052548B (en) A kind of big working distance autocollimation of portable high-accuracy and method
CN106052598B (en) A kind of big working distance autocollimation of high frequency sound and method
JPH0798429A (en) Range finder
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
CN106225729B (en) The big working distance autocollimation of portable combined zeroing high dynamic precision and method
CN106247993B (en) A kind of wide scope, big working distance autocollimation and method
CN106052597B (en) A kind of portable high frequency rings big working distance autocollimation and method
JPH0798205A (en) Distance measuring system
JP2001324315A (en) Measuring instrument