JPS58106517A - Optical splitter - Google Patents

Optical splitter

Info

Publication number
JPS58106517A
JPS58106517A JP20582981A JP20582981A JPS58106517A JP S58106517 A JPS58106517 A JP S58106517A JP 20582981 A JP20582981 A JP 20582981A JP 20582981 A JP20582981 A JP 20582981A JP S58106517 A JPS58106517 A JP S58106517A
Authority
JP
Japan
Prior art keywords
light
line sensor
optical
sensor
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20582981A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆史 鈴木
Susumu Matsumura
進 松村
Keiji Otaka
圭史 大高
Nozomi Kitagishi
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20582981A priority Critical patent/JPS58106517A/en
Publication of JPS58106517A publication Critical patent/JPS58106517A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To largely take an optical path length difference of a split luminous flux without changing a placing interval of each line sensor, by varying an angle made by each transmitting and reflecting surface of an optical splitting element, and a plane containing each line sensor, to 45 degrees. CONSTITUTION:On a sensor substrate 10, line sensors 11a-11c are plaed, and in its upper part, an optical transmitting plate 12 is installed in parallel with the substrate 10, and furthermore, in its upper part, an optical splitting prism 13 is diagonally provided so that an angle theta made by each transmitting and reflecting surface and the optical transmitting plate 12 becomes <=45 degrees. As image forming luminous flux l from a sub-mirror is made incident to a beam splitter 14a of the optical splitting prism 13, a part of said luminous flux is made incident to the line sensor 11a, the remaining luminous flux is reflected and is made incident to the line sensor 11b, and also goes round outside to the diagonal upper part, and is made incident to the line sensor 11c. As for luminous fluxes lb, lc which have gone round outside, the optical paths are extended by the portion which has gone round outside.

Description

【発明の詳細な説明】 本発明は、撮影レンズからの結像光束を分割し、その分
割された各結像光束の光路長に差異を設け、これら各光
束を受光するように配置された各ラインセンサより得ら
れた像のボケ具合を比較して、合焦状態を検出する合焦
状態検出光学系に用いる光分割器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention divides an imaging light beam from a photographic lens, provides a difference in the optical path length of each of the divided imaging light beams, and provides a plurality of light beams arranged to receive each of these light beams. This invention relates to a light splitter used in a focus state detection optical system that detects a focus state by comparing the degree of blur of images obtained by a line sensor.

−眼レフレックスカメラ等に光分割器と複数個のライン
センサを取付け、分割された結像光束からの像情報を読
取り、合焦状態を検出するボケ検出方式は既に知られて
いる。
- A blur detection method is already known in which a light splitter and a plurality of line sensors are attached to an eye reflex camera or the like, and image information from the split imaging light beam is read to detect the in-focus state.

本出願人は先に例えば特開間第55−155308号に
於いて、このような方式を用いる光分割器を開示してお
り、これを第1図、第2図に基づいて説明する。図示し
ない結像レンズからの結像光束ρ(光軸上の光線のみを
示す)の一部は、部分透過のクイックリターンミラー1
を透過し、サブミラー2によって下方に偏向され微小プ
リズム3に入射する。このプリズム3により結像光束g
は3分割され、相互に光路長差を与えられながら3木の
ccpラインセンサ4a、4b、4Cに入射するように
なっている。更にプリズム3とラインセンサ4a〜4C
の部分を拡大した第2図を基に説明すると、ラインセン
サ4a〜4Cはセンサ基板5の面上に配置され、その−
F方に位置する光透過板6の上に置かれたプリズム3内
には、例えば誘電体から成る第1、第2のビームスプリ
ッタ7a、7b及び全反射ミラー7Cが挟設されており
、これらの透過反射面は、相互に平行でかつセンサ基板
5に対し45度の角度で配置されている。
The present applicant has previously disclosed a light splitter using such a system in, for example, Japanese Patent Laid-Open No. 55-155308, which will be explained based on FIGS. 1 and 2. A part of the imaging light flux ρ (only the rays on the optical axis are shown) from an imaging lens (not shown) is transmitted to a partially transmitting quick return mirror 1.
is transmitted, is deflected downward by the sub-mirror 2, and enters the micro prism 3. This prism 3 forms an imaging light beam g
The light beam is divided into three parts and is made to enter the three CCP line sensors 4a, 4b, and 4C while being given a difference in optical path length. Furthermore, the prism 3 and line sensors 4a to 4C
The line sensors 4a to 4C are arranged on the surface of the sensor board 5, and the -
In the prism 3 placed on the light transmitting plate 6 located in the F direction, first and second beam splitters 7a and 7b made of, for example, a dielectric material and a total reflection mirror 7C are sandwiched. The transmissive and reflective surfaces of are arranged parallel to each other and at an angle of 45 degrees with respect to the sensor substrate 5.

従ってマスク8を介して第1のビームスプリッタ7aに
入射した光束ρは先ずここで二方向に分割され、透過光
束jaはそのまま直進してラインセンサ4aに入射する
。残りの光束は反射されセンサ基板5に対し平行に進み
、第2のビームスプリッタ7bに於いても透過、反射が
繰り返され、反射された光束ρbはラインセンサ4bに
入射し、透過した光束は更にセンサ基板5に対し平行に
直進し、反射ミラー7Cにより下方に反則され、ライン
センサ4Cに光束ρCとして入射することになる。従っ
て得られる光路長差はビームスプリッタ7a、7b、反
射ミラ−7c相互間のセンサ基板5と平行な方向の間隔
となる。そして中央のラインセンサ4bは予定結像面、
即ちフィルム面に共役の位置にあり、ラインセンサ4a
は予定結像面の前方、ラインセンサ4Cは後方と、結像
光束中の光軸方向の異なった3つの位置で像を受光し、
それぞれの位置での像のボケ具合をイメージセンサを用
いて比較処理し合焦位置を捜すわけである。
Therefore, the light beam ρ that has entered the first beam splitter 7a through the mask 8 is first split into two directions here, and the transmitted light beam ja continues straight and enters the line sensor 4a. The remaining luminous flux is reflected and travels parallel to the sensor board 5, and is transmitted and reflected at the second beam splitter 7b repeatedly.The reflected luminous flux ρb enters the line sensor 4b, and the transmitted luminous flux further The light travels straight parallel to the sensor substrate 5, is reflected downward by the reflecting mirror 7C, and enters the line sensor 4C as a light beam ρC. Therefore, the obtained optical path length difference is the distance between the beam splitters 7a, 7b and the reflection mirror 7c in the direction parallel to the sensor substrate 5. The central line sensor 4b is the planned imaging plane,
That is, it is located at a position conjugate to the film surface, and the line sensor 4a
The line sensor 4C receives images at three different positions in the optical axis direction in the imaging light beam, ie, in front of the planned imaging plane and behind the line sensor 4C,
The degree of blurring of the image at each position is compared using an image sensor to find the in-focus position.

ここで各ラインセンサ4a、4b、4Cによって得られ
た出力信号は電気的に処理され、第3図に示すように、
各ラインセンサ4a、4b、4Cからはそれぞれのディ
フォーカス量に対応した出力Fa、 Fb、 Fcが得
られる。第3図に於いて横軸はレンズの繰り出し量、縦
軸は出力値を表わし、Fは予定結像面位=□を示してい
る。
Here, the output signals obtained by each line sensor 4a, 4b, 4C are electrically processed, and as shown in FIG.
Outputs Fa, Fb, and Fc corresponding to respective defocus amounts are obtained from each line sensor 4a, 4b, and 4C. In FIG. 3, the horizontal axis represents the lens extension amount, the vertical axis represents the output value, and F represents the expected imaging plane position=□.

ところでこの合焦検出装置ではレンズの繰り出しを無限
遠にした領域、即ち繰り出し量の少ない領域S1では各
ラインセンサからの出力Fa、 Fb、 Fcが極めて
小さく大小判別がし離いため、至近距離である領域S2
との区別がつかず、レンズの繰り出し簾が無限遠に相当
するのか至近距離に相当するのか判別が困雌になるとい
う問題がある。この問題を解決するために、第4図に示
すように各ラインセンサ4a、4b、4cのうち、2個
のラインセンサ4a、4bは撮影レンズ8の予定結像面
Fから前後略等距離の位置、他の1個のラインセンサ4
Cは4bよりも更に外側の位置に配置し、予定結像面F
に対して非対称な配置とするように工夫し、第5図に示
すような出力を得る合焦検出光学系が知られている。こ
の場合は撮影レンズ8の繰り出し量を小さくした領域S
1に於いては、ラインセンサ4Cの出力Fcは他のライ
ンセンサ4a、4bの出力Faに比べて十分大きいので
、撮影レンズ8の繰り出し量が少な過ぎるという条件を
加えることにより判定がより正確になる。
By the way, in this focus detection device, in the region where the lens is extended to infinity, that is, in the region S1 where the amount of lens extension is small, the outputs Fa, Fb, and Fc from each line sensor are extremely small and the size is far apart from each other, so it is a close distance. Area S2
There is a problem in that it is difficult to tell whether the lens extension corresponds to infinity or close range. In order to solve this problem, as shown in FIG. position, one other line sensor 4
C is placed at a position further outside of 4b, and the planned imaging plane F
A focus detection optical system is known that is designed to be arranged asymmetrically with respect to the focus detection optical system to obtain an output as shown in FIG. In this case, the area S where the amount of extension of the photographic lens 8 is reduced is
1, since the output Fc of the line sensor 4C is sufficiently larger than the output Fa of the other line sensors 4a and 4b, the determination can be made more accurately by adding the condition that the amount of extension of the photographic lens 8 is too small. Become.

確かに」二連の手段は合焦位置を求める場合に有力では
あるか、更に正確な合焦判定をするためには分割された
各結像光束ρa、夕す、  βCの光路長差を大きくす
ることが最も効果的である。そのための簡便な手段は第
2図でも明らかなように、プリズム3を長手方向に大き
くして、ラインセンサ4a、4b、4C同志の間隔を拡
げることである。然しながら各ラインセンサ4a、4b
、4Cの配置間隔を拡げれればそれだけ大きなシリコン
基板を必要とし、加速度的なコストアップにつながるこ
とは論を待たない。
Is it true that the two-way method is effective when determining the focusing position?In order to make more accurate focusing judgments, it is necessary to increase the optical path length difference between the divided imaging light beams ρa, rays, and βC. It is most effective to do so. As is clear from FIG. 2, a simple means for this purpose is to enlarge the prism 3 in the longitudinal direction and widen the distance between the line sensors 4a, 4b, and 4C. However, each line sensor 4a, 4b
, 4C, the larger the silicon substrate will be required, which will of course lead to an accelerating increase in costs.

ここに於いて本発明の目的は、各ラインセンサ同志の配
置間隔を変えることなく、分割光束の光路長差を大きく
し、又は現状での光路長差であればラインセンサ同志の
間隔を短くすることのできる光分割器を提供することに
あり、その要旨は、結像光束を光分割素子により2分割
以上し、その分割された結像光束を異なる光路長を与え
ながら前記結像光束にほぼ直交するか或いはほぼ平行な
同一平面内に設けられた各ラインセンサに導く光分割器
に於いて、光分割素子の透過反射面と各ラインセンサを
含む平面とのなす角度を45度と異なるようにしたこと
を特徴とするものである。
The purpose of the present invention is to increase the difference in optical path length between divided light beams, or to shorten the interval between line sensors if the difference in optical path length is present, without changing the arrangement interval between each line sensor. The purpose is to provide a light splitter that can divide an imaging light beam into two or more by a light splitting element, and divide the divided imaging light beams into approximately two or more parts while giving different optical path lengths. In the light splitter that guides the light to each line sensor installed in the same orthogonal or substantially parallel plane, the angle between the transmissive and reflective surface of the light splitting element and the plane containing each line sensor is set to be different from 45 degrees. It is characterized by the following.

本発明を第6図及び第7図に図示の実施例に基づいて詳
細に説明する。第6図に於いて、センサ基板10には第
1、第2、第3のラインセンサ11a、llb、11C
が配置され、このセンサ基板10の一4二方にはセンサ
基板10に平行に光透過板12が設置されている。この
光透過板12」−には光分割プリズム13が、その長手
方向を光透過板12の面に対して斜めにするように構設
されている。プリズム13には例えば第1、第2のビー
ムスプリッタ14a、14b及び全反射ミラー14Cの
各面が、互に平行間隔を保ちつつプリズム13内に傾斜
して挟設されている。そしてこれらの光分割素子の透過
反射面と光透過板12の面とのなす角度θは、45度好
ましくは41度以下となっている。
The present invention will be explained in detail based on the embodiment shown in FIGS. 6 and 7. In FIG. 6, the sensor board 10 has first, second, and third line sensors 11a, llb, and 11C.
are arranged, and light transmitting plates 12 are installed parallel to the sensor board 10 on one and four sides of the sensor board 10. A light splitting prism 13 is provided on the light transmitting plate 12'' so that its longitudinal direction is oblique to the surface of the light transmitting plate 12. In the prism 13, for example, first and second beam splitters 14a, 14b and a total reflection mirror 14C are provided with surfaces inclined and sandwiched within the prism 13 while maintaining parallel spacing. The angle θ between the transmission and reflection surfaces of these light splitting elements and the surface of the light transmission plate 12 is 45 degrees, preferably 41 degrees or less.

本発明に係る光分割器はこのように構成されているので
、サブミラーからの結像光束ρは光分割プリズム13の
第1のビームスプリッタ14aにより分割され、一部は
第1のビームスプリッタ14aを透過して結像光束ρa
として第1のラインセンサllaに入射し、残りは第1
のビームスプリッタ14aで反射されて、光透過板12
、換言すればセンサ基板lOに対して離れて行く光路、
即ちプリズム13の長手方向に沿って斜め上方に向かう
光路を辿るとになる。そしてこの斜め上方に向かう結像
光束は更に第2のビームスプリッタ14bにより分割さ
れ、その一部の光束ρbはこの第2のビームスプリッタ
14bで反射されて下方に偏向され、第2のラインセン
サllbに入射し、残りの光束は第2のビームスプリッ
タ14bを透過してそのまま直進し、全反射ミラー14
cで全反射され、光束jcとして第3のラインセンサl
ieに入射することになる。この過程に於いて、ライン
センサ14b、14cに入射する光束ρb、ρCは斜め
上方に外廻りした分だけ光路が延長されたことになり、
各光束Ja、ρb、ρC間の光路差は第2図に示した従
来の分割器に比較して大きくなる。
Since the light splitter according to the present invention is configured in this way, the imaging light beam ρ from the submirror is split by the first beam splitter 14a of the light splitting prism 13, and a part of it is split by the first beam splitter 14a. Transmitted and imaged light flux ρa
is incident on the first line sensor lla, and the rest is incident on the first line sensor lla.
The light is reflected by the beam splitter 14a and passes through the light transmitting plate 12.
, in other words, the optical path moving away from the sensor substrate lO,
That is, the optical path is traced diagonally upward along the longitudinal direction of the prism 13. This obliquely upward imaging light beam is further split by the second beam splitter 14b, and a part of the light beam ρb is reflected by the second beam splitter 14b and deflected downward, and the second line sensor llb The remaining light flux passes through the second beam splitter 14b and goes straight as it is, and is reflected by the total reflection mirror 14.
It is totally reflected at c and sent to the third line sensor l as a luminous flux jc.
It will be input to ie. In this process, the optical path of the light beams ρb and ρC incident on the line sensors 14b and 14c is extended by the amount that they are rotated diagonally upward.
The optical path difference between each of the light beams Ja, ρb, and ρC is larger than that in the conventional splitter shown in FIG.

ここで本実施例に係る光分割器と、先に第2図に示した
光分割器による分割光束の光路長差を、それぞれ第2の
ラインセンサllbに入射する結像光束ρbを例にして
具体的に比較してみる。第6図に於いて、結像光束ρa
のプリズム13からの射出点をA、結像光束ρbのそれ
をBとし、AB間の距離をX、センサ基板10の面方向
に於けるAB間の距離をy、センサ基板10の面方向と
直交する方向に於けるAB間の距離を2、プリズムの屈
折率をnとすると、結像光束ρaと12bの光路長差は
先の第2図の光分割器の場合よりも((x−y)/nl
 +zだけ大きくなる。更にはビームスプリッタ14a
、14b及び全反射ミラー14Cの透過反射面とセンサ
基板10とのなす角度θを計算により求めてみると、屈
折率1.5183のプリズム材料を使用すれば光路長を
10%増加させるには、角度θを41度35分とすれば
よく、  50%増加させるにはθを約28度とすれば
よいことになる。従ってθを41度以下にすれば十分な
効果が認められる。
Here, the optical path length difference between the split light beams by the light splitter according to this embodiment and the light splitter shown in FIG. Let's make a concrete comparison. In Fig. 6, the imaging light flux ρa
The emission point from the prism 13 is A, that of the imaging light beam ρb is B, the distance between AB is X, the distance between AB in the surface direction of the sensor substrate 10 is y, and the surface direction of the sensor substrate 10 is If the distance between A and B in the orthogonal directions is 2, and the refractive index of the prism is n, then the optical path length difference between the imaging light beams ρa and 12b will be ((x- y)/nl
It becomes larger by +z. Furthermore, the beam splitter 14a
, 14b and the total reflection mirror 14C and the sensor substrate 10, the angle θ formed by the sensor substrate 10 shows that if a prism material with a refractive index of 1.5183 is used, the optical path length can be increased by 10%. It is sufficient to set the angle θ to 41 degrees and 35 minutes, and to increase it by 50%, it is sufficient to set θ to approximately 28 degrees. Therefore, a sufficient effect can be observed if θ is set to 41 degrees or less.

次に他の実施例を第7図に基づいて説明すると、この実
施例は複数個の異形のプリズムを絹合せることにより、
光分割プリズム13の長手方向自体は光透過板12、セ
ンサ基板10と平行のまま、ビームスプリッタ14a、
14b、全反射ミラー14cの透過反射面とセンサ基板
10とのなす角度θが、45度好ましくは41度以下に
されている。
Next, another embodiment will be explained based on FIG. 7. In this embodiment, by combining a plurality of irregularly shaped prisms,
While the longitudinal direction of the light splitting prism 13 remains parallel to the light transmitting plate 12 and the sensor board 10, the beam splitter 14a,
The angle θ between the transmitting and reflecting surface of the total reflection mirror 14b and the sensor substrate 10 is set to 45 degrees, preferably 41 degrees or less.

尚、上述の実施例では結像光束pをセンサ基板10の面
に対しほぼ直交する方向から光分割器に入射させるよう
にしたが、実際には結像光束夕をセンサ基板10の面に
ほぼ平行な方向から光分割器に入射させてもよい。
In the above embodiment, the imaging light beam p is made to enter the light splitter from a direction substantially perpendicular to the surface of the sensor substrate 10, but in reality, the imaging light beam p is directed almost perpendicularly to the surface of the sensor substrate 10. The light may be incident on the light splitter from parallel directions.

この実施例では第1のビームスプリッタ14aを透過す
る結像光束ρは、そのまま直進して光束jaとして第1
のラインセンサllaに入射する。そしてビームスプリ
ッタ14aで反射された光束はセンサ基板10に対して
斜め上方に向かい、第6図の実施例と同様に反射、透過
を繰り返して第2、第3のラインセンサllb、lie
に入射することになる。但し、これらの光束ρb、ρC
は反則点からラインセンサllb、lieに屈折するこ
となく直進する。この実施例の場合には、結像光束ρの
ビームスプリッタ14aへの入用点をC1光束ρbのビ
ームスプリッタ14bでの反射点をDとし、CD間の距
離をX′、センサ基板10の面方向に於けるCD間の距
離。をy′、センサ基板10の面方向と直交する方向に
於けるCD間の距離をZ′とすると、結像光束ρaとρ
bとの光路長差は先の第2図の光分割器の場合よりも(
x’ +z’ −V’ )/nだけ大きくなる。
In this embodiment, the imaging light beam ρ passing through the first beam splitter 14a goes straight as it is and becomes the first light beam ja.
is incident on the line sensor lla. The light beam reflected by the beam splitter 14a heads obliquely upward toward the sensor substrate 10, and repeats reflection and transmission as in the embodiment shown in FIG.
It will be incident on . However, these luminous fluxes ρb, ρC
travels straight from the foul point to the line sensors llb and lie without being refracted. In this embodiment, the input point of the imaging light flux ρ to the beam splitter 14a is C1, the reflection point of the light flux ρb at the beam splitter 14b is D, the distance between CDs is X', and the surface of the sensor substrate 10 is Distance between CDs in direction. If y' is the distance between the CDs in the direction perpendicular to the surface direction of the sensor substrate 10, and Z' is the distance between the CDs, the imaging light fluxes ρa and ρ
The optical path length difference with b is (
x' + z' - V' )/n.

以上のように構成した本発明に係る光分割器では、ビー
ムスプリッタ等の透過反射面をセンサ基板に対して45
度以下の角度θを与えるという簡明な手段により、各ラ
インセンサの間隔を拡張せずに、即ちセンサ基板を拡大
することなく、光路長差を犬きくとることが可能となり
、合焦判定端□ 度を向上させることができる。
In the light splitter according to the present invention configured as described above, the transmitting/reflecting surface of the beam splitter or the like is set at 45° with respect to the sensor substrate.
By providing a simple angle θ of less than 1°, it is possible to minimize the difference in optical path length without increasing the distance between each line sensor, that is, without enlarging the sensor board, and the focus judgment edge □ It is possible to improve the degree of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は既知の光分割器の構成図、第2図はその断面図
、第3図は第2図に示した配置のラインセンサで得られ
る出力特性図、第4図はラインセンサの配置展開図、第
5図はこの配置のラインセンサで得られる出力特性図、
第6図及び第7図は本発明に係る光分割器の実施例を示
す構成図である。 符号10はセンサ基板、lla、llb、lieはライ
ンセンサ、12は光透過板、 13は光分割プリズム、
14a、14bはビームスプリッタ、14cは反射ミラ
ー、ρa、ρb、夕Cは分割された結像光束、θは光分
割素子の透過反射面となす面とセンサ基板とのなす角度
である。 特許出願人  キャノン株式会社 第3図 第5図 ””          F 1S2 第6図 第7図
Fig. 1 is a block diagram of a known light splitter, Fig. 2 is a cross-sectional view thereof, Fig. 3 is an output characteristic diagram obtained with a line sensor arranged as shown in Fig. 2, and Fig. 4 is an arrangement of the line sensor. The developed diagram and Figure 5 are the output characteristics obtained from the line sensor with this arrangement.
FIGS. 6 and 7 are configuration diagrams showing an embodiment of a light splitter according to the present invention. 10 is a sensor board, lla, llb, and lie are line sensors, 12 is a light transmitting plate, 13 is a light splitting prism,
14a and 14b are beam splitters, 14c is a reflecting mirror, ρa, ρb, and C are divided imaging light beams, and θ is the angle between the transmitting and reflecting surface of the light splitting element and the sensor substrate. Patent applicant: Canon Co., Ltd. Figure 3 Figure 5"" F 1S2 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、結像光束を光分割素子により2分割以上し、その分
割された結像光束を異なる光路長を与えながら前記結像
光束にほぼ直交するか或いはほぼ平行な同一平面内に設
けられた各ラインセンサに導く光分割器に於いて、光分
割素子の透過反射面と各ラインセンサを含む平面とのな
す角度を45度と異なるようにしたことを特徴とする光
分割器。 2、前記光分割素子によって反射分割された結像光束が
各ラインセンサを含む平面より離れる方向に反射、透過
するように、光分割素子の配置を決定した特許請求の範
囲第1項記載の光分割器。 3、光分割素子の透過反射面と各ラインセンサを含む平
面とのなす角度を41度以下にする特許請求の範囲第1
項記載の光分割器。
[Claims] 1. The imaging light beam is divided into two or more by a light splitting element, and the divided imaging light beams are provided with different optical path lengths while being arranged on the same plane that is substantially orthogonal to or substantially parallel to the imaging light beam. A light splitting device that is characterized in that, in a light splitter that guides the light to each line sensor provided therein, the angle between the transmitting and reflecting surface of the light splitting element and the plane containing each line sensor is different from 45 degrees. vessel. 2. The light according to claim 1, wherein the light splitting element is arranged so that the imaging light beam reflected and split by the light splitting element is reflected and transmitted in a direction away from a plane including each line sensor. divider. 3. Claim 1 in which the angle formed between the transmissive and reflective surface of the light splitting element and the plane containing each line sensor is 41 degrees or less
Light splitter as described in section.
JP20582981A 1981-12-19 1981-12-19 Optical splitter Pending JPS58106517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20582981A JPS58106517A (en) 1981-12-19 1981-12-19 Optical splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20582981A JPS58106517A (en) 1981-12-19 1981-12-19 Optical splitter

Publications (1)

Publication Number Publication Date
JPS58106517A true JPS58106517A (en) 1983-06-24

Family

ID=16513393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20582981A Pending JPS58106517A (en) 1981-12-19 1981-12-19 Optical splitter

Country Status (1)

Country Link
JP (1) JPS58106517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342291A2 (en) * 1988-05-17 1989-11-23 Think Laboratory Co., Ltd. An optical beam splitting method and an optical beam splitting/modulation method
WO2006040297A1 (en) * 2004-10-08 2006-04-20 Leica Geosystems Geospatial Imaging Gmbh Optical beam splitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0342291A2 (en) * 1988-05-17 1989-11-23 Think Laboratory Co., Ltd. An optical beam splitting method and an optical beam splitting/modulation method
WO2006040297A1 (en) * 2004-10-08 2006-04-20 Leica Geosystems Geospatial Imaging Gmbh Optical beam splitter

Similar Documents

Publication Publication Date Title
US4855777A (en) Apparatus for detecting the focus adjusted state of an objective lens
US4922282A (en) Optical apparatus for leading light fluxes transmitted through light dividing surface which is obliquely provided to focus detecting apparatus
US4097881A (en) Focussing apparatus for cameras
JPS58106517A (en) Optical splitter
US4593188A (en) Apparatus and method for detecting focus condition of an imaging optical system
US4443079A (en) Method and apparatus for detecting focus condition of objective lens
JP3586365B2 (en) Photometric device
US5166718A (en) Finder optical system
JP3048267B2 (en) Microscope optics
JPH11325887A (en) Branch optical system automatic focus detector
US4445777A (en) Optical system of a theodolite
JPS59129811A (en) Focusing detecting device
JPS63311141A (en) Method for measuring deviation and fall-down of image of pentagonal prism
JPS58221817A (en) Focusing detector
JPH0548454B2 (en)
JPS58142307A (en) Optical splitter
JPS59146009A (en) Focusing detecting method
JPS5994712A (en) Focusing detecting method
JPH04240813A (en) Focus detector
JPH04147207A (en) Focus detection device
JPS59185305A (en) Focus detector
JPH0224614A (en) Focus detecting device
JPS58158617A (en) Optical system for focusing detection
JPS6017415A (en) Camera provided with range finder optical system placed in ttl finder
JPS63213826A (en) Focus detector