JPS6238016B2 - - Google Patents

Info

Publication number
JPS6238016B2
JPS6238016B2 JP53113642A JP11364278A JPS6238016B2 JP S6238016 B2 JPS6238016 B2 JP S6238016B2 JP 53113642 A JP53113642 A JP 53113642A JP 11364278 A JP11364278 A JP 11364278A JP S6238016 B2 JPS6238016 B2 JP S6238016B2
Authority
JP
Japan
Prior art keywords
air
oxygen
membrane
temperature
methylpentene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53113642A
Other languages
Japanese (ja)
Other versions
JPS5541809A (en
Inventor
Kenko Yamada
Shizuo Azuma
Gen Kurisu
Kyoshi Sugie
Shoji Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11364278A priority Critical patent/JPS5541809A/en
Publication of JPS5541809A publication Critical patent/JPS5541809A/en
Publication of JPS6238016B2 publication Critical patent/JPS6238016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は膜分離法により空気から酸素富化空気
を製造する際に選択性を低下させることなく、空
気の透過量を大きくする改善された酸素富化空気
製造法に関するものである。 呼吸器の慢性疾患者や未熟児に対しては、通常
の大気中の酸素濃度の21%より高い濃度の酸素富
化空気を給与する必要がある。この酸素源として
は通常酸素ボンベが用いられているが、ボンベは
高い圧力で酸素を貯蔵するため使用中絶えず火事
並びに爆発の危険があり、かつボンベの容量が限
られるため重いボンベの取替えを頻繁にする必要
がある。 しかも酸素濃度が高すぎると、未熟児が失明を
起こす等かえつて人体に対し害になり、そのため
酸素濃度は高々40%である。酸素ボンベを使用す
る場合、空気又は窒素で稀釈してして、適切な酸
素濃度に調節する必要があるが、この調節が、酸
素の使用につれて酸素ボンベの圧力がかわつてく
るため、一定濃度の酸素含有量のもの安定して得
ることは大変厄介である。 かかる問題の解決法として、膨大な無尽蔵の酸
素源である大気中の空気を、窒素より大きい速度
で酸素を透過させることができる選択的透過膜を
透過させて、酸素富化空気を製造する方法が提案
されている。ここで選択的透過性とは、混合ガス
中の1種類のガスが第2のガスより一層速く膜を
透過することであり、一方のガスだけが透過し、
他のガスが全く透過しないということではない。
それ故、選択的透過膜を透過するガスは透過率の
よい成分で富化される。この透過膜によつて酸素
富化空気を製造する方法は、原理的には膜の種類
によつて酸素濃度が決まり、連続的に一定濃度・
酸素富化空気が得られるため、ボンベの交換もな
く、非常に扱いやすい方法である。 しかしながら、この膜分離による方法の問題点
の一つは膜を通過するガスの透過量が小さいこと
である。そこで透過量をあげる方法としては一般
に膜厚をうすくしたり、膜面積を大きくしたり、
供給空気圧を高くしたりする方法が考えられる。 本発明者らは、透過量をあげるべく前記方法以
外の別の観点から研究を進めた結果供給する空気
の温度をあげることにより、選択性はほとんどか
わらずに透過量があがることを見い出し、本発明
に達したものである。 即ち、本発明は窒素より大きい速度で酸素を透
過させることができるポリ(4−メチルペンテン
−1)を主体とする重合体より形成される選択的
透過膜を透過させて、大気中の空気から酸素富化
空気を製造する際に40℃以上の空気を該選択的透
過膜と接触せしめることによる酸素富化空気製造
法である。 本発明に使用される膜の素材は成膜性があり、
基礎特性として酸素透過係数の大きいものが好ま
しい。かかるものとしては、シリコーンゴム、ポ
リフエニレンエーテル、ポリシロキサン−ポリカ
ーボネート、ポリアルキルスルホン、ポリ(4−
メチルペンテン−1)が好適に用いられる。その
うちで薄膜が容易にでき、強度が大きく、かつも
ともとの酸素と窒素の選択性が大きいもの、かつ
温度をあげても選択性のほとんどかわらない。ポ
リ(4−メチルペンテン−1)が好適に用いられ
る。 本発明の製造法の効果及び利点は後の説明及び
実施例において詳述するがポリ(4−メチルペン
テン−1)よりなる膜を使用した場合、80℃にお
ける酸素の透過性は25℃に比べて5倍も高くな
る。しかも酸素と窒素の選択性は25℃と80℃でほ
とんどかわらない。 本発明の酸素富化空気製造法において使用させ
る膜の形状は管状、中空糸状、平膜状あるいは複
合膜の形等いづれであつても差支えない。膜の厚
さも特に限定するものではないが、透過性の上か
ら50ミクロン以下が好ましく、そのうち特に1ミ
クロン以下の極薄膜のものが好適に用いられる。
膜の厚さの下限は、薄い程透過量が大きいので好
ましいが、製膜ヒの問題から自ら製限され一般に
0.005ミクロン特に0.01ミクロンである。 本発明の酸素富化空気製造法においては、かか
る形状の膜を複数本又は複数枚束ねる方式、ある
いはスパイラル状に巻く方式等公知のガス分離方
式による装置が用いられる。 本発明の酸素富化空気を製造する方法は、かか
るガス分離装置において、供給する空気の温度が
40℃以上で透過膜を透過することを特徴とするも
のである。供給する空気の温度は、温度が高くな
ればなるほど透過量は増大するので高い方が好ま
しいがあまりに高い温度では膜素材が軟化して破
損したり劣化したりするので、膜の耐熱性の上か
ら自ら制限される。ポリ(4−メチルペンテン−
1)よりなる膜を使用する場合、40〜180℃の温
度範囲好ましくは、50〜130℃の温度範囲、更に
好ましくは、60〜100℃の温度範囲の空気が使用
される。もちろんこの温度は膜いく外にも装置の
材料あるいは付属部品の耐熱性によつても規定さ
れるものであり、材料及び部品とも耐熱性が高い
ものを選ぶ必要がある。 本発明の方法を実施するに当つては、予め供給
空気を加温して、膜に対して40℃以上の空気を送
る方法、あるいは透過膜を含むモジユール部分を
加熱して、40℃以上の空気が膜を透過するように
した方式のいづれをもあつてもよい。透過してで
てきた酸素富化の空気は温かいので、そのまつ呼
吸用に使用すると熱すぎるので、場合によつては
冷却する必要がある。冷却する場合、取り入れる
空気との間で熱交換できるようにするとエネルギ
ー節約の上から好ましい。 本発明の方法は医療用の酸素富化空気の製造法
だけでなく、産業用の酸素富化空気製造にて適用
できる。等に産業用の場合、大量の酸素富化空気
を必要とするので、富化空気の製造量があがるこ
とは好ましい。産業用としては高炉送風用、燃焼
補助空気用、石油蛋白プロセス用、廃液処理曝気
用等がある。このうち特に高炉送風用や燃焼補助
空気用等に使い燃焼炉の効率アツプを目的とする
場合、炉の廃熱により、供給空気を加熱できるこ
と又透過してできた酸素富化空気は加熱された状
態で使用できるので、非常に都合がよい。つぎに
実施例をもつて本発明を詳述する。実施例は本発
明を説明するものであつてそれに限定するもので
はない。 実施例 1 〔ポリ(4−メチルペンテン−1フイルムの気
体透過性および選択性の温度依存性の測定〕 ポリ(4−メチルペンテン−1)(三井石油化
学工業(株)製、グレードDX−810)の7%ミクロヘ
キセン溶液を、表面清浄でかつ平滑なガラス板上
に塗布する。90℃で10分間乾燥し厚さ23μのフイ
ルムを得た。この膜の酸素と窒素のガス透過性を
気体透過率測定装置(理化精機工業K−315型)
を用い測定した。 測定結果を表1に示す。なお表中の選択性とは
酸素ガス透過係数/窒素ガス透過係数より求めた
ものである。40℃以上では酸素の透過係数は25℃
に比べて2倍以上になるが選択性はほとんどかわ
つていない。
The present invention relates to an improved method for producing oxygen-enriched air that increases the amount of air permeation without reducing selectivity when producing oxygen-enriched air from air using a membrane separation method. People with chronic respiratory illnesses and premature infants should be given oxygen-enriched air with a concentration higher than 21% of the normal atmospheric oxygen concentration. Oxygen cylinders are normally used as this oxygen source, but since cylinders store oxygen under high pressure, there is a constant risk of fire or explosion during use, and the capacity of the cylinder is limited, so heavy cylinders must be replaced frequently. It is necessary to Moreover, if the oxygen concentration is too high, it can be harmful to the human body, such as causing blindness in premature babies, so the oxygen concentration is at most 40%. When using an oxygen cylinder, it is necessary to dilute it with air or nitrogen to adjust the oxygen concentration to an appropriate level. It is very difficult to obtain a stable oxygen content. As a solution to this problem, there is a method to produce oxygen-enriched air by passing atmospheric air, which is a vast and inexhaustible source of oxygen, through a selective permeation membrane that allows oxygen to permeate at a higher rate than nitrogen. is proposed. Selective permeability here means that one type of gas in the gas mixture permeates the membrane faster than the second gas, so that only one gas permeates,
This does not mean that other gases do not pass through at all.
Therefore, the gas passing through the selectively permeable membrane is enriched with components with good permeability. In principle, the method of producing oxygen-enriched air using a permeable membrane determines the oxygen concentration depending on the type of membrane, and continuously maintains a constant concentration.
Since oxygen-enriched air is obtained, there is no need to change cylinders, making it a very easy-to-use method. However, one of the problems with this membrane separation method is that the amount of gas permeated through the membrane is small. Therefore, methods to increase the amount of permeation generally include reducing the membrane thickness, increasing the membrane area,
One possible method is to increase the supply air pressure. In order to increase the amount of permeation, the present inventors conducted research from a different perspective other than the above-mentioned method, and found that by increasing the temperature of the supplied air, the amount of permeation increased with almost no change in selectivity. This is an invention. That is, the present invention allows oxygen to pass through a selectively permeable membrane formed from a polymer mainly composed of poly(4-methylpentene-1), which allows oxygen to pass through at a higher rate than nitrogen. This is a method for producing oxygen-enriched air by bringing air at a temperature of 40°C or higher into contact with the selectively permeable membrane. The film material used in the present invention has film-forming properties,
As a basic property, it is preferable to have a large oxygen permeability coefficient. Such materials include silicone rubber, polyphenylene ether, polysiloxane-polycarbonate, polyalkylsulfone, poly(4-
Methylpentene-1) is preferably used. Among them, those that can be easily formed into thin films, have high strength, and have a high original selectivity between oxygen and nitrogen, and the selectivity does not change much even when the temperature is increased. Poly(4-methylpentene-1) is preferably used. The effects and advantages of the production method of the present invention will be explained in detail in the explanation and examples below, but when a membrane made of poly(4-methylpentene-1) is used, the oxygen permeability at 80°C is higher than that at 25°C. It will be five times more expensive. Furthermore, the selectivity between oxygen and nitrogen is almost the same at 25°C and 80°C. The shape of the membrane used in the method for producing oxygen-enriched air of the present invention may be any shape, such as a tubular shape, a hollow fiber shape, a flat membrane shape, or a composite membrane shape. The thickness of the membrane is also not particularly limited, but it is preferably 50 microns or less in terms of permeability, and ultrathin membranes of 1 micron or less are particularly preferably used.
The lower limit of the membrane thickness is preferable because the thinner it is, the greater the amount of permeation.
0.005 micron especially 0.01 micron. In the method for producing oxygen-enriched air of the present invention, an apparatus using a known gas separation method, such as a method in which a plurality of such membranes or a plurality of membranes are bundled, or a method in which the membranes are spirally wound, is used. In the method for producing oxygen-enriched air of the present invention, in such a gas separation device, the temperature of the supplied air is
It is characterized by permeating through a permeable membrane at a temperature of 40°C or higher. The temperature of the air to be supplied should preferably be high, as the amount of permeation increases as the temperature rises, but if the temperature is too high, the membrane material will soften, be damaged, or deteriorate, so it is important to self-limited. poly(4-methylpentene-
When using a membrane consisting of 1), air at a temperature range of 40 to 180°C, preferably 50 to 130°C, more preferably 60 to 100°C is used. Of course, this temperature is determined not only by the membrane but also by the heat resistance of the material of the device or the attached parts, and it is necessary to select materials and parts that have high heat resistance. When carrying out the method of the present invention, it is possible to heat the supplied air in advance and send the air to the membrane at a temperature of 40°C or higher, or to heat the module part containing the permeable membrane to reach a temperature of 40°C or higher. Any method that allows air to pass through the membrane may be used. The oxygen-enriched air that permeates and comes out is warm, so it may be too hot to be used for breathing, so it may need to be cooled. When cooling, it is preferable to enable heat exchange with the intake air from the standpoint of energy conservation. The method of the present invention can be applied not only to the production of oxygen-enriched air for medical use but also to the production of oxygen-enriched air for industrial use. In the case of industrial use, etc., a large amount of oxygen-enriched air is required, so it is preferable to increase the production amount of enriched air. Industrial applications include blast furnace ventilation, combustion auxiliary air, petroleum protein processing, and waste liquid treatment aeration. In particular, when the purpose is to increase the efficiency of a combustion furnace by using it for blast furnace ventilation, combustion auxiliary air, etc., the supply air can be heated by the waste heat of the furnace, and the oxygen-enriched air produced by the permeation can be heated. It is very convenient because it can be used in any condition. Next, the present invention will be explained in detail with reference to Examples. The examples serve to illustrate the invention without limiting it. Example 1 [Measurement of temperature dependence of gas permeability and selectivity of poly(4-methylpentene-1 film)] Poly(4-methylpentene-1) (manufactured by Mitsui Petrochemical Industries, Ltd., grade DX-810) ) is applied onto a smooth glass plate with a clean surface.It is dried at 90°C for 10 minutes to obtain a film with a thickness of 23μ.The oxygen and nitrogen gas permeability of this film is Transmittance measurement device (Rika Seiki Kogyo K-315 type)
Measured using The measurement results are shown in Table 1. Note that the selectivity in the table is determined from the oxygen gas permeability coefficient/nitrogen gas permeability coefficient. Above 40℃, the oxygen permeability coefficient is 25℃
Although the selectivity is more than twice that of that of , the selectivity is almost unchanged.

【表】 実施例 2 ポリ(4−メチルペンテン−1)の3%シクロ
ヘキセン溶液を調整し、この溶液を1滴平静な水
面上におとすとポリマー溶液は水面上に拡がり薄
膜が製造できる。 ポリプロピレン製多孔質膜(厚さ25μ、商品名
ジユラガード、ポリプラスチツ社製)を該薄膜の
下の水中におき、水をゆつくりぬいていくと、水
面とともに該薄膜も下がり、薄膜が多孔質膜上に
のる。この操作をくりかえし、ポリ(4−メチル
ペンテン−1)の薄膜が2枚重ねでのつていて、
ポリプロピレン多孔質膜を支持体とする気体分離
用複合膜を得た。 ポリ(4−メチルペンテン−1)の合計の厚さ
は重量法による求めると0.2μであつたこの複合
膜を直径60cmの円状に切り耐圧口過装置の口過部
にセツトする。この時ポリ(4−メチルペンテン
−1)の極薄膜が供給する空気の側にいくように
する。又この耐圧口過器には、口過部を通らない
で排出できる空気口がついており、供給する空気
が透過膜を通る空気と透過膜を通らない空気の両
方に分けられる。さらに供給する空気はあらかじ
めヒーターの入つた管を通り、所定の温度に加熱
できこの装置に2気圧の圧空を所定の温度で送
る。透過する空気と排出される空気の割合はほぼ
1対1になるように排出側の空気量を調節する。 この装置を用いた実験結果を下に示す。
[Table] Example 2 A 3% solution of poly(4-methylpentene-1) in cyclohexene is prepared, and when one drop of this solution is placed on a calm water surface, the polymer solution spreads on the water surface and a thin film can be produced. When a porous polypropylene membrane (thickness 25 μm, trade name Jyuraguard, manufactured by Polyplastics) is placed in water below the thin membrane and the water is slowly drawn out, the thin membrane lowers along with the water surface, and the thin membrane falls on top of the porous membrane. Ride on. By repeating this operation, two thin films of poly(4-methylpentene-1) were left on top of each other.
A composite membrane for gas separation using a polypropylene porous membrane as a support was obtained. This composite membrane, whose total thickness of poly(4-methylpentene-1) was determined to be 0.2 microns by gravimetric method, was cut into a circle with a diameter of 60 cm and set in the opening of a pressure-resistant opening. At this time, the extremely thin film of poly(4-methylpentene-1) should be placed on the side of the supplied air. Furthermore, this pressure-resistant mouth filter is equipped with an air port that allows air to be discharged without passing through the mouth passage, and the supplied air is divided into air that passes through the permeable membrane and air that does not pass through the permeable membrane. Furthermore, the supplied air passes through a tube containing a heater and is heated to a predetermined temperature, and 2 atmospheres of compressed air is sent to this device at a predetermined temperature. The amount of air on the discharge side is adjusted so that the ratio of permeating air to discharged air is approximately 1:1. The experimental results using this device are shown below.

【表】 40℃以上にすると透過空気量は常温に比べて倍
以上になるが酸素濃度はあまり下がつていない。 実施例 3 実施例2で得たポリ(4−メチルペンテン−
1)の極薄膜よりなる複合膜を10cm×10cmの大き
さに切り、50枚つくる。これをプレスフイルター
型のガス分離装置に組みこむ。供給する空気はあ
らかじめヒーターの入つた管を通り、加熱できる
ようにしてある。 このガス分離装置を用いた実験結果を下に示
す。
[Table] When the temperature is above 40℃, the amount of permeated air is more than double that at room temperature, but the oxygen concentration does not decrease much. Example 3 Poly(4-methylpentene-) obtained in Example 2
Cut the composite membrane made of the ultra-thin membrane from 1) into 10cm x 10cm pieces to make 50 pieces. This is assembled into a press filter type gas separation device. The supplied air is passed through a tube containing a heater in advance so that it can be heated. The experimental results using this gas separation device are shown below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 窒素より大きい速度で酸素を透過させること
ができるポリ(4−メチルペンテン−1)を主体
とする重合体より形成される選択的透過膜を透過
させて大気中の空気から酸素富化空気を製造する
際に、40℃以上の空気を該選択的透過膜と接触せ
しめることを特徴とする酸素富化空気の製造法。
1. Oxygen-enriched air is extracted from atmospheric air by passing through a selective permeable membrane formed from a polymer mainly composed of poly(4-methylpentene-1), which allows oxygen to permeate at a higher rate than nitrogen. A method for producing oxygen-enriched air, which comprises bringing air at a temperature of 40°C or higher into contact with the selectively permeable membrane.
JP11364278A 1978-09-18 1978-09-18 Production of oxygen-enriched air Granted JPS5541809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11364278A JPS5541809A (en) 1978-09-18 1978-09-18 Production of oxygen-enriched air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11364278A JPS5541809A (en) 1978-09-18 1978-09-18 Production of oxygen-enriched air

Publications (2)

Publication Number Publication Date
JPS5541809A JPS5541809A (en) 1980-03-24
JPS6238016B2 true JPS6238016B2 (en) 1987-08-15

Family

ID=14617405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11364278A Granted JPS5541809A (en) 1978-09-18 1978-09-18 Production of oxygen-enriched air

Country Status (1)

Country Link
JP (1) JPS5541809A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115727A (en) * 1982-12-24 1984-07-04 Teijin Ltd Oxygen enricher
JPS59184850U (en) * 1983-05-30 1984-12-08 日東工器株式会社 oxygen enrichment mask
JPS60253726A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
JPS60253727A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
JPS60253724A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
JPS60253729A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
JPS60253716A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Feeding device for gas enriched with oxygen for combustion
JPS60253728A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
JPS60253721A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
JPS60253725A (en) * 1985-03-20 1985-12-14 Matsushita Electric Ind Co Ltd Supplying device of oxygen enriched gas for combustion
US4877421A (en) * 1987-11-02 1989-10-31 Union Carbide Corporation Treatment of permeable membranes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1260733A (en) * 1969-06-17 1972-01-19 British Petroleum Co Membrane separation process
JPS4937639A (en) * 1972-08-07 1974-04-08
JPS5315271A (en) * 1976-07-29 1978-02-10 Asahi Chem Ind Co Ltd Separating and concentrating method for gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1260733A (en) * 1969-06-17 1972-01-19 British Petroleum Co Membrane separation process
JPS4937639A (en) * 1972-08-07 1974-04-08
JPS5315271A (en) * 1976-07-29 1978-02-10 Asahi Chem Ind Co Ltd Separating and concentrating method for gas

Also Published As

Publication number Publication date
JPS5541809A (en) 1980-03-24

Similar Documents

Publication Publication Date Title
JP3038053B2 (en) Air intake system for mobile engines
US4055696A (en) Porous polypropylene hollow filaments and method making the same
Pinnau et al. Gas permeation through composite membranes
US3567810A (en) Process for making high-flow anisotropic membranes
JP4564218B2 (en) Nitrogen-enriched air production method
US5147417A (en) Air-intake system for mobile engines
JPS6238016B2 (en)
US3651618A (en) Separation of fluids by diffusion through semipermeable membranes
EP0461853B1 (en) Residential furnaces, air-intake system therefor, and method of operating them
EP0298531B1 (en) Gas separation apparatus and also method for separating gases by means of such an apparatus
EP0299381A2 (en) Membrane-type artificial lung and method of using it
US4353799A (en) Hydrophobic diffusion membranes for blood having wettable surfaces
JPH024419A (en) Gas dewatering
GB2214103A (en) Process for selectively separating water vapour from a gaseous mixture
GB1301015A (en) Gas-liquid separator
JPS58221338A (en) Oxygen-rich air supplying device
JPS58166018A (en) Continuous manufacture of polymethyl pentene film
JPS6355973B2 (en)
JPH0224574B2 (en)
JPS5962305A (en) Composite membrane for gas separation and its production
JPH11267234A (en) Cloth for mask
EP0108426B1 (en) Module for concentrating a specified gas in a gaseous mixture
JPH03262523A (en) Oxygen enriching composite membrane
JPH0338230A (en) Polyallylene sulfide film for separating gas
JPS5959214A (en) Gas separating composite membrane