JPS6237973B2 - - Google Patents

Info

Publication number
JPS6237973B2
JPS6237973B2 JP14816282A JP14816282A JPS6237973B2 JP S6237973 B2 JPS6237973 B2 JP S6237973B2 JP 14816282 A JP14816282 A JP 14816282A JP 14816282 A JP14816282 A JP 14816282A JP S6237973 B2 JPS6237973 B2 JP S6237973B2
Authority
JP
Japan
Prior art keywords
silver mirror
stainless steel
bottle
space
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14816282A
Other languages
Japanese (ja)
Other versions
JPS5937914A (en
Inventor
Hidekama Ishizaki
Ryozo Taguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Vacuum Bottle Co Ltd filed Critical Zojirushi Vacuum Bottle Co Ltd
Priority to JP14816282A priority Critical patent/JPS5937914A/en
Priority to GB08322783A priority patent/GB2129117B/en
Publication of JPS5937914A publication Critical patent/JPS5937914A/en
Priority to US06/735,307 priority patent/US4856174A/en
Publication of JPS6237973B2 publication Critical patent/JPS6237973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はステンレス鋼製真空二重容器に関する
ものである。 従来、魔法瓶その他の保温容器として真空二重
壁構造を有するガラス製容器が汎用されていた
が、これらは機械的衝撃に弱いことから、近年、
ステンレス鋼その他の金属材料を用いた真空二重
容器が提案されている。これらの金属材料のうち
ステンレス鋼は耐食性に優れ機械的強度も強いと
いう利点があるが、他の金属材料と同様、内容器
と外容器の間に形成される空間部を高真空にした
場合に内部からガスを放出し真空度を徐々に低下
させるという問題がある他、輻射による熱損失を
防止する為ガラス製真空二重容器のように銀鏡メ
ツキを形成しようとしても銀鏡反応させることが
不可能であつた。このステンレス鋼内部から真空
空間部へのガス放出および輻射による熱損失を防
止することを目的として、例えば、特公昭57−
22571号公報にて、真空二重容器の空間部を形成
する金属製内外瓶の表面に二酸化珪素を主成分と
するガラス質層を形成させ、そのガラス質層上に
銀鏡層を積層した構造が、また、特開昭57−
75621号明細書にて、空間部を形成する内外瓶の
表面にニツケルメツキを施し、その上に銀鏡層を
積層した構造がそれぞれ提案されている。これら
の真空二重容器はガラス質層またはニツケルメツ
キ層との銀鏡層の作用により実用上充分な保温力
を得ることができ、また保温力を長期にわたつて
維持することができるが、ステンレス鋼素地と銀
鏡層との間に介在するガラス質層が不均一となり
易く、製品の品質にバラツキを生じ、またニツケ
ルメツキの場合には内瓶および外瓶を構成する各
部材、例えば、胴部材、首部材、底部材毎にメツ
キした後接合しなければならないため、製造工程
が煩雑で多大の工数を要するという問題があつ
た。 本発明は保温性および生産性に優れ、均質なス
テンレス鋼製真空二重容器を提供することを目的
とするものであつて、その要旨は、ステンレス鋼
製の内容器と外容器とからなる二重壁構造を有
し、両容器間に形成される空間部を真空にしてな
るステンレス鋼製真空二重容器において、前記空
間部を形成する壁面のうち少なくとも内容器の外
表面に酸化被膜を形成し、該酸化被膜上に銀鏡層
を形成して成ることを特徴とするステンレス鋼製
真空二重容器にある。 すなわち、本発明は、ステンレス鋼の素地その
ままでは銀鏡反応させることは不可能であるが、
その表面が適度に酸化されると表面に酸化第2鉄
からなる被膜が形成され、この被膜が銀鏡反応を
可能させるという知見に基づいて完成されたもの
である。 以下、本発明をステンレス鋼製魔法瓶に適用し
た実施例を示す添付の図面を参照して具体的に説
明する。 図において、1はステンレス鋼製内瓶、2はス
テンレス鋼製外瓶で、両者はその口部3の部分で
ろう付けまたは容接その他の手段により結合して
二重壁構造を形成し、内瓶1と外瓶2との間に形
成される空間部4は排気されて真空にしてある。
内瓶1は胴部1aと底部1bとをろう付け等の手
段により接合することによつて形成され、外瓶2
は胴部2a、底部2bおよび肩部2cを接合する
ことによつて形成されている。外瓶2の底部2b
には空間部4を真空にする際の排気口となるチツ
プ管5がろう付け等により接合されており、この
チツプ管5を保護するために底部2bに底カバー
6が接合剤により取り付けられている。 他方、本発明に従い、ステンレス鋼製真空二重
容器の保温力を向上させるため、空間部4を形成
する内外瓶の壁面、すなわち、内瓶1の外側表面
と外瓶2の内側表面に、第2図のように、酸化被
膜7が形成され、その上に銀鏡層8が積層されて
いる。なお、図示の実施例においては、銀鏡層8
は内瓶の外側表面と外瓶の内側表面に形成されて
いるが、内瓶の外側表面のみに銀鏡層を形成する
ようにしてもよい。これは内容量が大きい容器の
場合にコストダウンを計る上で特に有利である。 前記構造の魔法瓶における酸化被膜および銀鏡
層は、本発明によれば、次のようにして形成され
る。すなわち、魔法瓶の空間部4を形成する内外
瓶の壁面上の酸化被膜は、内瓶1および外瓶2を
空気中あるいは酸素を含む雰囲気など酸化性雰囲
気中で焼成することにより形成される。この焼成
処理は、通常、前記酸化性雰囲気中にて250〜550
℃で5〜120分、好ましくは、300〜450℃で10〜
60分間行なわれる。 このステンレス鋼表面の酸化の度合いは、焼成
処理後のステンレス鋼表面の光択度が、焼成処理
前の研摩表面の光択度に比べて10〜50低下する範
囲が好適である。これは、光択度の低下が10未満
となる程度の酸化ではステンレス鋼表面に銀鏡反
応をさせることができず、また、光択度が50を越
えて低下する過度の酸化では銀鏡反応させること
が困難となるからである。このような現象の起る
原因は、無焼成あるいはこれに近い状態では酸化
第2鉄と共存する酸化第2クロムによつて銀鏡反
応が阻害され、過度に酸化させると表面に酸化第
2鉄が存在しなくなりほとんど酸化クロムのみに
なるからであると推測される。 銀鏡層は前記酸化被膜上に形成されるが、これ
はガラス製魔法瓶を製造する場合と同様の方法に
より形成することができる。すなわち、銀の析出
速度を速めると同時に、均一に析出させるため、
酸化被膜をハロゲン化第1錫を主成分とする活性
化液でぬらして活性化させ、次いで銀鏡液で処理
することにより形成される。なお、活性化処理は
省略することも可能であるが、銀鏡層形成時間を
短かくする上で行なうことが望ましい。 実施例 0.5mm厚のステンレス鋼板(SUS304)で内瓶1
を製作する一方、0.6mm厚のステンレス鋼板で外
瓶2の肩部材2c、胴部材2a、底部材2bを製
作し、内瓶1と外瓶2の肩部材2cをそれらの口
部分3で溶接し、それを空気中にて350℃で30分
焼成する。次いで、これとは別に外瓶2の胴部材
2aと底部材2bを溶接して一体化した組立体を
焼成処理した内瓶1に溶接して二重壁構造とし、
外瓶底部2bに接合したチツプ管5から空間部4
内に10ppmの塩化第1錫を含む水溶液を注入
し、内瓶1の外表面を活性化させ、その水溶液を
排出した後、水洗する。 次に、通常使用されている銀鏡液、例えば、下
記の処方により調製した銀鏡液をチツプ管5から
空間部に、ガラス製魔法瓶の場合と同様、二重瓶
を軸方向に水平に保持し高速で回転させつつ注入
し、銀鏡を析出させ、第2図に示す銀鏡層を形成
する。その後、ガラス製魔法瓶の場合と同様にし
て水洗、乾燥、真空処理し、チツプ部を溶封す
る。 (銀鏡液の処方) 硝酸銀10gを少量の水に溶解させ、これに28%
アンモニア水500mlと水を加えて4800mlとし、さ
らに水酸化ナトリウム10gを溶解させた水溶液
200mlを加えて全量を5000mlとし、これをA液と
する。これとは別に、庶糖20gを水50mlに溶解さ
せた水溶液に濃硝酸0.25mlを加えて煮沸し、これ
に37%ホルムアルデヒド水溶液5mlを加えた後、
水を加えて全量を5000mlとし、これをB液とす
る。上記A液とB液を容積比1:1の割合で混合
して銀鏡液とする。 このようにして得た二重瓶の底部に底カバー6
を接合して内容量0.75の魔法瓶を得る。この魔
法瓶の保温力を調べるため、JIS2005に規定され
る試験法により下記条件で測定したところ、6時
間、24時間の保温効力はそれぞれ82.5℃、59.9℃
であつた。 〔試験条件〕 注湯温度:95℃ 湯 量:満量 栓:密栓(45mmφ) 周囲温度:20℃ なお、バフ研摩し脱脂した後の内瓶外表面の光
沢度は122で、焼成処理の光沢度は101と焼成前に
比べて21低下していた。この光沢度の値はJIS
Z8741に規定される測定法に基づき、入射角60
゜、標準サンプルの光沢度91.1をその1/4の22.8
に設定して求めた値である。 また、これとは別に、0.3mm厚のステンレス鋼
(SUS 304)の試験片を表1に示す種々の焼成条
件下で焼成後、光沢度を測定する一方、前記銀鏡
液を用いて無電解メツキした。その結果も表1に
示す。
The present invention relates to a vacuum double container made of stainless steel. Traditionally, vacuum double-walled glass containers have been commonly used as thermos flasks and other heat-insulating containers, but in recent years, these containers have become less resistant to mechanical shock.
Vacuum double containers using stainless steel and other metal materials have been proposed. Among these metal materials, stainless steel has the advantage of excellent corrosion resistance and strong mechanical strength, but like other metal materials, when the space formed between the inner container and the outer container is placed in a high vacuum, In addition to the problem of releasing gas from the inside and gradually reducing the degree of vacuum, it is impossible to cause a silver mirror reaction even if you try to form a silver mirror plating like in a glass vacuum double container to prevent heat loss due to radiation. It was hot. For the purpose of preventing heat loss due to gas release and radiation from inside this stainless steel to the vacuum space, for example,
Publication No. 22571 discloses a structure in which a vitreous layer containing silicon dioxide as a main component is formed on the surface of the inner and outer metal bottles that form the space of the vacuum double container, and a silver mirror layer is laminated on the vitreous layer. , also, JP-A-57-
No. 75621 proposes a structure in which nickel plating is applied to the surfaces of the inner and outer bottles that form the space, and a silver mirror layer is laminated thereon. These vacuum double containers can obtain practically sufficient heat retention through the action of a silver mirror layer with a vitreous layer or a nickel plating layer, and can maintain heat retention over a long period of time, but they are made of stainless steel. The vitreous layer interposed between the silver mirror layer and the silver mirror layer tends to become non-uniform, resulting in variations in product quality. However, since each bottom member must be plated and then joined, the manufacturing process is complicated and requires a large number of man-hours. The purpose of the present invention is to provide a homogeneous vacuum double container made of stainless steel with excellent heat retention and productivity. In a stainless steel vacuum double container that has a heavy wall structure and has a space formed between both containers that is evacuated, an oxide film is formed on at least the outer surface of the inner container among the walls forming the space. A vacuum double container made of stainless steel is characterized in that a silver mirror layer is formed on the oxide film. That is, in the present invention, although it is impossible to cause a silver mirror reaction with the raw material of stainless steel,
This method was developed based on the knowledge that when the surface is appropriately oxidized, a film made of ferric oxide is formed on the surface, and this film enables silver mirror reactions. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be specifically described with reference to the accompanying drawings showing an embodiment in which the present invention is applied to a stainless steel thermos flask. In the figure, 1 is an inner bottle made of stainless steel, 2 is an outer bottle made of stainless steel, and both are joined at the mouth part 3 by brazing, contact, or other means to form a double wall structure, and the inner bottle is made of stainless steel. A space 4 formed between the bottle 1 and the outer bottle 2 is evacuated and made into a vacuum.
The inner bottle 1 is formed by joining the body part 1a and the bottom part 1b by means such as brazing, and the outer bottle 2
is formed by joining the body part 2a, the bottom part 2b and the shoulder part 2c. Bottom part 2b of outer bottle 2
A tip tube 5, which serves as an exhaust port when evacuating the space 4, is bonded to the tip tube 5 by brazing or the like, and a bottom cover 6 is attached to the bottom portion 2b with a bonding agent to protect the tip tube 5. There is. On the other hand, according to the present invention, in order to improve the heat retention ability of the stainless steel vacuum double container, the walls of the inner and outer bottles forming the space 4, that is, the outer surface of the inner bottle 1 and the inner surface of the outer bottle 2, are provided with grooves. As shown in FIG. 2, an oxide film 7 is formed, and a silver mirror layer 8 is laminated thereon. In addition, in the illustrated embodiment, the silver mirror layer 8
Although the silver mirror layer is formed on the outer surface of the inner bottle and the inner surface of the outer bottle, the silver mirror layer may be formed only on the outer surface of the inner bottle. This is particularly advantageous in reducing costs in the case of containers with large contents. According to the present invention, the oxide film and silver mirror layer in the thermos flask having the above structure are formed as follows. That is, the oxide film on the walls of the inner and outer bottles forming the space 4 of the thermos flask is formed by firing the inner bottle 1 and the outer bottle 2 in an oxidizing atmosphere such as air or an atmosphere containing oxygen. This firing process is usually performed in the oxidizing atmosphere at 250 to 550
5-120 minutes at ℃, preferably 10-120 minutes at 300-450℃
It will be held for 60 minutes. The degree of oxidation of the stainless steel surface is preferably such that the photoselectivity of the stainless steel surface after firing is 10 to 50 lower than the photoselectivity of the polished surface before firing. This is because oxidation that causes a decrease in photo selectivity of less than 10 will not cause a silver mirror reaction on the stainless steel surface, and excessive oxidation that causes a decrease in photo selectivity of more than 50 will not cause a silver mirror reaction. This is because it becomes difficult. The reason why this phenomenon occurs is that in unfired or similar conditions, the silver mirror reaction is inhibited by chromic oxide that coexists with ferric oxide, and if it is excessively oxidized, ferric oxide forms on the surface. It is presumed that this is because chromium oxide ceases to exist and becomes almost only chromium oxide. The silver mirror layer is formed on the oxide film, and can be formed by the same method as in manufacturing a glass thermos flask. In other words, in order to speed up silver precipitation and ensure uniform precipitation,
The oxide film is formed by wetting and activating the oxide film with an activating solution containing a stannous halide as a main component, and then treating it with a silver mirror solution. Although the activation treatment can be omitted, it is desirable to perform it in order to shorten the time required to form the silver mirror layer. Example Inner bottle 1 made of 0.5mm thick stainless steel plate (SUS304)
At the same time, the shoulder member 2c, body member 2a, and bottom member 2b of the outer bottle 2 are made from 0.6 mm thick stainless steel plates, and the shoulder members 2c of the inner bottle 1 and outer bottle 2 are welded at their mouth parts 3. Then, bake it in air at 350℃ for 30 minutes. Next, separately from this, the body member 2a and bottom member 2b of the outer bottle 2 are welded to form an integrated assembly, which is then welded to the fired inner bottle 1 to form a double wall structure.
From the tip tube 5 connected to the outer bottle bottom 2b to the space 4
An aqueous solution containing 10 ppm of stannous chloride is injected into the inner bottle 1 to activate the outer surface of the inner bottle 1, and after discharging the aqueous solution, the inner bottle 1 is washed with water. Next, a commonly used silver mirror solution, for example, a silver mirror solution prepared according to the following formulation, is poured into the space from the tip tube 5, and the double bottle is held horizontally in the axial direction, as in the case of a glass thermos flask, and the bottle is held at high speed. The silver mirror is deposited by injecting the solution while rotating, thereby forming the silver mirror layer shown in FIG. After that, it is washed with water, dried, and vacuum treated in the same manner as for glass thermos flasks, and the tip is melt-sealed. (Prescription of silver mirror solution) Dissolve 10g of silver nitrate in a small amount of water and add 28%
Aqueous solution made by adding 500ml of ammonia water and water to make 4800ml, and further dissolving 10g of sodium hydroxide.
Add 200ml to make the total volume 5000ml, and use this as Solution A. Separately, 0.25 ml of concentrated nitric acid was added to an aqueous solution of 20 g of sucrose dissolved in 50 ml of water and boiled. After adding 5 ml of a 37% formaldehyde aqueous solution to this,
Add water to bring the total volume to 5000ml, and use this as Solution B. The above liquid A and liquid B are mixed at a volume ratio of 1:1 to obtain a silver mirror liquid. Attach the bottom cover 6 to the bottom of the double bottle obtained in this way.
Join them to obtain a thermos flask with an internal capacity of 0.75. In order to investigate the heat retention ability of this thermos flask, we measured it under the following conditions using the test method specified in JIS2005, and the heat retention effect for 6 hours and 24 hours was 82.5℃ and 59.9℃, respectively.
It was hot. [Test conditions] Pouring temperature: 95°C Hot water amount: Full Plug: Sealed plug (45mmφ) Ambient temperature: 20°C The gloss of the outer surface of the inner bottle after buffing and degreasing is 122, which is the same as the gloss of the firing process. The temperature was 101, a decrease of 21 points compared to before firing. This gloss value is JIS
Based on the measurement method specified in Z8741, the angle of incidence is 60
゜、The glossiness of the standard sample is 91.1, which is 1/4 of that, 22.8.
This is the value obtained by setting . Separately, after firing 0.3 mm thick stainless steel (SUS 304) test pieces under various firing conditions shown in Table 1, the gloss was measured, and electroless plating was performed using the silver mirror solution. did. The results are also shown in Table 1.

【表】【table】

【表】 前記説明から明らかなように、本発明に係るス
テンレス鋼製真空二重容器は、ガラス質層上にニ
ツケルメツキ層を介在させた従来のものに比べて
保温力が著しく向上しており、しかもガラス質層
やニツケルメツキ層などを形成する場合のように
煩雑な工程を必要とせず、単に焼成処理するだけ
で、しかも無電解メツキにより銀鏡層を形成でき
るので作業性が向上し、安価に製造することがで
きるなど優れた利点を有している。
[Table] As is clear from the above description, the stainless steel vacuum double container according to the present invention has significantly improved heat retention ability compared to the conventional container in which a nickel plating layer is interposed on a glassy layer. Moreover, unlike the case of forming a glassy layer or a nickel plating layer, there is no need for complicated processes, and the silver mirror layer can be formed by simply firing, and the silver mirror layer can be formed by electroless plating, which improves workability and reduces manufacturing costs. It has excellent advantages such as being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すステンレス鋼
製魔法瓶の縦断面図、第2図は第1図のA部拡大
図である。 1……内瓶、2……外瓶、4……空間部、5…
…チツプ管、6……底カバー、7……酸化被膜、
8……銀鏡層。
FIG. 1 is a longitudinal sectional view of a stainless steel thermos flask showing an embodiment of the present invention, and FIG. 2 is an enlarged view of section A in FIG. 1. 1...Inner bottle, 2...Outer bottle, 4...Space, 5...
...Chip tube, 6...Bottom cover, 7...Oxide coating,
8...Silver mirror layer.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス鋼製の内容器と外容器とからなる
二重壁構造を有し、両容器間に形成される空間部
を真空にしてなるステンレス鋼製真空二重容器に
おいて、前記空間部を形成する壁面のうち少なく
とも内容器の外表面に酸化被膜を形成し、該酸化
被膜上に銀鏡層を形成して成ることを特徴とする
ステンレス鋼製真空二重容器。
1. In a stainless steel vacuum double container having a double wall structure consisting of an inner container and an outer container made of stainless steel, and in which the space formed between the two containers is evacuated, the space is formed. A vacuum double container made of stainless steel, characterized in that an oxide film is formed on at least the outer surface of the inner container among the wall surfaces, and a silver mirror layer is formed on the oxide film.
JP14816282A 1982-08-25 1982-08-25 Stainless vacuum double container Granted JPS5937914A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14816282A JPS5937914A (en) 1982-08-25 1982-08-25 Stainless vacuum double container
GB08322783A GB2129117B (en) 1982-08-25 1983-08-24 Stainless steel vacuum bottle and its production
US06/735,307 US4856174A (en) 1982-08-25 1985-05-17 Method of making a stainless steel vacuum bottle with a silver mirrored surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14816282A JPS5937914A (en) 1982-08-25 1982-08-25 Stainless vacuum double container

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16886083A Division JPS5974269A (en) 1983-09-13 1983-09-13 Method for plating stainless steel with silver

Publications (2)

Publication Number Publication Date
JPS5937914A JPS5937914A (en) 1984-03-01
JPS6237973B2 true JPS6237973B2 (en) 1987-08-14

Family

ID=15446636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14816282A Granted JPS5937914A (en) 1982-08-25 1982-08-25 Stainless vacuum double container

Country Status (1)

Country Link
JP (1) JPS5937914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200376U (en) * 1987-06-11 1988-12-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200376U (en) * 1987-06-11 1988-12-23

Also Published As

Publication number Publication date
JPS5937914A (en) 1984-03-01

Similar Documents

Publication Publication Date Title
US4856174A (en) Method of making a stainless steel vacuum bottle with a silver mirrored surface
US2843646A (en) Laminated metal ceramic
GB1576670A (en) Production of vacuum bottles or like containers
JPH0280382A (en) Method for bonding metal element and ceramic element and processed product bonded by said method
JPS6237973B2 (en)
JPH0214431B2 (en)
US3222775A (en) Method of bonding sheets of metal
JPS6237974B2 (en)
JPH0352973B2 (en)
JPH0415686B2 (en)
US4448809A (en) Method of silver plating stainless steel vacuum bottle surfaces
US3901663A (en) Coating graphite bodies with metals
JPH0440607Y2 (en)
JPH0144789B2 (en)
JPH02286110A (en) Production of vacuum bottle made of titanium
JPH02261415A (en) Preparation of thermos bottle made of titanium
JPS583999B2 (en) Method for manufacturing composite material consisting of ceramics and metal
JPS59164678A (en) Oxide ceramic bonding method
JPH0415688B2 (en)
JPH02215416A (en) Manufacture of metallic thermos bottle
US1426446A (en) Heat-insulated receptacle
JPS61201768A (en) Ceramics-metal composite material having oxidation-resistant coating layer and its manufacture
JPH0517001Y2 (en)
US4654237A (en) Process for chemical and thermal treatment of steel workpieces
JP2776710B2 (en) Metal vacuum double container