JPH02286110A - Production of vacuum bottle made of titanium - Google Patents

Production of vacuum bottle made of titanium

Info

Publication number
JPH02286110A
JPH02286110A JP10692489A JP10692489A JPH02286110A JP H02286110 A JPH02286110 A JP H02286110A JP 10692489 A JP10692489 A JP 10692489A JP 10692489 A JP10692489 A JP 10692489A JP H02286110 A JPH02286110 A JP H02286110A
Authority
JP
Japan
Prior art keywords
bottle
titanium
layer
outside
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10692489A
Other languages
Japanese (ja)
Other versions
JP2702549B2 (en
Inventor
Shoji Toida
樋田 章司
Hidetoshi Ota
英俊 太田
Shigeru Tsuchiya
茂 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP10692489A priority Critical patent/JP2702549B2/en
Publication of JPH02286110A publication Critical patent/JPH02286110A/en
Application granted granted Critical
Publication of JP2702549B2 publication Critical patent/JP2702549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To easily obtain the vacuum bottle made of titanium which is light in weight and has excellent heat retaining performance by forming a metallic layer which exhibits the emissivity smaller than the emissivity of inside and outside bottles to at least a part of the inside and outside bottle and joining the inside bottle and the outside bottle in their mouth parts to form double structures, then subjecting the bottles to a vacuum heating treatment. CONSTITUTION:The inside bottle 1 is first produced by molding titanium or titanium alloy to a blind cylindrical shape and the metallic layer 8 consisting of the copper or silver, nickel or the like exhibiting the emissivity smaller than the emissivity of the constituting material of the inside bottle 1 is formed at >=10mum film thickness on the outside surface of the above- mentioned bottle. The titanium is then molded to produce the outside bottle 2 of the blind cylindrical shape which has the diameter slightly larger than the diameter of the inside bottle 1, is diametrally reduced in the mouth part to have the diameter equal to the diameter in the mouth part of the inside bottle 1 and is formed with a discharge hole 6 in the central part of the bottom. The mouth part of the inside bottle 1 is fitted to the mouth part of the outside bottle 2 produced in such a manner and the two bottles are joined by spot-welding or the like to form the bottle body of the double structures; thereafter, the bottle body is subjected to the vacuum heating treatment. The inside of the gap part between the inside bottle 1 and the outside bottle 2 is evacuated to a vacuum heat insulating layer 3. The heating temp. of the vacuum heating treatment is >=500 deg.C and <=800 deg.C and the treating time is adequately >=5 minutes and <=60 minutes.

Description

【発明の詳細な説明】 C産業上の利用分野コ この発明は、軽量で保温性能に優れたチタン製魔法瓶を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing a titanium thermos flask that is lightweight and has excellent heat retention performance.

[従来の技術] 従来、金属製魔法瓶としては、高強度で保温性能の良好
なステンレス鋼を材料とするものが種々提案され、実用
化されている。このものは、保温性能が優れ、&i′損
することがないが、重量が重く、持ち運びに不便である
欠点がある。またステンレス鋼は耐食性が不充分であり
、塩分を含んだ食物や飲物を収容する場合には腐食の恐
れらある。
[Prior Art] Various metal thermos flasks made of stainless steel, which has high strength and good heat retention performance, have been proposed and put into practical use. This product has excellent heat retention performance and does not cause any loss, but it has the disadvantage of being heavy and inconvenient to carry. Stainless steel also has insufficient corrosion resistance and may corrode when containing food or drinks containing salt.

このような理由により、軽量、高強度、高耐食性のチタ
ンまたはチタン合金(以下、単Iこチタンと総称する。
For these reasons, titanium or titanium alloys (hereinafter collectively referred to as single-I titanium) are lightweight, high-strength, and highly corrosion-resistant.

)からなる魔法瓶が提案されている。) has been proposed.

このようなチタン製魔法瓶においては、ステンレス鋼製
魔法瓶と同様に保温性を高めるために、魔法瓶の内瓶ま
たは外瓶の、真空断熱層に面する表面に輻射率の小さな
金属、たとえば銅または銀からなる保温層を形成し、輻
射による伝熱を低減する必要がある。
In such titanium thermos flasks, in order to improve heat retention like stainless steel thermos flasks, a metal with a low emissivity, such as copper or silver, is added to the surface of the inner or outer bottle facing the vacuum insulation layer. It is necessary to form a heat insulating layer consisting of the following to reduce heat transfer due to radiation.

[発明が解決しようとする課題1 しかしながら、魔法瓶の真空断熱層を形成する際に、真
空排気の促進、金属からの脱ガスのために真空加熱処理
を施すが、チタンは化学活性に富んだ金属であるため、
この真空加熱処理の際に上記保温層の銅や銀がチタン中
へ拡散し、合金化して鋼や銀が本来保有する小さい輻射
率の効果が失われ、その保温効果が消失してしまい、保
温性能を充分に高めることができないばかりか、低下さ
せるという問題かあった。
[Problem to be solved by the invention 1 However, when forming the vacuum insulation layer of a thermos flask, vacuum heat treatment is performed to promote vacuum evacuation and degas from the metal, but titanium is a metal with high chemical activity. Therefore,
During this vacuum heat treatment, the copper and silver in the heat insulating layer diffuse into the titanium and become alloyed, losing the low emissivity effect that steel and silver originally have, and the heat insulating effect disappears. There was a problem that not only could the performance not be sufficiently improved, but it would also be degraded.

この発明は、上記課題を解決するためになされたもので
あって、軽量でかつ保温性能に優れたチタン製魔法瓶の
製造方法を提供することを目的としている。
This invention was made to solve the above problems, and an object thereof is to provide a method for manufacturing a titanium thermos flask that is lightweight and has excellent heat retention performance.

[課題を解決するための手段] この発明は、内外瓶の少なくとも一部に、内外瓶の放射
率より小さい放射率を示す金属層を10μm以上の膜厚
で形成し、ついで内瓶と外瓶とを口部で接合して二重構
造とし、これに500℃以上800℃以下、5分以上6
0分以下の真空加熱処理を施して上記金属層の表層部を
保温層として残存させつつ下層部をチタンまたはチタン
合金と反応さけて合金層を形成するとともに、上記内外
瓶のいずれか一方に設けられた排気口を封止して真空断
熱層を形成することを解決手段とした。
[Means for Solving the Problems] This invention forms a metal layer having a thickness of 10 μm or more and having an emissivity smaller than that of the inner and outer bottles on at least part of the inner and outer bottles, and then separates the inner and outer bottles from each other. are joined at the mouth to form a double structure, and then heated at a temperature of 500°C to 800°C for 5 minutes to 6 minutes.
A vacuum heat treatment is performed for 0 minutes or less to leave the surface layer of the metal layer as a heat insulating layer while avoiding the reaction of the lower layer with titanium or titanium alloy to form an alloy layer, and the metal layer is provided on either the inner or outer bottle. The solution was to seal the exhaust port and form a vacuum insulation layer.

「作用 」 内瓶外表面または外瓶内表面の、一部あるいは全部に、
内外瓶の放射率よりも小さい放射率を示す金属層を10
μm以上の膜厚で形成した後に、500℃以上800℃
以下、5分以上60分以下の真空加熱処理を施すと、金
属層の下層部のみがチタン内に拡散して合金層が形成さ
れる。一方、金属層の表層部は反応せずに保温層として
残存するので、充分な保温性能を示すチタン製魔法瓶を
得ることができる。
"Action" Part or all of the outer surface of the inner bottle or the inner surface of the outer bottle,
10 metal layers exhibiting a lower emissivity than the emissivity of the inner and outer bottles.
After forming a film with a thickness of μm or more, the temperature is 500°C or more and 800°C.
Thereafter, when a vacuum heat treatment is performed for 5 minutes or more and 60 minutes or less, only the lower layer of the metal layer is diffused into titanium to form an alloy layer. On the other hand, since the surface layer of the metal layer remains as a heat retaining layer without reacting, a titanium thermos flask exhibiting sufficient heat retaining performance can be obtained.

[実施例] 以下1.この発明の詳細な説明する。[Example] Below 1. This invention will be explained in detail.

第1図はこの発明の製造方法によって得られたチタン製
魔法瓶の一例である。
FIG. 1 shows an example of a titanium thermos flask obtained by the manufacturing method of the present invention.

このチタン製魔法瓶は、内瓶1よりも大径の外瓶2の口
部に内瓶1を嵌め込んだ状態でこれらの口部を互いに接
合して二重構造としたものであって、上記内瓶Iと外瓶
2との間に設けられた空隙部を真空排気して真空断熱層
3を形成してなるものである。
This titanium thermos flask has a double structure in which the inner bottle 1 is fitted into the mouth of an outer bottle 2, which has a larger diameter than the inner bottle 1, and these mouths are joined to each other. A vacuum insulation layer 3 is formed by evacuating a gap provided between an inner bottle I and an outer bottle 2.

内瓶1は縮径された口部と、この口部よりも大径の胴部
とこの胴部に続く底部とからなる有底筒状の成体であり
、この内瓶1の外表面全面には、内瓶1のチタン合金か
らなる合金層4と、内瓶!の構成金属よりも放射率の小
さな金属からなる保温層5とが順次設けられている。内
瓶Iの外表面に合金層4を介して保温層5を形成するこ
とにより、内瓶!からの熱の放射率を小さく保ち、魔法
瓶の保温効果を向上させるようにしている。
The inner bottle 1 is a cylindrical body with a bottom, consisting of a reduced diameter mouth, a body with a larger diameter than the mouth, and a bottom that continues to the body. The alloy layer 4 made of titanium alloy of the inner bottle 1 and the inner bottle! A heat insulating layer 5 made of a metal having a lower emissivity than the constituent metals is successively provided. By forming the heat insulating layer 5 on the outer surface of the inner bottle I via the alloy layer 4, the inner bottle! This keeps the emissivity of the heat from the thermos bottle low and improves the heat retention effect of the thermos flask.

また外瓶2は、上記内瓶lよりも大径の筒状の外瓶胴部
と、これに接続された外瓶底部とからなる有底筒状の成
体であり、外瓶胴部の一端は縮径されて小径の口部とな
っており、この口部は上記内瓶lの口部と接合されてい
る。また外瓶底部の中心部には、排気孔6が形成されて
おり、この排気孔6は、封止板7によって外方から封止
されている。さらに上記内瓶1と外瓶2との間の空隙部
は真空排気されて真空断熱層3が形成されており、これ
により魔法瓶の保温性能を保つようになっている。
The outer bottle 2 is a bottomed cylindrical body consisting of a cylindrical outer bottle body having a larger diameter than the inner bottle 1 and an outer bottle bottom connected to the outer bottle body, and one end of the outer bottle body. is reduced in diameter to form a small-diameter mouth, and this mouth is joined to the mouth of the inner bottle I. Further, an exhaust hole 6 is formed in the center of the bottom of the outer bottle, and this exhaust hole 6 is sealed from the outside by a sealing plate 7. Further, the gap between the inner bottle 1 and the outer bottle 2 is evacuated to form a vacuum heat insulating layer 3, which maintains the heat retention performance of the thermos flask.

このような構成のチタン製魔法瓶は、第2図に示したよ
うに金属層8が形成された内瓶lを、外瓶2内に嵌め込
んで、互いの口部にて接合して第3図に示したように二
重構造とした後、内IIと外瓶2との間の空隙部内を真
空排気して真空断熱層3とすると共に、500℃以上8
00℃以下、5分以上60分以下の真空加熱処理を施し
て金属層8を合金層4と保温層5にし、ついで排気孔6
を封止板7にて封止することにより製造される。
In the titanium thermos flask having such a structure, as shown in FIG. After creating a double structure as shown in the figure, the inside of the gap between the inner bottle II and the outer bottle 2 is evacuated to form a vacuum insulation layer 3, and the temperature
The metal layer 8 is made into the alloy layer 4 and the heat insulation layer 5 by vacuum heat treatment at 00°C or less for 5 minutes or more and 60 minutes or less, and then the exhaust hole 6 is formed.
It is manufactured by sealing with a sealing plate 7.

まず第2図に示したように、チタンまたはチタン合金を
有底筒状に成形して内瓶Iを作製し、この内瓶1の外表
面に、内瓶lの構成材料の放射率よりも小さな放射率を
示す銅または銀、ニッケル等からなる金属層8をlOμ
1以上の膜厚で形成する。
First, as shown in Fig. 2, the inner bottle I is made by molding titanium or titanium alloy into a cylinder shape with a bottom. A metal layer 8 made of copper, silver, nickel, etc. exhibiting a small emissivity is
Formed with a film thickness of 1 or more.

この金属層8は、銀鏡反応等の無電解めっきや電気めっ
き等によって形成することができる。金属層8の膜厚を
10μm未満とすると、後述する真空加熱処理時に金属
!!!8の全てが内瓶1内に拡散して合金層4となって
しまい魔法瓶の保温性能を低下させるので好ましくない
。この金属層8は直接内瓶1の外表面に形成されるほか
、ニッケル等の下地層を形成した後に、形成してもよい
This metal layer 8 can be formed by electroless plating such as silver mirror reaction, electroplating, or the like. When the film thickness of the metal layer 8 is less than 10 μm, metal! ! ! All of 8 diffuses into the inner bottle 1 and forms the alloy layer 4, which is undesirable because it reduces the heat retention performance of the thermos flask. This metal layer 8 may be formed directly on the outer surface of the inner bottle 1, or may be formed after forming a base layer such as nickel.

このような下地層を形成すると、内瓶Iと保温層5との
密着性を向上させることができ、各工程での移動時や、
後述する真空加熱処理時における保温層5の剥離を防止
することができ好適であるばかりか、真空加熱処理時に
金属層8のすべてがチタン内に拡散してチタン合金化し
てしまうのを防止し、保温層5を残存させやすくするこ
ともできる。
By forming such a base layer, it is possible to improve the adhesion between the inner bottle I and the heat-retaining layer 5, and during movement in each process,
Not only is it possible to prevent the heat insulating layer 5 from peeling off during the vacuum heat treatment described later, but it also prevents all of the metal layer 8 from diffusing into titanium and becoming a titanium alloy during the vacuum heat treatment. It is also possible to make it easier for the heat retaining layer 5 to remain.

ついでチタンを成形して、上記内瓶1上りらやや大きい
径を有し、口部が内瓶lの口部の径と等しくなるように
縮径され、底部中心部に排気孔6が形成された有底筒状
の外瓶3を作製する。
Next, titanium is molded to have a slightly larger diameter at the top of the inner bottle 1, and the diameter is reduced so that the opening is equal to the diameter of the opening of the inner bottle 1, and an exhaust hole 6 is formed in the center of the bottom. A cylindrical outer bottle 3 with a bottom is prepared.

そしてこの外瓶3の口部に上記内瓶1の口部を嵌合し、
スポット溶接などによりこれらを接合し、第3図に示し
たような二重構造の成体とする。
Then, fit the mouth of the inner bottle 1 into the mouth of the outer bottle 3,
These are joined by spot welding or the like to form a double-structured structure as shown in FIG.

このようにして作製された二重構造の瓶に真空加熱処理
を施す。この真空加熱処理時に、内瓶1と外瓶2との間
の空隙部内を真空排気し、真空断熱層3を形成する。こ
の真空加熱処理によって、内瓶1の外表面に形成された
金属層8の下層部の金属は内瓶I中へ拡散してチタン合
金化するので合金層4が形成される。ところが金属層8
の膜厚は10μ角以上と厚いものであるので、金属層8
の全部がチタン製の内瓶1中に拡散することはなく、金
属層8の表層部は、拡散せず未反応のまま残存する。そ
してこの残存した金属層8の表層部は内瓶1よりも放射
率の小さな金属からなるものであるので、保温層5とす
ることができる。
The double-walled bottle thus produced is subjected to vacuum heat treatment. During this vacuum heat treatment, the space between the inner bottle 1 and the outer bottle 2 is evacuated to form a vacuum heat insulating layer 3. By this vacuum heat treatment, the metal in the lower layer of the metal layer 8 formed on the outer surface of the inner bottle 1 diffuses into the inner bottle I and becomes a titanium alloy, so that an alloy layer 4 is formed. However, metal layer 8
Since the film thickness of the metal layer 8 is as thick as 10μ square or more, the metal layer 8
Not all of it diffuses into the titanium inner bottle 1, and the surface layer of the metal layer 8 remains unreacted without being diffused. Since the surface layer portion of the remaining metal layer 8 is made of a metal having a lower emissivity than that of the inner bottle 1, it can be used as the heat insulating layer 5.

上記のような真空加熱処理の加熱温度は500℃以上8
00℃以下であり、処理時間は5分以上60分以下が好
適である。加熱温度を500℃未満とすると、内瓶11
外瓶2および金属層8に吸着されたガスを放出させる脱
ガスを充分に行えず、また800℃より高い温度で加熱
すると、金属層8の全てが内瓶l中に拡散してしまい保
温層5が残存しなくなるので、共に好ましくない。また
加熱時間も同様に、5分未満であると脱ガスが充分でな
いと共に、60分より長いと金属層8がすべて合金層4
となってしまう。
The heating temperature of the vacuum heat treatment as mentioned above is 500℃ or higher8
The temperature is preferably 00° C. or lower, and the treatment time is preferably 5 minutes or more and 60 minutes or less. If the heating temperature is less than 500°C, the inner bottle 11
If degassing to release the gas adsorbed in the outer bottle 2 and metal layer 8 cannot be performed sufficiently, and if heated at a temperature higher than 800°C, all of the metal layer 8 will diffuse into the inner bottle l, causing the heat insulating layer 5 will not remain, so both are unfavorable. Likewise, if the heating time is less than 5 minutes, degassing will not be sufficient, and if it is longer than 60 minutes, all of the metal layer 8 will be removed from the alloy layer 4.
It becomes.

そしてこのような真空加熱処理の後に、外瓶3の底部に
形成された排気孔6を封止材7を固形ろう材9などによ
って外部より封止することにより、チタン製魔法瓶とす
ることができる。この固形ろう材9としては、Ag−C
u−In系、Ag−Cu5n系、Ag−Cu系、Cu−
P系などのチタンとのなじみの良いろう材を用いること
ができる。
After such vacuum heat treatment, a titanium thermos flask can be obtained by sealing the exhaust hole 6 formed at the bottom of the outer bottle 3 from the outside with a sealing material 7 using a solid brazing filler metal 9 or the like. . This solid brazing filler metal 9 is Ag-C
u-In series, Ag-Cu5n series, Ag-Cu series, Cu-
A brazing material having good compatibility with titanium, such as P-based brazing material, can be used.

またこの発明の製造方法は、第1図に示したチタン製魔
法瓶を製造する際にのみ適用されるものではなく、たと
えば真空断熱層3を形成するには、外瓶2の底部にチッ
プ管10を接続し、これを通して脱ガスを行うこともで
きる。第4図はこのようにして製造されたチタン製魔法
瓶の一実施例である。このようなチタン製魔法瓶を製造
するには、外瓶2の口部内に外表面に金属層8が形成さ
れた内瓶1を嵌合した後1、これらを加熱しつつ6、チ
ップ管!Oを通して内瓶1と〆瓶2との間に形成された
空S部内の排気を行い、脱会ガス終了後にチップ管lO
を圧切して、これを封止することにより製造することが
できる。
Furthermore, the manufacturing method of the present invention is not only applicable to manufacturing the titanium thermos flask shown in FIG. It is also possible to connect and degas through this. FIG. 4 shows an example of a titanium thermos flask manufactured in this manner. To manufacture such a titanium thermos flask, after fitting the inner bottle 1, which has a metal layer 8 on its outer surface, into the mouth of the outer bottle 2, 1, while heating these, 6, the chip tube! The empty S part formed between the inner bottle 1 and the final bottle 2 is evacuated through O, and after the desorption gas is finished, the tip tube lO is
It can be manufactured by press-cutting and sealing it.

なお第1図および第4図のチタン製魔法瓶はいずれも内
瓶Iの外表面に金属層8を形成したが、この発明の製造
方法はこれらに限られるものではなく、外瓶2の内表面
に金属層8を形成してもよく、さらには内瓶1の外表面
および外瓶2の内表面の両方に形成しても、またいずれ
か一方の一部にのみ形成しても良い。
In both the titanium thermos bottles shown in FIGS. 1 and 4, the metal layer 8 is formed on the outer surface of the inner bottle I, but the manufacturing method of the present invention is not limited to this, and the inner surface of the outer bottle 2 is The metal layer 8 may be formed on both the outer surface of the inner bottle 1 and the inner surface of the outer bottle 2, or only on a part of either one.

さらに第1図および第4図のチタン製魔法瓶はいずれら
外瓶2の底部に排気孔6を設けたが、排気孔6の穿設位
置はこれに限られるものではなく、内瓶iまたは外瓶2
のいずれか一方に設ければ良い。
Furthermore, although the titanium thermos flasks shown in FIGS. 1 and 4 both have an exhaust hole 6 at the bottom of the outer bottle 2, the position of the exhaust hole 6 is not limited to this, and bottle 2
It may be provided on either one of the two.

[発明の効果〕 以上説明したように、この発明のチタン製魔法瓶の製造
方法は、内外瓶の少なくとも一部に、内外瓶の放射率よ
り小さい放射率を示す金属層を10μm以上の膜厚で形
成し、ついで内瓶と外瓶とを口部で接合して二重構造と
し、これに500℃以上800℃以下、5分以上60分
以下の真空加熱処理を施して上記金属層の表層部を保温
層として残存させつつ下層部をチタンまたはチタン合金
と反応させて合金層を形成するとともに、上記内外瓶の
いずれか一方に設けられた排気口を封止して真空断熱層
を形成するものであるので、軽量で保温性能の優れたチ
タン製魔法瓶を容易に製造することができる。
[Effects of the Invention] As explained above, the method for manufacturing a titanium thermos flask of the present invention includes forming a metal layer having a thickness of 10 μm or more on at least part of the inner and outer bottles, the metal layer having an emissivity smaller than that of the inner and outer bottles. Then, the inner bottle and outer bottle are joined at the mouth to form a double structure, and this is subjected to vacuum heat treatment at 500°C or more and 800°C or less for 5 minutes or more and 60 minutes or less to remove the surface layer of the metal layer. The lower layer is reacted with titanium or titanium alloy while remaining as a heat insulating layer to form an alloy layer, and the exhaust port provided on either the inner or outer bottle is sealed to form a vacuum insulation layer. Therefore, it is possible to easily manufacture a titanium thermos flask that is lightweight and has excellent heat retention performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の製造方法によって得られたチタン製
魔法瓶の一例を示した概略構成図、第2図および第3図
はいずれもこの発明の製造方法の一工程を示す概略構成
図、第4図はこの発明の製造方法によって得られたチタ
ン製魔法瓶の他の例を示した概略構成図である。 l・・・内瓶、 2・・外瓶、 3・・・真空断熱層、 4・・・合金層、 5・・・保温層、 8・・・金属層。
FIG. 1 is a schematic configuration diagram showing an example of a titanium thermos obtained by the manufacturing method of the present invention, and FIGS. 2 and 3 are both schematic configuration diagrams showing one step of the manufacturing method of the present invention. FIG. 4 is a schematic diagram showing another example of a titanium thermos obtained by the manufacturing method of the present invention. l...Inner bottle, 2...Outer bottle, 3...Vacuum insulation layer, 4...Alloy layer, 5...Heat insulation layer, 8...Metal layer.

Claims (1)

【特許請求の範囲】[Claims] 内瓶および外瓶のいずれもがチタンまたはチタン合金か
らなり、これら内外瓶間の空隙部を真空断熱層としたチ
タン製魔法瓶を製造するに際し、上記内外瓶の少なくと
も一部に、内外瓶の放射率より小さい放射率を示す金属
層を10μm以上の膜厚で形成し、ついで内瓶と外瓶と
を口部で接合して二重構造とし、これに500℃以上8
00℃以下、5分以上60分以下の真空加熱処理を施し
て上記金属層の表層部を保温層として残存させつつ下層
部をチタンまたはチタン合金と反応させて合金層を形成
するとともに、上記内外瓶のいずれか一方に設けられた
排気口を封止して真空断熱層を形成することを特徴とす
るチタン製魔法瓶の製造方法
When manufacturing a titanium thermos flask in which both the inner bottle and the outer bottle are made of titanium or a titanium alloy, and the gap between the inner and outer bottles is a vacuum insulation layer, at least a portion of the inner and outer bottles is made of radiation. A metal layer with a thickness of 10 μm or more is formed, and the inner bottle and outer bottle are then joined at the mouth to form a double structure, and this is heated at 500°C or more for 800°C or more.
A vacuum heat treatment is performed at 00°C or lower for 5 minutes or more and 60 minutes or less to leave the surface layer of the metal layer as a heat insulating layer while reacting the lower layer with titanium or titanium alloy to form an alloy layer. A method for manufacturing a titanium thermos flask, which comprises sealing an exhaust port provided on either side of the bottle to form a vacuum insulation layer.
JP10692489A 1989-04-26 1989-04-26 Manufacturing method of titanium thermos Expired - Fee Related JP2702549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10692489A JP2702549B2 (en) 1989-04-26 1989-04-26 Manufacturing method of titanium thermos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10692489A JP2702549B2 (en) 1989-04-26 1989-04-26 Manufacturing method of titanium thermos

Publications (2)

Publication Number Publication Date
JPH02286110A true JPH02286110A (en) 1990-11-26
JP2702549B2 JP2702549B2 (en) 1998-01-21

Family

ID=14445968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10692489A Expired - Fee Related JP2702549B2 (en) 1989-04-26 1989-04-26 Manufacturing method of titanium thermos

Country Status (1)

Country Link
JP (1) JP2702549B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603613A1 (en) * 1992-12-24 1994-06-29 Nippon Sanso Corporation Metallic vacuum double-walled container and manufacturing method thereof
US20140339205A1 (en) * 2013-05-14 2014-11-20 Thermos (Jiangsu) Housewares Co., Ltd. Vacuum sealing method for heat insulating vessel
CN108421684A (en) * 2018-02-28 2018-08-21 周雪松 The manufacture craft of enamel cool-bag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603613A1 (en) * 1992-12-24 1994-06-29 Nippon Sanso Corporation Metallic vacuum double-walled container and manufacturing method thereof
US5588197A (en) * 1992-12-24 1996-12-31 Nippon Sanso Corporation Method of manufacturing metallic vacuum double-walled container
US20140339205A1 (en) * 2013-05-14 2014-11-20 Thermos (Jiangsu) Housewares Co., Ltd. Vacuum sealing method for heat insulating vessel
CN108421684A (en) * 2018-02-28 2018-08-21 周雪松 The manufacture craft of enamel cool-bag

Also Published As

Publication number Publication date
JP2702549B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US4856174A (en) Method of making a stainless steel vacuum bottle with a silver mirrored surface
JPH0381368B2 (en)
GB1576670A (en) Production of vacuum bottles or like containers
JPH02286110A (en) Production of vacuum bottle made of titanium
JPH11164784A (en) Metallic vacuum double container
JPS59103634A (en) Vacuum heat insulating container
JPH0811097B2 (en) Manufacturing method of titanium thermos
JP2702547B2 (en) Manufacturing method of titanium thermos
JP2818430B2 (en) Manufacturing method of metal thermos
JPS58157580A (en) Vacuum sealing of metallic vacuum bottle
JPH0440607Y2 (en)
JPH0517001Y2 (en)
JPH0274223A (en) Manufacture of cooling-retaining or heat-retaining metallic doubled vessel
JPH0314112Y2 (en)
JPH0443648B2 (en)
JPH07148078A (en) Vacuum heat insulating vessel made of synthetic resin and its manufacture
JPH06113963A (en) Vacuum heat-insulating container made of synthetic resin and manufacture thereof
JPS59137187A (en) Spring and its production
JP2659402B2 (en) Manufacturing method of metal double-walled container
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture
JPH0443649B2 (en)
JPH0622865A (en) Vacuum heat-insulating vessel and its production
JPS6258247B2 (en)
JPS5931157Y2 (en) metal thermos flask
JPS63206213A (en) Production of metal double container

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees