JPH0443648B2 - - Google Patents

Info

Publication number
JPH0443648B2
JPH0443648B2 JP59228339A JP22833984A JPH0443648B2 JP H0443648 B2 JPH0443648 B2 JP H0443648B2 JP 59228339 A JP59228339 A JP 59228339A JP 22833984 A JP22833984 A JP 22833984A JP H0443648 B2 JPH0443648 B2 JP H0443648B2
Authority
JP
Japan
Prior art keywords
container
exhaust port
vacuum
stainless steel
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59228339A
Other languages
Japanese (ja)
Other versions
JPS61106119A (en
Inventor
Shizunao Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Vacuum Bottle Co Ltd filed Critical Zojirushi Vacuum Bottle Co Ltd
Priority to JP22833984A priority Critical patent/JPS61106119A/en
Publication of JPS61106119A publication Critical patent/JPS61106119A/en
Publication of JPH0443648B2 publication Critical patent/JPH0443648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ステンレス鋼製真空二重容器の製造
方法、具体的には、携帯用魔法瓶、ポツト、アイ
スジヤー、ジヤー等に使用するステンレス鋼製の
真空二重容器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a vacuum double container made of stainless steel, specifically a stainless steel vacuum container used for portable thermos flasks, pots, ice jars, jars, etc. The present invention relates to a method for manufacturing a vacuum double container.

(従来の技術) 近年、真空二重容器の形成材料として金属材料
を用い、機械的強度を向上させた金属製真空二重
容器が提案され、実用に供されてきている。この
種の金属製真空二重容器を製造する場合、内外両
容器間の空間から排気して真空にし、次いで真空
封じ込みする方法としては、例えば、特開昭59−
37914号公報、特開昭59−103633号公報などに記
載のように、外容器に取り付けたチツプ管を介し
て所定の真空度に排気した後、チツプ管を圧接さ
せて封止する方法、あるいは特開昭57−96622号
公報、特開昭58−192516号公報に記載のように、
金属製の内容器と外容器本体とを口部で接合した
後、底部に排気口を有する外容器底部材を外容器
本体に接合して二重壁構造と為し、これを倒立さ
せて外容器底部材上にその排気口を閉鎖する金属
製排気口閉塞部材を排気口との間に間隙を置いて
配置すると共に、ロウ材を排気口近傍に配置した
後、真空加熱炉中で加熱しながら排気処理し、次
いでロウ材の熔融温度にまで昇温させてロウ付け
することにより真空封じ込みする方法が知られい
る。
(Prior Art) In recent years, a metal vacuum double container with improved mechanical strength using a metal material as a material for forming the vacuum double container has been proposed and put into practical use. When manufacturing this type of metal vacuum double container, the method of evacuating the space between the inner and outer containers to create a vacuum, and then sealing the container under vacuum is known as, for example,
37914, Japanese Patent Application Laid-Open No. 59-103633, etc., a method in which the vacuum is evacuated to a predetermined degree through a tip tube attached to an outer container, and then the tip tube is pressure-welded to seal it. As described in JP-A-57-96622 and JP-A-58-192516,
After joining the metal inner container and the outer container body at the mouth, the outer container bottom member having an exhaust port at the bottom is joined to the outer container main body to form a double wall structure, which is then turned upside down and opened. A metal exhaust port closing member for closing the exhaust port is placed on the bottom member of the container with a gap between it and the exhaust port, and a brazing material is placed near the exhaust port, and then heated in a vacuum heating furnace. A method is known in which the material is vacuum-sealed by evacuation treatment while the material is being heated, and then the temperature is raised to the melting temperature of the brazing material and brazing is performed.

(発明が解決しようとする問題点) しかしながら、チツプ管を使用する方法はロウ
材等を使用しないため真空封じ込み時にガスが発
生せず、内外両容器間の空間の真空度が低下しな
いので、製品の品質維持には極めて有効である
が、チツプ管の長さを短くするには限度があるた
め、製品の高さがチツプ管の分だけ高くなるとい
う問題がある。他方、ロウ接による方法では、フ
ラツクスを使用するとガスが内外両容器間の真空
空間に流入し真空度を低下させることから、フラ
ツクスを使用すること無くロウ付けする必要があ
り、そのためには高温でステンレス鋼表面をフラ
ツシユすると共に、ニツケルロウなど約900〜
1070℃の融点を有するロウ材を使用しなければな
らない。しかも、ステンレス鋼は高温に加熱する
際あるいは高温から冷却する際に、ある温度域
(一般には、約450〜80℃)で固溶炭素が炭化物と
なつて析出し鋭敏化する性質を有するため、鋭敏
化の危険温度域を避けて850℃以上の温度で真空
排気処理及びロウ接を行い、かつ高温から冷却す
る際に真空加熱炉内に不活性ガス供給して急冷し
なければならず、従つて、真空加熱炉の電力消費
量が多く、また不活性ガスを使用するため製造コ
ストが増大するという問題があつた。
(Problems to be solved by the invention) However, since the method using chip tubes does not use brazing material, no gas is generated during vacuum sealing, and the degree of vacuum in the space between the inner and outer containers does not decrease. Although this is extremely effective in maintaining product quality, there is a limit to how short the length of the tip tube can be, so there is a problem that the height of the product increases by the length of the tip tube. On the other hand, in the brazing method, when flux is used, gas flows into the vacuum space between the inner and outer containers, lowering the degree of vacuum. In addition to flashing the stainless steel surface, approximately 900 ~ nickel wax etc.
A brazing material with a melting point of 1070°C must be used. Moreover, when stainless steel is heated to a high temperature or cooled from a high temperature, the solid solution carbon becomes carbide and precipitates in a certain temperature range (generally about 450 to 80 degrees Celsius) and becomes sensitive. Vacuum exhaust treatment and brazing must be performed at a temperature of 850°C or higher to avoid the dangerous temperature range of sensitization, and when cooling from high temperature, inert gas must be supplied into the vacuum heating furnace for rapid cooling. However, there have been problems in that the vacuum heating furnace consumes a large amount of electricity, and the use of inert gas increases manufacturing costs.

(問題点を解決するための手段) 本発明は、基本的には、真空加熱炉の特性、即
ち、真空加熱炉の加熱ヒータへの電力供給を停止
すると炉内温度および被加熱体の温度が数10度〜
百数10度急激に低下するという性質を利用すると
共に、比較的低融点のロウ材を使用し、鋭敏化の
危険温度域を避けて300〜500℃の比較的低温で真
空排気処理を行ない、450〜700℃の温度でゲツタ
ーの活性化及びロウ接を行うことが出来るように
したものである。しかし、この種のロウ材は、従
来ステンレス鋼のロウ接に使用出来なかつたよう
に、ステンレス鋼とのヌレ性が悪く、そのままで
は良好なロウ接ができないことから、本発明では
ロウ材とステンレス鋼表面との間のヌレ性を良く
するため、ステンレス鋼製部材のロウ接すべき面
に予めロウ材とヌレ性の良い金属をコーテイング
して金属被膜を形成しておくようにしたものであ
る。
(Means for Solving the Problems) The present invention basically focuses on the characteristics of a vacuum heating furnace, that is, when the power supply to the heater of the vacuum heating furnace is stopped, the temperature inside the furnace and the temperature of the object to be heated decreases. Several 10 degrees ~
In addition to taking advantage of the property of rapidly dropping by more than 100 degrees, we use a brazing material with a relatively low melting point and perform vacuum evacuation treatment at a relatively low temperature of 300 to 500 degrees Celsius, avoiding the dangerous temperature range of sensitization. The getter can be activated and soldered at a temperature of 450 to 700°C. However, this type of brazing material cannot be used for brazing stainless steel conventionally because it has poor wetting properties with stainless steel and cannot be used as is for good brazing. In order to improve the wettability between the steel surface and the steel surface, the surface of the stainless steel member that is to be brazed is coated with brazing material and a metal with good wettability in advance to form a metal film. .

ロウ材としては450〜700℃の融点を有するもの
が使用されるが、具体的には、Al−Si−Mg合
金、Al−Si−Cu合金などのアルミニウム合金系
ロウ材、リン入銅ロウ、非晶質銅合金ロウ、錫入
銅ロウ、銅マンガンロウなどの銅合金系ロウ材あ
るいは、銀ロウが挙げられる。
The brazing filler metal used has a melting point of 450 to 700°C, and specifically, aluminum alloy brazing fillers such as Al-Si-Mg alloy and Al-Si-Cu alloy, phosphorous-containing copper brazing filler metal, Examples include copper alloy-based brazing materials such as amorphous copper alloy solder, tin-containing copper solder, copper-manganese solder, and silver solder.

金属被膜の形成材料は、使用するロウ材に応じ
て適宜選択すれば良いが、ロウ材がアルミニウム
合金系ロウ材の場合はアルミニウムまたはその合
金が、また銅合金系ロウ材の場合には銅またはそ
の合金が使用される。なお、コーテイングの方法
としては、熔融メツキ、真空蒸着、スパツタリン
グ、電解メツキ、化学メツキ、溶射など任意の方
法を採用すれば良い。
The material for forming the metal film may be selected appropriately depending on the brazing material used, but if the brazing material is an aluminum alloy brazing material, aluminum or its alloys should be used, and if the brazing material is a copper alloy brazing material, copper or aluminum should be used. The alloy is used. As the coating method, any method such as melt plating, vacuum deposition, sputtering, electrolytic plating, chemical plating, thermal spraying, etc. may be employed.

また、ゲツターとしては、任意のものを使用で
きるが、製造工程の簡略化の点から、比較的低温
で活性化し、かつ水や銀鏡反応液に濡れてもガス
吸着機能を失わない非蒸発性ゲツター、例えば、
Zr−V−Fe三元合金系やZr−Ni−Nb三元合金系
の非蒸発性ゲツターを使用するのが好適である。
Any getter can be used, but from the viewpoint of simplifying the manufacturing process, a non-evaporable getter that is activated at a relatively low temperature and does not lose its gas adsorption function even if it gets wet with water or the silver mirror reaction solution is selected. ,for example,
It is preferable to use a non-evaporable getter based on a Zr-V-Fe ternary alloy or a Zr-Ni-Nb ternary alloy.

なお、真空二重容器の保温性を向上させるた
め、真空空間を形成する内外両容器の表面の内、
少なくとも内容器の外表面には銅または銀のメツ
キ層が形成されるが、これは電解メツキするか、
あるいは実施例の様にステンレス鋼表面で銀鏡反
応を行わせるためメツキすべきステンレス鋼製部
材を酸化性雰囲気中250〜550℃で数分〜数時間焼
成してその外表面に酸化被膜を形成しておき、こ
れを他の部材と接合して二重壁構造の容器とした
のち、内容器と外容器との間に形成される空間に
公知の銀鏡反応液を排気口から注入して銀鏡反応
により形成させれば良い。
In addition, in order to improve the heat retention of the vacuum double container, the surfaces of both the inner and outer containers that form the vacuum space,
A copper or silver plating layer is formed on at least the outer surface of the inner container, and this can be done by electrolytic plating or
Alternatively, as in the example, in order to cause a silver mirror reaction on the stainless steel surface, the stainless steel member to be plated is baked in an oxidizing atmosphere at 250 to 550°C for several minutes to several hours to form an oxide film on the outer surface. Then, after joining this with other parts to form a container with a double wall structure, a known silver mirror reaction solution is injected from the exhaust port into the space formed between the inner container and the outer container to perform the silver mirror reaction. It may be formed by.

本発明方法において、排気処理時の温度を300
〜500℃として理由について説明すると、次の通
りである。即ち、排気処理時の温度が下限温度の
300℃未満では、ステンレス鋼内部及びその表面
の脱ガスを短時間で行うのが困難であり、また、
上限温度の500℃を越えると、固溶炭素が炭化物
を析出してステンレス鋼が鋭敏化する他、少なく
とも内容器の外表面に形成された放射熱遮断層で
ある銀メツキや銅メツキ中の微量元素が拡散して
銀メツキ等の放射率を増大させ、真空二重容器の
保温性能を劣化させるので、前記範囲とした。他
方、真空封じ込め温度を450〜700℃としたのは、
450℃未満ではロウ材を十分に溶融させることが
できず、また前記非蒸発性ゲツターを十分に活性
化させることができず、700℃を越えると、ステ
ンレス鋼が鋭敏化する恐れがあるので前記範囲と
した。なお、この場合、排気処理時の上限温度よ
り高い700℃まで許容しているが、ロウ材を溶融
させ、また、非蒸発性ゲツターを活性化するに要
する時間は極めて短く、しかも、真空加熱炉では
ヒータへの供給電力を停止させると、雰囲気温度
及び被加熱物の温度が急激に低下するので、昇温
させても支障はない。
In the method of the present invention, the temperature during exhaust treatment is
The reason for the temperature range of ~500°C is as follows. In other words, the temperature during exhaust treatment is below the lower limit temperature.
At temperatures below 300℃, it is difficult to degas the inside and surface of stainless steel in a short time;
If the upper temperature limit of 500°C is exceeded, solid solution carbon will precipitate carbides, making stainless steel more sensitive, and at least trace amounts in the silver plating or copper plating, which is the radiant heat blocking layer formed on the outer surface of the inner container. The above range was set because elements diffuse and increase the emissivity of silver plating, etc., and deteriorate the heat retention performance of the vacuum double container. On the other hand, the vacuum confinement temperature was set at 450 to 700℃.
If the temperature is lower than 450°C, the brazing metal cannot be sufficiently melted and the non-evaporable getter cannot be activated sufficiently, and if the temperature exceeds 700°C, the stainless steel may become sensitive. range. In this case, a temperature of 700°C, which is higher than the upper limit temperature during exhaust treatment, is allowed, but the time required to melt the brazing material and activate the non-evaporable getter is extremely short, and the vacuum heating furnace If the power supply to the heater is stopped, the ambient temperature and the temperature of the object to be heated will drop rapidly, so there is no problem even if the temperature is increased.

(実施例) 以下、添付の図面を参照して本発明の実施例を
説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図に於いて、1はステンレス鋼で形成された内
容器、2はステンレス鋼で形成された外容器で、
これらは外容器本体3の開口端3aから内容器1
を挿入してそれらの口部4で溶接その他の手段に
より接合した後、外容器本体3の開口端3aに外
容器底部材5を接合することにより、二重壁構造
の容器20にしてある。外容器底部材5は、その
底部に排気口5aを有し、排気口5aを形成され
た底壁部5bの排気口近傍の外表面には電解メツ
キにより銅からなる金属被膜9が形成され、その
内側には保持部材6によりゲツター7が装着され
ている。なお、銅からなる金属被膜9は予め底壁
部5bの排気口近傍の外表面に電解メツキにより
形成されたニツケルメツキ層の上に積層してあ
る。また、内容器1は、その外表面に銀鏡メツキ
を形成するため、予め酸化性雰囲気中350℃で30
分間焼成してその外表面に酸化被膜を形成してあ
る。
In the figure, 1 is an inner container made of stainless steel, 2 is an outer container made of stainless steel,
These are connected from the open end 3a of the outer container body 3 to the inner container 1.
are inserted and joined by welding or other means at their openings 4, and then the outer container bottom member 5 is joined to the open end 3a of the outer container main body 3, thereby forming the container 20 with a double wall structure. The outer container bottom member 5 has an exhaust port 5a at its bottom, and a metal coating 9 made of copper is formed by electrolytic plating on the outer surface of the bottom wall portion 5b in the vicinity of the exhaust port where the exhaust port 5a is formed. A getter 7 is attached to the inside thereof by a holding member 6. Note that the metal coating 9 made of copper is laminated in advance on a nickel plating layer formed by electrolytic plating on the outer surface of the bottom wall portion 5b near the exhaust port. In addition, in order to form a silver mirror plating on the outer surface of the inner container 1, the inner container 1 is preheated at 350°C in an oxidizing atmosphere for 30 minutes.
An oxide film is formed on the outer surface by firing for a minute.

前記二重壁構造の容器は、排気口5aから内容
器1と外容器2との間に形成される空間8に公知
の銀鏡反応液を注入して銀鏡反応させて内容器1
の外表面に銀鏡層を形成し、水洗、乾燥させてあ
る。
The double-walled container is constructed by injecting a known silver mirror reaction solution into the space 8 formed between the inner container 1 and the outer container 2 through the exhaust port 5a and causing a silver mirror reaction.
A silver mirror layer was formed on the outer surface, washed with water, and dried.

次に、第1図に示すように、前記構成の二重壁
構造の容器20を倒立させ、外容器2の底壁部5
b上に環状のロウ材12を載せ、その上に底壁部
5bに形成した開口部5aと同軸に予じめ用意し
た排気口閉塞部材10を配置し、真空加熱炉中に
セツトする。なお、排気口閉塞部材10は外容器
2の底壁部5bにロウ接すべき部位に予め電解メ
ツキして銅からなる金属被膜11が形成され、環
状ロウ材12はリン入銅合金からなり、排気口閉
塞部材10を載せた際に底壁部5bと排気口閉塞
部材10との間に排気するのに十分な間隙が形成
されるように波状に屈曲させてある。
Next, as shown in FIG.
An annular brazing material 12 is placed on top b, and an exhaust port closing member 10 prepared in advance is arranged coaxially with the opening 5a formed in the bottom wall 5b, and set in a vacuum heating furnace. Note that the exhaust port closing member 10 is electrolytically plated in advance to form a metal coating 11 made of copper at the portion to be soldered to the bottom wall portion 5b of the outer container 2, and the annular brazing material 12 is made of a phosphorus-containing copper alloy. It is bent in a wave-like manner so that when the exhaust port closing member 10 is mounted, a gap sufficient for exhausting air is formed between the bottom wall portion 5b and the exhaust port closing member 10.

次いで、真空加熱炉で加熱しながら排気し、
450℃で両容器間の空間8を10-3Torr以上の高真
空にする。この時、ロウ材12は熔融すること無
く排気口閉塞部材8と外容器底部材5との間に排
気処理に必要な間隙をそのまま維持する。真空加
熱炉内部が所定の真空度に達した後、そのままの
状態で炉内温度を一定温度、例えば、650℃にま
で上昇させると、ロウ材12が熔融して排気口閉
塞部材10が重力の作用により底壁部5bの上に
降下して排気口5aを閉鎖し、他方ではゲツター
7が活性化する。
Next, exhaust while heating in a vacuum heating furnace,
A high vacuum of 10 -3 Torr or more is created in the space 8 between both containers at 450°C. At this time, the brazing material 12 does not melt and maintains the gap necessary for exhaust treatment between the exhaust port closing member 8 and the outer container bottom member 5. After the inside of the vacuum heating furnace reaches a predetermined degree of vacuum, if the temperature inside the furnace is raised to a certain temperature, for example, 650°C, the brazing filler metal 12 will melt and the exhaust port closing member 10 will be released under the influence of gravity. As a result of the action, it descends onto the bottom wall portion 5b and closes the exhaust port 5a, and on the other hand, the getter 7 is activated.

炉内温度が前記一定温度に達した後、加熱ヒー
タへの電力の供給を停止すると、接合部13のロ
ウ材が急激に凝固し、内外両容器間の空間を高真
空に維持したまま容器の底壁部5bと排気口閉塞
部材10との間が第3図に示すように完全に封止
され、真空封じ込み工程が終了する。次いで、そ
のまま放冷させると真空二重容器が得られる。な
お、加熱ヒータへの電力供給が停止すると、炉内
温度および容器温度はその最大上昇温度から百数
10度急激に低下するため、真空二重容器の材料で
あるステンレス鋼が鋭敏化の危険温度にさらされ
る時間が著しく短く、特に不活性ガスを炉内に供
給しなくとも鋭敏化する恐れは無い。
When the power supply to the heater is stopped after the temperature inside the furnace reaches the above-mentioned constant temperature, the brazing material in the joint 13 rapidly solidifies, and the space between the inner and outer containers is maintained at a high vacuum and the container is closed. The space between the bottom wall portion 5b and the exhaust port closing member 10 is completely sealed as shown in FIG. 3, and the vacuum confinement process is completed. Then, by leaving it to cool as it is, a vacuum double container is obtained. In addition, when the power supply to the heater is stopped, the temperature inside the furnace and the temperature of the container will drop below the maximum temperature.
Due to the sudden drop of 10 degrees, the time that the stainless steel, which is the material of the vacuum double container, is exposed to the dangerous temperature of sensitization is extremely short, and there is no risk of sensitization even if inert gas is not supplied into the furnace. .

なお、前記実施例では、外容器底部材および排
気口閉塞部材としてステンレス鋼板を所定形状に
加工した後、電解メツキして銅被膜を形成したも
のを用いているが、これらは市販の銅メツキした
ステンレス鋼板をそのまま所定形状に加工したも
のを使用しても良く、また銅の代わりに同合金、
アルミニウムまたはその合金をコーテイングした
ものを使用しても良い。
In the above example, stainless steel plates were processed into a predetermined shape and then electrolytically plated to form a copper coating as the outer container bottom member and the exhaust port closing member. Stainless steel plates processed into the specified shape may be used, and the same alloy or copper may be used instead of copper.
A material coated with aluminum or its alloy may also be used.

(効果) 以上説明したように、本発明によれば、従来法
に比べ極めて低い温度で真空排気処理、ゲツター
の活性化およびロウ接を行うため、炉内の昇温お
よび降温に要する時間を著しく短縮でき、従つて
容器の形成材料であるステンレス鋼が鋭敏化の危
険温度にさらされる時間が短いため鋭敏化するこ
とが無く、真空二重容器の品質を均一化できると
共に、真空加熱炉の消費電力を低減できる。ま
た、ステンレス鋼とのヌレ性を考慮しなくてよい
のでロウ材を任意に選定できる。更に、冷却する
際に不活性ガスを使用しなくてもよいため経費節
減ができ、真空二重容器の製造コストを低減でき
る、など優れた効果が得られる。
(Effects) As explained above, according to the present invention, the evacuation process, getter activation, and brazing are performed at extremely low temperatures compared to conventional methods, so the time required to raise and lower the temperature in the furnace is significantly reduced. Therefore, the time during which the stainless steel, which is the material forming the container, is exposed to temperatures dangerous for sensitization is shortened, so it does not become sensitized, and the quality of the vacuum double container can be made uniform, and the consumption of the vacuum heating furnace can be reduced. Power consumption can be reduced. Furthermore, since there is no need to consider wettability with stainless steel, the brazing material can be arbitrarily selected. Furthermore, since there is no need to use an inert gas during cooling, excellent effects such as cost savings and the ability to reduce the manufacturing cost of the vacuum double container can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によるステンレス鋼真空二
重容器の製造過程での一例を示す概略断面説明
図、第2図はその要部の分解斜視図、第3図は本
発明方法により製造されたステンレス鋼製真空二
重容器の要部断面図である。 1〜内容器、2〜外容器、3〜外容器本体、4
〜口部、5〜外容器底部材、5a〜排気口、5b
〜底壁部、9,11〜金属被膜、10〜排気口閉
塞部材、12〜ロウ材。
Fig. 1 is a schematic cross-sectional explanatory diagram showing an example of the manufacturing process of a stainless steel vacuum double container by the method of the present invention, Fig. 2 is an exploded perspective view of the main parts thereof, and Fig. 3 is a stainless steel vacuum double container manufactured by the method of the present invention. FIG. 2 is a sectional view of a main part of a stainless steel vacuum double container. 1-inner container, 2-outer container, 3-outer container body, 4
- Mouth part, 5 - Outer container bottom member, 5a - Exhaust port, 5b
~bottom wall portion, 9, 11~metal coating, 10~exhaust port closing member, 12~brazing material.

Claims (1)

【特許請求の範囲】 1 ステンレス鋼製の内容器と外容器とからなる
二重壁構造を有し、両容器間に形成される空間を
真空にしてなるステンレス鋼製真空二重容器の製
造方法において、排気口と該排気口の周囲にアル
ミニウム、アルミニウム合金、銅及び銅合金から
なる群から選ばれた一種の金属からなる金属被膜
を有する二重壁構造の容器を形成する一方、該二
重壁構造の容器の排気口形成部の接合すべき部位
に前記金属被膜と同一材料からなる金属被膜を有
する排気口閉塞部材を形成し、該排気口閉塞部材
を450〜700℃の融点を有するロウ材を介して前記
排気口形成部上に配置し、真空加熱炉中300〜500
℃で排気処理し、次いで450〜700℃に加熱して真
空封じ込みすることを特徴とするステンレス鋼製
真空二重容器の製造方法。 2 金属被膜がアルミニウムまたはその合金で形
成され、ロウ材がアルミニウム合金系ロウ材であ
る特許請求の範囲第1項記載の製造方法。 3 金属被膜が銅またはその合金で形成され、ロ
ウ材が銅合金系ロウ材である特許請求の範囲第1
項記載の製造方法。
[Claims] 1. A method for manufacturing a vacuum double container made of stainless steel, which has a double wall structure consisting of an inner container and an outer container made of stainless steel, and in which the space formed between the two containers is evacuated. In this method, a double-walled container is formed having an exhaust port and a metal coating made of a metal selected from the group consisting of aluminum, aluminum alloy, copper, and copper alloy around the exhaust port; An exhaust port closing member having a metal coating made of the same material as the metal coating is formed at the part to be joined to the exhaust port forming portion of the wall-structured container, and the exhaust port closing member is coated with a wax having a melting point of 450 to 700°C. Place it on the exhaust port forming part through the material and heat it in a vacuum heating furnace for 300 to 500 minutes.
1. A method for producing a stainless steel vacuum double container, which comprises performing an evacuation treatment at a temperature of 450°C to 700°C, and then vacuum-sealing the container. 2. The manufacturing method according to claim 1, wherein the metal coating is formed of aluminum or an alloy thereof, and the brazing material is an aluminum alloy brazing material. 3. Claim 1, in which the metal coating is formed of copper or its alloy, and the brazing material is a copper alloy brazing material.
Manufacturing method described in section.
JP22833984A 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel Granted JPS61106119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22833984A JPS61106119A (en) 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22833984A JPS61106119A (en) 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel

Publications (2)

Publication Number Publication Date
JPS61106119A JPS61106119A (en) 1986-05-24
JPH0443648B2 true JPH0443648B2 (en) 1992-07-17

Family

ID=16874907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22833984A Granted JPS61106119A (en) 1984-10-29 1984-10-29 Production of vacuum double container made of stainless steel

Country Status (1)

Country Link
JP (1) JPS61106119A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130263A (en) * 1986-11-21 1988-06-02 Usui Internatl Ind Co Ltd Brazing and fixing method for stainless steel material
JPH0538696Y2 (en) * 1987-10-08 1993-09-30
JPH06189861A (en) * 1992-12-24 1994-07-12 Nippon Sanso Kk Vacuum double wall container made of metal and its production
JP2738299B2 (en) * 1994-05-24 1998-04-08 タイガー魔法瓶株式会社 Vacuum sealed structure of metal vacuum container
JP4716269B2 (en) * 2008-05-02 2011-07-06 サーモス株式会社 Vacuum structure sealing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546274A (en) * 1978-09-27 1980-03-31 Yuasa Battery Co Ltd Accumulator
JPS5796622A (en) * 1980-12-09 1982-06-16 Katsufumi Aoyanagi Production of vacuum warmth preserving container made of metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546274A (en) * 1978-09-27 1980-03-31 Yuasa Battery Co Ltd Accumulator
JPS5796622A (en) * 1980-12-09 1982-06-16 Katsufumi Aoyanagi Production of vacuum warmth preserving container made of metal

Also Published As

Publication number Publication date
JPS61106119A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
US4157779A (en) Process for producing a metal vacuum bottle
JPS6145710A (en) Production of vaccum heat insulating cooking utensil
US2943181A (en) Brazing process and apparatus
CN108340093A (en) Titanium-based amorphous solder preparation method and application is in connection TC4 titanium alloys and 304 stainless steels
FR2464123A1 (en) METHOD FOR MANUFACTURING A LIQUID COOLED GAS TURBINE BLADE
NO131820B (en)
WO2019007099A1 (en) Novel method for manufacturing vacuum heat-insulating container, and vacuum heat-insulating container manufactured thereby
JPH0443648B2 (en)
JPS6010414B2 (en) Anodic target bonding method
JPH0443649B2 (en)
JPH0314112Y2 (en)
JPH0255153B2 (en)
JPH02215416A (en) Manufacture of metallic thermos bottle
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture
TW201726038A (en) Titanium vacuum insulated cup and method for manufacturing the same
US3246395A (en) Methods of brazing metallic pieces together
JPH04114614A (en) Manufacture of metallic vacuum heat-insulating double vacuum bottle
JP2702549B2 (en) Manufacturing method of titanium thermos
JPH0736804B2 (en) Manufacturing method of metal thermos
JPS595284B2 (en) How to manufacture an electric cooker
JPH0517001Y2 (en)
CN117600594A (en) Large-area low-temperature brazing method for aluminum alloy and stainless steel deep cavity structure
JPS63206213A (en) Production of metal double container
JPH05176846A (en) Production of heat-insulated vessel
CN116984779A (en) Titanium-based brazing alloy particles, preparation method thereof and titanium cup brazing process