JP2702549B2 - Manufacturing method of titanium thermos - Google Patents

Manufacturing method of titanium thermos

Info

Publication number
JP2702549B2
JP2702549B2 JP10692489A JP10692489A JP2702549B2 JP 2702549 B2 JP2702549 B2 JP 2702549B2 JP 10692489 A JP10692489 A JP 10692489A JP 10692489 A JP10692489 A JP 10692489A JP 2702549 B2 JP2702549 B2 JP 2702549B2
Authority
JP
Japan
Prior art keywords
bottle
titanium
layer
thermos
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10692489A
Other languages
Japanese (ja)
Other versions
JPH02286110A (en
Inventor
章司 樋田
英俊 太田
茂 土屋
Original Assignee
日本酸素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本酸素株式会社 filed Critical 日本酸素株式会社
Priority to JP10692489A priority Critical patent/JP2702549B2/en
Publication of JPH02286110A publication Critical patent/JPH02286110A/en
Application granted granted Critical
Publication of JP2702549B2 publication Critical patent/JP2702549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、軽量で保温性能に優れたチタン製魔法瓶
を製造する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a titanium thermos which is lightweight and has excellent heat retaining performance.

[従来の技術] 従来、金属製魔法瓶としては、高強度で保温性能の良
好なステンレス鋼を材料とするものが種々提案され、実
用化されている。このものは、保温性能が優れ、破損す
ることがないが、重量が重く、持ち運びに不便である欠
点がある。またステンレス鋼は耐食性が不充分であり、
塩分を含んだ食物や飲物を収容する場合には腐食の恐れ
もある。
[Related Art] Conventionally, various types of metal thermos made of stainless steel having high strength and good heat insulation performance have been proposed and put into practical use. This is excellent in heat retention performance and does not break, but has the disadvantage of being heavy and inconvenient to carry. Also, stainless steel has insufficient corrosion resistance,
There is also a risk of corrosion when storing salty foods and drinks.

このような理由により、軽量、高強度、高耐食性のチ
タンまたはチタン合金(以下、単にチタンと総称す
る。)からなる魔法瓶が提案されている。
For these reasons, thermos bottles made of lightweight, high-strength, highly corrosion-resistant titanium or a titanium alloy (hereinafter, simply referred to as titanium) have been proposed.

このようなチタン製魔法瓶においては、ステンレス鋼
製魔法瓶と同様に保温性を高めるために、魔法瓶の内瓶
または外瓶の、真空断熱層に面する表面に輻射率の小さ
な金属、たとえば銅または銀からなる保温層を形成し、
輻射による伝熱を低減する必要がある。
In such a thermos made of titanium, a metal having a low emissivity, such as copper or silver, is provided on the surface of the inner bottle or outer bottle of the thermos facing the vacuum insulation layer in order to enhance the heat retention like a stainless steel thermos. Forming a thermal insulation layer consisting of
It is necessary to reduce heat transfer by radiation.

[発明が解決しようとする課題] しかしながら、魔法瓶の真空断熱層を形成する際に、
真空排気の促進、金属からの脱ガスのために真空加熱処
理を施すが、チタンは化学活性に富んだ金属であるた
め、この真空加熱処理の際に上記保温層の銅や銀がチタ
ン中へ拡散し、合金化して銅や銀が本来保有する小さい
輻射率の効果が失われ、その保温効果が消失してしま
い、保温性能を充分に高めることができないばかりか、
低下させるという問題があった。
[Problems to be solved by the invention] However, when forming a vacuum heat insulating layer of a thermos,
Vacuum heat treatment is applied to promote vacuum evacuation and degas from metals.Since titanium is a metal with a high chemical activity, copper and silver in the heat insulating layer are transferred into titanium during this vacuum heat treatment. Diffusion, alloying, the effect of small emissivity originally held by copper and silver is lost, its heat retaining effect is lost, not only can not sufficiently enhance the heat retaining performance,
There was a problem of lowering.

この発明は、上記課題を解決するためになされたもの
であって、軽量でかつ保温性能に優れたチタン製魔法瓶
の製造方法を提供することを目的としている。
The present invention has been made in order to solve the above problems, and has as its object to provide a method for manufacturing a titanium thermos which is lightweight and has excellent heat retaining performance.

[課題を解決するための手段] この発明は、内外瓶の少なくとも一部に、内外瓶の放
射率より小さい放射率を示す金属層を10μm以上の膜厚
で形成し、ついで内瓶と外瓶とを口部で接合して二重構
造とし、これに500℃以上800℃以下、5分以上60分以下
の真空加熱処理を施して上記金属層の表層部を保温層と
して残存させつつ下層部をチタンまたはチタン合金と反
応させて合金層を形成するとともに、上記内外瓶のいず
れか一方に設けられた排気口を封止して真空断熱層を形
成することを解決手段とした。
[Means for Solving the Problems] According to the present invention, a metal layer having an emissivity smaller than the emissivity of the inner and outer bottles is formed on at least a part of the inner and outer bottles with a thickness of 10 μm or more. And at the mouth to form a double structure, which is subjected to a vacuum heating treatment of 500 ° C. or more and 800 ° C. or less and 5 minutes or more and 60 minutes or less to leave the surface layer of the metal layer as a heat insulating layer and the lower layer Is reacted with titanium or a titanium alloy to form an alloy layer, and an exhaust port provided in one of the inner and outer bottles is sealed to form a vacuum heat insulating layer.

[作用] 内瓶外表面または外瓶内表面の、一部あるいは全部
に、内外瓶の放射率よりも小さい放射率を示す金属層を
10μm以上の膜厚で形成した後に、500℃以上800℃以
下、5分以上60分以下の真空加熱処理を施すと、金属層
の下層部のみがチタン内に拡散して合金層が形成され
る。一方、金属層の表層部は反応せずに保温層として残
存するので、充分な保温性能を示すチタン製魔法瓶を得
ることができる。
[Action] A metal layer having an emissivity smaller than the emissivity of the inner / outer bottle is provided on part or all of the outer surface of the inner bottle or the inner surface of the outer bottle.
After being formed with a film thickness of 10 μm or more, when subjected to a vacuum heat treatment of 500 ° C. or more and 800 ° C. or less and 5 minutes or more and 60 minutes or less, only the lower layer portion of the metal layer diffuses into titanium to form an alloy layer . On the other hand, the surface layer portion of the metal layer does not react and remains as a heat insulating layer, so that a titanium thermos exhibiting sufficient heat insulating performance can be obtained.

[実施例] 以下、この発明を詳しく説明する。EXAMPLES Hereinafter, the present invention will be described in detail.

第1図はこの発明の製造方法によって得られたチタン
製魔法瓶の一例である。
FIG. 1 is an example of a titanium thermos obtained by the manufacturing method of the present invention.

このチタン製魔法瓶は、内瓶1よりも大径の外瓶2の
口部に内瓶1を嵌め込んだ状態でこれらの口部を互いに
接合して二重構造としたものであって、上記内瓶1と外
瓶2との間に設けられた空隙部を真空排気して真空断熱
層3を形成してなるものである。
The titanium thermos has a double structure in which the inner bottle 1 is fitted into the mouth of the outer bottle 2 having a larger diameter than the inner bottle 1 and these mouths are joined to each other. A vacuum provided between the inner bottle 1 and the outer bottle 2 is evacuated to form a vacuum heat insulating layer 3.

内瓶1は縮径された口部と、この口部よりも大径の胴
部とこの胴部に続く底部とからなる有底筒状の瓶体であ
り、この内瓶1の外表面全面には、内瓶1のチタン合金
からなる合金層4と、内瓶1の構成金属よりも放射率の
小さな金属からなる保温層5とが順次設けられている。
内瓶1の外表面に合金層4を介して保温層5を形成する
ことにより、内瓶1からの熱の放射率を小さく保ち、魔
法瓶の保温効果を向上させるようにしている。
The inner bottle 1 is a bottomed cylindrical bottle body including a reduced-diameter mouth portion, a body portion having a larger diameter than the mouth portion, and a bottom portion following the body portion, and the entire outer surface of the inner bottle 1 is provided. Is provided with an alloy layer 4 made of a titanium alloy of the inner bottle 1 and a heat insulating layer 5 made of a metal having a lower emissivity than the constituent metals of the inner bottle 1.
By forming the heat insulating layer 5 on the outer surface of the inner bottle 1 with the alloy layer 4 interposed therebetween, the emissivity of heat from the inner bottle 1 is kept small, and the heat insulating effect of the thermos is improved.

また外瓶2は、上記内瓶1よりも大径の筒状の外瓶胴
部と、これに接続された外瓶底部とからなる有底筒状の
瓶体であり、外瓶胴部の一端は縮径されて小径の口部と
なっており、この口部は上記内瓶1の口部と接合されて
いる。かた外瓶底部の中心部には、排気孔6が形成され
ており、この排気孔6は、封止板7によって外方から封
止されている。さらに上記内瓶1と外瓶2との間の空隙
部は真空排気されて真空断熱層3が形成されており、こ
れにより魔法瓶の保温性能を保つようになっている。
The outer bottle 2 is a bottomed cylindrical bottle body including a cylindrical outer bottle body having a diameter larger than that of the inner bottle 1 and an outer bottle bottom connected thereto. One end is reduced in diameter to form a small-diameter mouth, and this mouth is joined to the mouth of the inner bottle 1. An exhaust hole 6 is formed at the center of the bottom of the outer bottle, and the exhaust hole 6 is sealed from the outside by a sealing plate 7. Further, the gap between the inner bottle 1 and the outer bottle 2 is evacuated to form a vacuum heat-insulating layer 3 so that the thermos can keep its heat insulating performance.

このような構成のチタン製魔法瓶は、第2図に示した
ように金属層8が形成された内瓶1を、外瓶2内に嵌め
込んで、互いの口部にて接合して第3図に示したように
二重構造とした後、内瓶1と外瓶2との間の空隙部内を
真空排気して真空断熱層3とすると共に、500℃以上800
℃以下、5分以上60分以下の真空加熱処理を施して金属
層8を合金層4と保温層5にし、ついで排気孔6を封止
板7にて封止することにより製造される。
In the titanium thermos having such a structure, the inner bottle 1 on which the metal layer 8 is formed as shown in FIG. After forming a double structure as shown in the figure, the space between the inner bottle 1 and the outer bottle 2 is evacuated to a vacuum heat insulating layer 3 and at a temperature of 500 ° C.
The metal layer 8 is made into the alloy layer 4 and the heat insulating layer 5 by performing a vacuum heating process at a temperature of 5 ° C. or less for 5 minutes to 60 minutes, and the exhaust holes 6 are sealed with a sealing plate 7.

まず第2図に示したように、チタンまたはチタン合金
を有底筒状に成形して内瓶1を作製し、この内瓶1を外
表面に、内瓶1の構成材料の放射率よりも小さな放射率
を示す胴または銀、ニッケル等からなる金属層8を10μ
m以上の膜厚で形成する。
First, as shown in FIG. 2, titanium or a titanium alloy is formed into a cylindrical shape with a bottom to produce an inner bottle 1, and the inner bottle 1 is placed on the outer surface of the inner bottle 1 with a lower emissivity than the constituent material of the inner bottle 1. A body having a small emissivity or a metal layer 8 made of silver, nickel, etc.
m or more.

この金属層8は、銀鏡反応等の無電解めっきや電気め
っき等によって形成することができる。金属層8の膜厚
を10μm未満とすると、後述する真空加熱処理時に金属
層8の全てが内瓶1内に拡散して合金層4となってしま
い魔法瓶の保温性能を低下させるので好ましくない。こ
の金属層8は直接内瓶1の外表面に形成されるほか、ニ
ッケル等の下地層を形成した後に、形成してもよい。
The metal layer 8 can be formed by electroless plating or electroplating such as a silver mirror reaction. If the thickness of the metal layer 8 is less than 10 μm, all of the metal layer 8 diffuses into the inner bottle 1 and becomes the alloy layer 4 during the vacuum heating process described below, which is not preferable because the heat retention performance of the thermos bottle is reduced. The metal layer 8 may be formed directly on the outer surface of the inner bottle 1 or may be formed after forming a base layer of nickel or the like.

このような下地層を形成すると、内瓶1と保温層5と
の密着性を向上させることができ、各工程での移動時
や、後述する真空加熱処理時における保温層5の剥離を
防止することができ好適であるばかりか、真空加熱処理
時に金属層8のすべてがチタン内に拡散してチタン合金
化してしまうのを防止し、保温層5を残存させやすくす
ることもできる。
When such an underlayer is formed, the adhesion between the inner bottle 1 and the heat retaining layer 5 can be improved, and peeling of the heat retaining layer 5 during movement in each step or during vacuum heat treatment described later is prevented. Not only is this preferable, but also it is possible to prevent all of the metal layer 8 from diffusing into titanium and forming a titanium alloy at the time of the vacuum heat treatment, and to make it easier for the heat retaining layer 5 to remain.

ついでチタンを成形して、上記内瓶1よりもやや大き
い径を有し、口部が内瓶1の口部の径と等しくなるよう
に縮径され、底部中心部に排気孔6が形成された有底筒
状の外瓶3を作製する。
Next, titanium is formed and has a diameter slightly larger than that of the inner bottle 1, the diameter of the mouth is reduced to be equal to the diameter of the mouth of the inner bottle 1, and an exhaust hole 6 is formed in the center of the bottom. A bottomed cylindrical outer bottle 3 is produced.

そしてこの外瓶3の口部に上記内瓶1の口部を嵌合
し、スポット溶接などによりこれらを接合し、第3図に
示したような二重構造の瓶体とする。
Then, the mouth portion of the inner bottle 1 is fitted to the mouth portion of the outer bottle 3, and these are joined by spot welding or the like to obtain a bottle having a double structure as shown in FIG.

このようにして作製された二重構造の瓶に真空加熱処
理を施す。この真空加熱処理時に、内瓶1と外瓶2との
間の空隙部内を真空排気し、真空断熱層3を形成する。
この真空加熱処理によって、内瓶1の外表面に形成され
た金属層8の下層部の金属は内瓶1中へ拡散してチタン
合金化するので合金層4が形成される。ところが金属層
8の膜厚は10μm以上と厚いものであるので、金属層8
の全部がチタン製の内瓶1中に拡散することはなく、金
属層8の表層部は、拡散せず未反応のまま残存する。そ
してこの残存した金属層8の表層部は内瓶1よりも放射
率の小さな金属からなるものであるので、保温層5とす
ることができる。
A vacuum heating treatment is applied to the double-structured bottle thus manufactured. At the time of this vacuum heating treatment, the inside of the gap between the inner bottle 1 and the outer bottle 2 is evacuated to form a vacuum heat insulating layer 3.
By this vacuum heating treatment, the metal in the lower layer of the metal layer 8 formed on the outer surface of the inner bottle 1 diffuses into the inner bottle 1 and is converted into titanium alloy, so that the alloy layer 4 is formed. However, since the thickness of the metal layer 8 is as large as 10 μm or more,
Are not diffused into the inner bottle 1 made of titanium, and the surface portion of the metal layer 8 remains unreacted without being diffused. Since the surface layer of the remaining metal layer 8 is made of a metal having a lower emissivity than the inner bottle 1, it can be used as the heat insulating layer 5.

上記のような真空加熱処理の加熱温度は500℃以上800
℃以下であり、処理時間は5分以上60分以下が好適であ
る。加熱温度を500℃未満とすると、内瓶1、外瓶2お
よび金属層8に吸着されたガスを放出させる脱ガスを充
分に行えず、また800℃より高い温度で加熱すると、金
属層8の全てが内瓶1中に拡散してしまい保温層5が残
存しなくなるので、共に好ましくない。また加熱時間も
同様に、5分未満であると脱ガスが充分でないと共に、
60分より長いと金属層8がすべて合金層4となってしま
う。
The heating temperature of the above vacuum heating process is 500 ° C or more and 800
C. or less, and the treatment time is preferably from 5 minutes to 60 minutes. If the heating temperature is lower than 500 ° C., the degassing for releasing the gas adsorbed on the inner bottle 1, the outer bottle 2 and the metal layer 8 cannot be performed sufficiently. All of them are diffused into the inner bottle 1 and the heat insulating layer 5 does not remain. Similarly, if the heating time is less than 5 minutes, degassing is not sufficient,
If it is longer than 60 minutes, the entire metal layer 8 becomes the alloy layer 4.

そしてこのような真空加熱処理の後に、外瓶3の底部
に形成された排気孔6を封止材7を固形ろう材9などに
よって外部より封止することにより、チタン製魔法瓶と
することができる。この固形ろう材9としては、Ag−Cu
−In系、Ag−CuSn系、Ag−Cu系、Cu−P系などのチタン
とのなじみの良いろう材を用いることができる。
After such a vacuum heating process, the exhaust hole 6 formed at the bottom of the outer bottle 3 is sealed from the outside with the sealing material 7 by the solid brazing material 9 or the like, whereby a titanium thermos can be obtained. . As the solid brazing material 9, Ag-Cu
A brazing material having good compatibility with titanium, such as -In, Ag-CuSn, Ag-Cu, and Cu-P, can be used.

またこの発明の製造方法は、第1図に示したチタン製
魔法瓶を製造する際にのみ適用されるものではなく、た
とえば真空断熱層3を形成するには、外瓶2の底部にチ
ップ管10を接続し、これを通して脱ガスを行うこともで
きる。第4図はこのようにして製造されたチタン製魔法
瓶の一実施例である。このようなチタン製魔法瓶を製造
するには、外瓶2の口部内に外表面に金属層8が形成さ
れた内瓶1を嵌合した後、、これらを加熱しつつ、チッ
プ管10を通して内瓶1と外瓶2との間に形成された空隙
部内の排気を行い、脱合ガス終了後にチップ管10を圧切
して、これを封止することにより製造することができ
る。
The manufacturing method of the present invention is not applied only when the titanium thermos shown in FIG. 1 is manufactured. For example, in order to form the vacuum heat insulating layer 3, the tip tube 10 is formed at the bottom of the outer bottle 2. Can be connected, and degassing can be performed through this. FIG. 4 shows an embodiment of the titanium thermos thus produced. In order to manufacture such a titanium thermos, the inner bottle 1 having the metal layer 8 formed on the outer surface is fitted into the mouth of the outer bottle 2, and then heated and heated through the tip tube 10. It can be manufactured by evacuating the gap formed between the bottle 1 and the outer bottle 2, cutting off the tip tube 10 after the degassing gas is completed, and sealing it.

なお第1図および第4図のチタン製魔法瓶はいずれも
内瓶1の外表面に金属層8を形成したが、この発明の製
造方法はこれらに限られるものではなく、外瓶2の内表
面に金属層8を形成してもよく、さらには内瓶1の外表
面および外瓶2の内表面の両方に形成しても、またいず
れか一方の一部にのみ形成しても良い。
Although the titanium thermos shown in FIGS. 1 and 4 both have the metal layer 8 formed on the outer surface of the inner bottle 1, the manufacturing method of the present invention is not limited to these, and the inner surface of the outer bottle 2 is not limited thereto. The metal layer 8 may be formed on both the outer surface of the inner bottle 1 and the inner surface of the outer bottle 2 or on only one of them.

さらに第1図および第4図のチタン製魔法瓶はいずれ
も外瓶2の底部に排気孔6を設けたが、排気孔6の穿設
位置はこれに限られるものではなく、内瓶1または外瓶
2のいずれか一方に設ければ良い。
Further, in each of the titanium thermos shown in FIGS. 1 and 4, the vent hole 6 is provided at the bottom of the outer bottle 2, but the position of the vent hole 6 is not limited to this. It may be provided in any one of the bottles 2.

[発明の効果] 以上説明したように、この発明のチタン製魔法瓶の製
造方法は、内外瓶の少なくとも一部に、内外瓶の放射率
より小さい放射率を示す金属層を10μm以上の膜厚で形
成し、ついで内瓶と外瓶とを口部で接合して二重構造と
し、これに500℃以上800℃以下、5分以上60分以下の真
空加熱処理を施して上記金属層の表層部を保温層として
残存させつつ下層部をチタンまたはチタン合金と反応さ
せて合金層を形成するとともに、上記内外瓶のいずれか
一方に設けられた排気口を封止して真空断熱層を形成す
るものであるので、軽量で保温性能の優れたチタン製魔
法瓶を容易に製造することができる。
[Effects of the Invention] As described above, in the method for manufacturing a titanium thermos of the present invention, a metal layer having an emissivity smaller than the emissivity of the inner and outer bottles is formed on at least a part of the inner and outer bottles with a film thickness of 10 µm or more. Formed, then the inner bottle and the outer bottle are joined at the mouth to form a double structure, which is subjected to a vacuum heat treatment of 500 ° C or more and 800 ° C or less and 5 minutes or more and 60 minutes or less to form a surface layer of the metal layer. Forming an alloy layer by reacting the lower layer with titanium or a titanium alloy while leaving a heat insulating layer, and forming a vacuum heat insulating layer by sealing an exhaust port provided in one of the inner and outer bottles. Therefore, it is possible to easily manufacture a lightweight titanium thermos having excellent heat insulation performance.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の製造方法によって得られたチタン製
魔法瓶の一例を示した概略構成図、第2図および第3図
はいずれもこの発明の製造方法の一工程を示す概略構成
図、第4図はこの発明の製造方法によって得られたチタ
ン製魔法瓶の他の例を示した概略構成図である。 1……内瓶、 2……外瓶、 3……真空断熱層、 4……合金層、 5……保温層、 8……金属層。
FIG. 1 is a schematic configuration diagram showing an example of a titanium thermos obtained by the production method of the present invention, and FIGS. 2 and 3 are schematic configuration diagrams showing one step of the production method of the present invention. FIG. 4 is a schematic configuration diagram showing another example of a titanium thermos obtained by the manufacturing method of the present invention. 1 ... inner bottle, 2 ... outer bottle, 3 ... vacuum insulation layer, 4 ... alloy layer, 5 ... heat insulation layer, 8 ... metal layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−317413(JP,A) 特開 平1−268520(JP,A) 特開 昭64−31047(JP,A) 特開 昭58−124415(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-317413 (JP, A) JP-A-1-268520 (JP, A) JP-A-64-31047 (JP, A) JP-A-58-58 124415 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内瓶および外瓶のいずれもがチタンまたは
チタン合金からなり、これら内外瓶間の空隙部を真空断
熱層としたチタン製魔法瓶を製造するに際し、 上記内外瓶の少なくとも一部に、内外瓶の放射率より小
さい放射率を示す金属層を10μm以上の膜厚で形成し、
ついで内瓶と外瓶とを口部で接合して二重構造とし、こ
れに500℃以上800℃以下、5分以上60分以下の真空加熱
処理を施して上記金属層の表層部を保温層として残存さ
せつつ下層部をチタンまたはチタン合金と反応させて合
金層を形成するとともに、上記内外瓶のいずれか一方に
設けられた排気口を封止して真空断熱層を形成すること
を特徴とするチタン製魔法瓶の製造方法
An inner bottle and an outer bottle are both made of titanium or a titanium alloy, and at least a part of the inner and outer bottles is used for manufacturing a titanium thermos in which a gap between the inner and outer bottles is a vacuum heat insulating layer. Forming a metal layer having an emissivity smaller than the emissivity of the inner and outer bottles with a thickness of 10 μm or more,
Then, the inner bottle and the outer bottle are joined at the mouth to form a double structure, which is subjected to a vacuum heating treatment of 500 ° C or more and 800 ° C or less and 5 minutes or more and 60 minutes or less, so that the surface portion of the metal layer is a heat insulating layer. The lower layer is reacted with titanium or a titanium alloy to form an alloy layer while remaining, and a vacuum heat insulating layer is formed by sealing an exhaust port provided in one of the inner and outer bottles. Manufacturing method of titanium thermos
JP10692489A 1989-04-26 1989-04-26 Manufacturing method of titanium thermos Expired - Fee Related JP2702549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10692489A JP2702549B2 (en) 1989-04-26 1989-04-26 Manufacturing method of titanium thermos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10692489A JP2702549B2 (en) 1989-04-26 1989-04-26 Manufacturing method of titanium thermos

Publications (2)

Publication Number Publication Date
JPH02286110A JPH02286110A (en) 1990-11-26
JP2702549B2 true JP2702549B2 (en) 1998-01-21

Family

ID=14445968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10692489A Expired - Fee Related JP2702549B2 (en) 1989-04-26 1989-04-26 Manufacturing method of titanium thermos

Country Status (1)

Country Link
JP (1) JP2702549B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189861A (en) * 1992-12-24 1994-07-12 Nippon Sanso Kk Vacuum double wall container made of metal and its production
CN104150109A (en) * 2013-05-14 2014-11-19 膳魔师(江苏)家庭制品有限公司 Vacuum sealing method of heat preservation vessel
CN108421684B (en) * 2018-02-28 2021-06-04 周雪松 Making process of enamel heat-insulating container

Also Published As

Publication number Publication date
JPH02286110A (en) 1990-11-26

Similar Documents

Publication Publication Date Title
US4856174A (en) Method of making a stainless steel vacuum bottle with a silver mirrored surface
JPH11221667A (en) Manufacture of metallic vacuum double container
US5102747A (en) High temperature-resistant composite
JP2004519330A (en) Method for producing clad material having steel base material and corrosion resistant metal coating
JP2702549B2 (en) Manufacturing method of titanium thermos
JPH11164784A (en) Metallic vacuum double container
JPH0811097B2 (en) Manufacturing method of titanium thermos
JP2702547B2 (en) Manufacturing method of titanium thermos
JP3197835B2 (en) Composite joint of beryllium, copper alloy and stainless steel and composite joint method
JP2818430B2 (en) Manufacturing method of metal thermos
JP2003039179A (en) Manufacturing method for composite member of high temperature material and the composite member
JPS58157580A (en) Vacuum sealing of metallic vacuum bottle
JPH0517001Y2 (en)
JPH0440607Y2 (en)
TW201726038A (en) Titanium vacuum insulated cup and method for manufacturing the same
JPH0314112Y2 (en)
JPS59110486A (en) Production of ti clad wire rod
KR20080067919A (en) Local metal-cladding aluminium plate and the fabrication method thereof, heat exchanger using the same and the fabrication method thereof
JPH0443648B2 (en)
JPS6028909Y2 (en) Vacuum tube solar collector
JPH0736804B2 (en) Manufacturing method of metal thermos
JPH0443649B2 (en)
JP2002294376A (en) Aluminum-dissimilar metal clad plate and production method therefor
JPS59137187A (en) Spring and its production
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081003

LAPS Cancellation because of no payment of annual fees