JPH0144789B2 - - Google Patents
Info
- Publication number
- JPH0144789B2 JPH0144789B2 JP3783182A JP3783182A JPH0144789B2 JP H0144789 B2 JPH0144789 B2 JP H0144789B2 JP 3783182 A JP3783182 A JP 3783182A JP 3783182 A JP3783182 A JP 3783182A JP H0144789 B2 JPH0144789 B2 JP H0144789B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- silver
- stainless steel
- vacuum
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007747 plating Methods 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 51
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 45
- 229910052709 silver Inorganic materials 0.000 claims description 44
- 239000004332 silver Substances 0.000 claims description 44
- 229910001220 stainless steel Inorganic materials 0.000 claims description 32
- 239000010935 stainless steel Substances 0.000 claims description 32
- 238000010438 heat treatment Methods 0.000 claims description 23
- 238000007772 electroless plating Methods 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 230000005855 radiation Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 238000009413 insulation Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1813—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by radiant energy
- C23C18/1817—Heat
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
- C23C18/1827—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
- C23C18/1834—Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thermally Insulated Containers For Foods (AREA)
- Chemically Coating (AREA)
Description
【発明の詳細な説明】
本発明はステンレス製魔法瓶に於ける輻射防止
用の銀メツキ法の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved silver plating method for preventing radiation in stainless steel thermos flasks.
近年魔法瓶の強度向上という観点から、内・外
槽をステンレス製とした金属製魔法瓶が開発され
広く利用されている。 In recent years, from the perspective of improving the strength of thermos flasks, metal thermos flasks with inner and outer containers made of stainless steel have been developed and widely used.
而して、一般に魔法瓶にあつては、断熱効果を
高めるのに輻射による熱損失を防止する必要があ
り、ステンレス製魔法瓶に於いては、従前から内
槽外表面と外槽内表面の両方若しくは何れか一方
にアルミやニツケル等のメツキを施したり、或い
は内・外槽の表面を極めて高精度に研磨してその
反射率を高めることにより、輻射損失の防止を図
つている。尚、輻射防止性能という点では、銀メ
ツキの方がアルミやニツケルメツキ等に比較して
遥かに秀れている。しかし、現在のメツキ技術で
はステンレスへの直接銀メツキが不可能であり、
如何にステンレスの表面を化学的若しくは機械的
に処理しても、均一な厚さの銀皮膜を斑なく付着
させることが出来ない。そのために、銀に替え銅
やニツケル等のメツキが採用されている。 Generally speaking, in thermos flasks, it is necessary to prevent heat loss due to radiation in order to enhance the heat insulation effect, and stainless steel thermos flasks have traditionally been heat-insulating on both the outer surface of the inner tank and the inner surface of the outer tank. Radiation loss is prevented by plating either side with aluminum or nickel, or by polishing the surfaces of the inner and outer tanks with extremely high precision to increase their reflectance. In terms of radiation prevention performance, silver plating is far superior to aluminum, nickel plating, etc. However, with current plating technology, direct silver plating on stainless steel is not possible.
No matter how chemically or mechanically the surface of stainless steel is treated, it is impossible to deposit a silver film of uniform thickness without any spots. For this reason, plating made of copper or nickel is used instead of silver.
一方、前述の如き高精度研磨法やアルミ又はニ
ツケル等のメツキによる輻射防止策の改良とし
て、アルミ又はニツケルメツキの上に更に銀メツ
キを施す方法や、ステンレスの表面にガラス薄層
を固着してその上に銀メツキを施す方法等が開発
されており、これにより断熱効果のより一層の向
上を図るようにした魔法瓶が知られている。 On the other hand, as an improvement to the radiation prevention measures using the high-precision polishing method and plating of aluminum or nickel as described above, there are methods of further applying silver plating on top of the aluminum or nickel plating, and methods of fixing a thin glass layer to the surface of stainless steel. A method of applying silver plating on the top has been developed, and thermos flasks are known in which the heat insulating effect is further improved by this method.
然し乍ら、アルミ又はニツケルメツキの上に銀
メツキを施す方法や、ステンレス表面にガラス薄
層を固着してその上に銀メツキを施すという方法
は、何れも処理工数が大幅に増え魔法瓶の製造コ
ストの低減を図り難いという難点がある。又、ガ
ラス層が介在したり、或いはメツキ層が厚くなる
と脱ガス処理がそれだけ困難となり、ガス分子の
放出による真空度の低下を招き易いという問題が
ある。 However, the method of applying silver plating on aluminum or nickel plating, or the method of fixing a thin layer of glass to the stainless steel surface and applying silver plating on top, both significantly increase the number of processing steps and reduce the manufacturing cost of thermos flasks. The problem is that it is difficult to plan. Furthermore, if a glass layer is present or the plating layer is thick, degassing becomes more difficult and the degree of vacuum is likely to decrease due to the release of gas molecules.
本発明は、ステンレス製魔法瓶の輻射防止に於
ける上述の如き問題の解決を課題とするものであ
り、内槽外表面と外槽内表面の両方若しくは何れ
か一方に、直接メツキにより銀皮膜の形成を可能
とすることにより、製造コストの引下げや輻射防
止性能の大幅な向上を可能としたステンレス製魔
法瓶の銀メツキ方法の提供を目的とするものであ
る。 The present invention aims to solve the above-mentioned problems in preventing radiation from stainless steel thermos flasks.The present invention aims to solve the above-mentioned problems in preventing radiation from stainless steel thermos flasks. The object of the present invention is to provide a method of silver plating a stainless steel thermos flask, which enables the reduction of manufacturing costs and the significant improvement of radiation prevention performance.
一般に、ステンレス製魔法瓶の製作に当つて
は、真空断熱空間Gの真空度を長期に亘つて一定
に保持するため、内・外槽のベーキング処理が行
なわれる。即ち、内・外槽を真空炉内へ入れ、こ
れを一定時間真空中で高温加熱してステンレス内
のガス分子を強度的に放出せしめ、これにより真
空度の経時変化を防止せんとするものである。本
願発明者は、前記ベーキング処理法の各良特に加
熱温度と真空度をパラメータとする脱ガス量の測
定実験の過程に於いて、当該ベーキング処理工程
をメツキのための前処理に併用することを着想
し、加熱温度と真空度の夫々異なる多数のテスト
ピースについて無電解メツキ方式による銀メツキ
実験を積み重ね、その結果から、一定値以上の処
理温度で、且つ一定値以下の真空度で処理したス
テンレステストピースについては、無電解メツキ
方式により極めて均一な厚さの秀れた反射率を有
する銀皮膜の形成が可能であることを見出したも
のである。 Generally, when manufacturing a stainless steel thermos flask, the inner and outer chambers are baked in order to maintain the degree of vacuum in the vacuum insulation space G constant over a long period of time. That is, the inner and outer chambers are placed in a vacuum furnace and heated at high temperature in vacuum for a certain period of time to forcefully release the gas molecules inside the stainless steel, thereby preventing the degree of vacuum from changing over time. be. The inventor of the present application proposed that the baking process be used in conjunction with the pretreatment for plating in the process of an experiment to measure the amount of outgassing using the heating temperature and degree of vacuum as parameters. Based on the idea, we conducted silver plating experiments using the electroless plating method on a large number of test pieces with different heating temperatures and degrees of vacuum, and from the results, we found that stainless steel processed at a processing temperature above a certain value and a degree of vacuum below a certain value Regarding the test piece, it was discovered that it was possible to form a silver film with an extremely uniform thickness and excellent reflectance using the electroless plating method.
本願発明は、内槽及び外槽を真空加熱炉内で圧
力1×10-2torr以下、温度700℃以上で熱処理し、
当該熱処理を施した内槽外表面と外槽内表面の両
方若しくは一方に無電解メツキ方式により直接銀
メツキを行なうことを基本構成とするものであ
り、当該構成とすることにより、これ迄技術的に
不可能とされていたステンレスへの直接銀メツキ
が容易に可能となり、然かも斑のない一様な厚さ
で秀れた反射率と接着性を有する銀メツキ皮膜を
得ることが出来る。 The present invention heat-treats the inner tank and the outer tank in a vacuum heating furnace at a pressure of 1×10 -2 torr or less and a temperature of 700°C or more,
The basic structure is to directly silver plate the heat-treated outer surface of the inner tank and/or the inner surface of the outer tank using an electroless plating method. Direct silver plating on stainless steel, which was previously thought to be impossible, is now possible, and it is also possible to obtain a silver plating film with a uniform thickness and excellent reflectance and adhesion.
以下、第1図及び第2図に示す本発明の一実施
例に基づいてその詳細を説明する。 Hereinafter, details will be explained based on an embodiment of the present invention shown in FIGS. 1 and 2.
第1図は本発明に係るステンレス製魔法瓶の縦
断面図であり、図に於いて1はステンレス製の内
槽、2はステンレス製の外槽、3は断熱栓、4は
真空排気口、5は封板、6は真空断熱空間であ
る。前記内・外槽1,2は厚さ0.5mmのステンレ
ス(SUS304)板を用いて成形されており、内槽
1の外表面には輻射防止用の銀皮膜7が無電解メ
ツキにより形成固着されている。尚、本実施例に
あつては内槽1の外表面のみに銀皮膜7を形成し
ているが、外槽2の内表面側のみに形成してもよ
く、或いは内・外槽の両方に形成してもよいこと
は勿論である。 FIG. 1 is a longitudinal sectional view of a stainless steel thermos according to the present invention, in which 1 is a stainless steel inner tank, 2 is a stainless steel outer tank, 3 is a heat insulating stopper, 4 is a vacuum exhaust port, and 5 is a stainless steel thermos bottle. is a sealing plate, and 6 is a vacuum insulation space. The inner and outer tanks 1 and 2 are formed using stainless steel (SUS304) plates with a thickness of 0.5 mm, and a silver film 7 for radiation prevention is formed and fixed on the outer surface of the inner tank 1 by electroless plating. ing. In this embodiment, the silver film 7 is formed only on the outer surface of the inner tank 1, but it may be formed only on the inner surface of the outer tank 2, or on both the inner and outer tanks. Of course, it may be formed.
第2図は、本発明に係る銀メツキ方法によるス
テンレス製魔法瓶の製造工程を示すものであり、
Aは内・外槽の成型工程、Bは内・外槽の化学洗
浄処理工程、Cは熱処理工程、Dはリンス処理工
程、Eはメツキ処理工程、Fは水洗浄処理工程、
Gは後熱処理工程、Hは組立・真空封じ工程であ
る。 FIG. 2 shows the manufacturing process of a stainless steel thermos flask by the silver plating method according to the present invention,
A is the molding process for the inner and outer tanks, B is the chemical cleaning process for the inner and outer tanks, C is the heat treatment process, D is the rinsing process, E is the plating process, F is the water washing process,
G is a post-heat treatment process, and H is an assembly/vacuum sealing process.
成型工程Aで所定の形状に形成された内・外槽
1,2は、洗浄処理工程Bへ送られ、ここで先ず
脱脂等の化学処理が施される。脱脂等の化学洗浄
処理を終えた内・外槽1,2は、次に熱処理工程
Cへ送られ、当該工程Cを構成する真空炉内にて
700℃以上の温度で、且つ10-2torr以下の真空度
の下に、約1時熱処理される。尚、熱処理温度は
必ず700℃以上の温度を必要とし、これ以下の温
度にあつては所謂クロームカーバイドが発生し、
後述するメツキ処理に悪影響が表わされる。又、
真空度は10-2torr以下の高真空を必要とし、真空
度が10-2torr以上となれば表面洗浄効果が低下
し、良好な銀メツキ皮膜7を得ることが出来な
い。 The inner and outer tanks 1 and 2 formed into a predetermined shape in the molding process A are sent to a cleaning process B, where they are first subjected to chemical treatments such as degreasing. The inner and outer tanks 1 and 2 that have undergone chemical cleaning such as degreasing are then sent to heat treatment process C, where they are heated in a vacuum furnace that constitutes process C.
Heat treatment is performed at a temperature of 700° C. or higher and under a vacuum of 10 −2 torr or lower for about 1 hour. In addition, the heat treatment temperature must be at least 700℃, and if the temperature is lower than this, so-called chromium carbide will be generated.
This will have an adverse effect on the plating process, which will be described later. or,
A high vacuum degree of 10 -2 torr or less is required; if the degree of vacuum is more than 10 -2 torr, the surface cleaning effect decreases and a good silver plating film 7 cannot be obtained.
当該熱処理工程Cで熱処理することにより、ス
テンレス板の表面は略完全な清浄状態となり、酸
洗いやバフ研磨の如き従前の化学的若しくは機械
的洗浄処理では得られない、極めて高グレードの
清浄面が得られることになる。又、当該熱処理に
よりステンレス板内に吸着されていたガス分子が
外部へ放出されることになり、所謂ベーキング処
理も併せて実施されることになる。尚、本実施例
では化学洗浄工程Bを予備処理工程として用いて
いるが、これを省略してもよいことは勿論であ
る。 By heat-treating in the heat treatment step C, the surface of the stainless steel plate becomes almost completely clean, resulting in an extremely high-grade clean surface that cannot be obtained with conventional chemical or mechanical cleaning treatments such as pickling or buffing. You will get it. Moreover, gas molecules adsorbed within the stainless steel plate are released to the outside by the heat treatment, and so-called baking treatment is also performed. Although the chemical cleaning step B is used as a pretreatment step in this embodiment, it is of course possible to omit this step.
前記熱処理工程Cを出た内・外槽1,2は、引
き続きリンス処理工程Dへ送られ、ここで錫並び
に適宜の水和剤より成るリンス処理液により所謂
リンス処理が行なわれる。当該リンス処理を行な
うことにより、ステンレス表面に固着した錫を核
として銀が固着することになり、銀メツキ皮膜7
の形成が容易になると共にその接着力がより一層
向上する。尚、当該リンス処理工程Dは必須工程
ではなく、リンス処理なしでも使用に十分耐え得
る秀れた銀皮膜7を形成固着することができる。
又、リンス処理のあとステンレス板を純水内へ漬
け、前記リンス皮膜面を軽く洗浄仕上げする様に
すれば、後述する後熱処理工程Gによる脱ガス量
が少なくなり、更にメツキ液の品質保持という点
でも好都合である。 The inner and outer tanks 1 and 2 that have left the heat treatment step C are subsequently sent to a rinsing step D, where they are subjected to a so-called rinsing treatment using a rinsing liquid consisting of tin and a suitable hydrating agent. By performing the rinsing treatment, silver adheres to the stainless steel surface using the tin as a nucleus, and the silver plating film 7
It becomes easier to form and its adhesive strength is further improved. Note that the rinsing treatment step D is not an essential step, and an excellent silver film 7 that can withstand use can be formed and fixed even without the rinsing treatment.
Furthermore, if the stainless steel plate is soaked in pure water after the rinsing treatment and the surface of the rinsing film is lightly cleaned and finished, the amount of degassing caused by the post-heat treatment process G described later will be reduced, and the quality of the plating solution will be maintained. It is also advantageous in that respect.
リンス処理を終えた内・外槽は、メツキ処理工
程Eへ送られ、ここで無電解メツキ方式により銀
メツキが行なわれる。本実施例にあつては、メツ
キ液として銀液と還元液とを容量比1:1で混合
したものを使用しており、前記銀液及び還元液の
成分は下記の通りである。 After the rinsing process, the inner and outer tanks are sent to a plating process E, where they are plated with silver using an electroless plating method. In this example, a mixture of a silver solution and a reducing solution in a volume ratio of 1:1 is used as the plating solution, and the components of the silver solution and the reducing solution are as follows.
銀 液
硝酸銀 3.5g
アンモニア水 沈澱を再溶解するに要する量
水 60ml
水酸化ナトリウム 2.5g
還元液
ブドウ糖 45g
酒石酸 4g
アルコール 100ml
水 1000ml
尚、銀液の調整は、硝酸銀3.5gにアンモニヤ
水を加え、いつたん生じた沈澱物が再溶解するま
でアンモニヤ水を加える。次に、この銀液60mlに
水酸化ナトリウ2.5gと水600mlを加え、黒色とな
つた溶液が清澄になるまで再生アンモニヤ水を加
えて調整する。又、還元液の調整は、水1000mlに
ブドウ糖、酒石酸を順次溶解させた後、10分間ほ
ど煮沸し、常温まで冷却したあとアルコールを加
えることにより調整する。温度を15〜30℃とした
前記メツキ液内へ、内槽1を所定時間例えば1〜
2分間浸漬することにより、内槽外表面には極め
て厚さの均一な銀メツキ皮膜7が形成固着される
ことになる。又、外槽内表面の銀メツキも同様で
あり、外槽2内へ前記メツキ液を満たし、所定時
間貯溜したあとこれを排出することにより、銀メ
ツキ皮膜7が固着形成されることになる。Silver solution Silver nitrate 3.5 g Ammonia water Amount required to redissolve the precipitate Water 60 ml Sodium hydroxide 2.5 g Reducing solution Glucose 45 g Tartaric acid 4 g Alcohol 100 ml Water 1000 ml To prepare the silver solution, add ammonia water to 3.5 g of silver nitrate. Add ammonia water until the resulting precipitate is redissolved. Next, add 2.5 g of sodium hydroxide and 600 ml of water to 60 ml of this silver solution, and adjust by adding recycled ammonia water until the black solution becomes clear. The reducing solution is prepared by sequentially dissolving glucose and tartaric acid in 1000 ml of water, boiling it for about 10 minutes, cooling it to room temperature, and then adding alcohol. The inner tank 1 is placed into the plating solution at a temperature of 15 to 30°C for a predetermined period of time, e.g.
By dipping for 2 minutes, a silver plating film 7 of extremely uniform thickness is formed and fixed on the outer surface of the inner tank. The same applies to the silver plating on the inner surface of the outer tank, and by filling the outer tank 2 with the plating solution and draining it after storing it for a predetermined time, the silver plating film 7 is fixedly formed.
銀メツキ処理工程Eを終えた内・外槽1,2
は、水洗浄工程Fにて銀メツキ皮膜7の水洗を行
なつたあと、後熱処理工程Gへ送られ、ここで真
空炉を用いてメツキ層内の脱ガス処理が行なわれ
る。 Inner and outer tanks 1 and 2 after silver plating process E
After the silver plating film 7 is washed with water in the water washing step F, it is sent to the post-heat treatment step G, where a vacuum furnace is used to degas the inside of the plating layer.
当該後熱処理は、銀メツキ皮膜7の耐熱性等の
面から、比較的低温度で、且つ高真空度の下で行
なわれ、当該熱処理によりメツキ層内の吸着ガス
分子が略完全に脱ガスされることになる。 The post-heat treatment is performed at a relatively low temperature and under a high degree of vacuum in view of the heat resistance of the silver plating film 7, and the adsorbed gas molecules in the plating layer are almost completely degassed by the heat treatment. That will happen.
後熱処理を終えた内・外槽1,2は、最後に組
立・真空封じ工程Hへ送られ、真空炉内で外槽2
底面の真空排気口4に封板5を鑞付けすることに
より、真空断熱空間6の封じ切りが行なわれる。
尚、通常は前記後熱処理工程Gと真空封じ工程H
とは同一の真空炉内で行なわれ、空間6内は10-3
〜10-5Torr程度の真空度に保持される。 After the post-heat treatment, the inner and outer tanks 1 and 2 are finally sent to the assembly and vacuum sealing process H, where the outer tank 2 is sealed in a vacuum furnace.
By brazing a sealing plate 5 to the vacuum exhaust port 4 on the bottom surface, the vacuum insulation space 6 is sealed off.
Note that usually the post-heat treatment step G and the vacuum sealing step H are
is carried out in the same vacuum furnace, and the temperature inside space 6 is 10 -3
It is maintained at a vacuum level of ~10 -5 Torr.
尚、本実施例に於いては、上述の如く無電解メ
ツキ方式のメツキ処理工程Eについて述べている
が、所謂電気メツキ方式による銀メツキを採用し
てもよく、本発明に係るステンレスの熱処理工程
Cによれば、従来不可能とされてきたステンレス
への電気メツキ方式による直接銀メツキが可能と
なる。 Although this embodiment describes the plating process E using the electroless plating method as described above, silver plating using the so-called electroplating method may also be used, and the stainless steel heat treatment process according to the present invention According to C, it becomes possible to directly silver plate stainless steel by electroplating, which has been considered impossible in the past.
本発明による銀メツキ法によれば、ステンレス
材の表面に均一な厚さで斑の全く無い銀メツキ皮
膜7を極めて容易に形成固着することが可能とな
る。例えば、塩酸による脱脂洗浄と超音波洗浄を
組合せた従前の前処理法によつてステンレス材を
処理し、これに直接無電解メツキ方式又は電気メ
ツキ方式によつて銀メツキをした様な場合には、
極めて斑が多く、然かも厚さが不均一で接着力が
弱く、そのうえ反射率が極く低くくて実用に供す
ることが出来ない程度の銀メツキ皮膜7しか形成
できないのに対して、本発明によれば厚さ及び
斑、接着性、反射率、経年変化等の面で極めて高
い特性を有する銀メツキ皮膜7を得ることが出来
るうえ、銀効率もガラス上にメツキする場合に比
較して略同一か、これよりも稍々優る値となる。 According to the silver plating method according to the present invention, it is possible to form and fix the silver plating film 7 with a uniform thickness and no spots on the surface of a stainless steel material very easily. For example, when stainless steel is treated with a conventional pretreatment method that combines degreasing with hydrochloric acid and ultrasonic cleaning, and then directly silver plated with electroless plating or electroplating. ,
In contrast, the silver plating film 7 can only be formed with extremely uneven thickness, uneven thickness, weak adhesive strength, and extremely low reflectance, making it impossible to put it to practical use. According to the method, it is possible to obtain a silver plating film 7 that has extremely high properties in terms of thickness, unevenness, adhesion, reflectance, aging change, etc., and the silver efficiency is also substantially lower than that of plating on glass. The value will be the same or slightly better.
又、内容積2.2の本発明に係る魔法瓶(外槽
内径121mmφ、内槽内径100mmφ、真空断熱空間厚
さ10mm、内・外槽ステンレス板厚0.5mm、内槽外
表面のみを銀メツキ処理)を用いた保温試験によ
れば、沸き上り温度95℃の高温湯(2.2)が24
時間後に63℃となる。これに対して、従前の表面
研磨やアルミ等のメツキ処理を採用した同容量の
魔法瓶では、24時間後に58℃〜59℃となり、約4
〜5℃の温度差が表われる。 In addition, a thermos according to the present invention with an internal volume of 2.2 mm (outer tank inner diameter 121 mmφ, inner tank inner diameter 100 mmφ, vacuum insulation space thickness 10 mm, inner and outer tank stainless steel plate thickness 0.5 mm, only the outer surface of the inner tank is silver-plated) According to the heat retention test used, hot water (2.2) with a boiling temperature of 95℃ was heated to 24℃.
After an hour, the temperature becomes 63℃. On the other hand, a thermos of the same capacity that uses conventional surface polishing and aluminum plating processes has a temperature of 58℃ to 59℃ after 24 hours, which is about 4℃.
A temperature difference of ~5°C appears.
更に、本発明に係るメツキ法によれば、ガラス
皮膜上に銀メツキするものや二層メツキとする場
合に比較して、製造原価の大幅な削減を図り得
る。 Furthermore, according to the plating method according to the present invention, manufacturing costs can be significantly reduced compared to silver plating on a glass film or two-layer plating.
本発明は上述の通り、秀れた実用的効用を有す
るものである。 As mentioned above, the present invention has excellent practical utility.
第1図は本発明に係るステンレス製魔法瓶の縦
断面図である。第2図は本発明に係る魔法瓶の製
造工程図である。
1……内槽、2……外槽、3……断熱栓、4…
…真空排気口、5……封板、6……真空断熱空
間、7……銀皮膜、A……成形工程、B……化学
洗浄処理工程、C……熱処理工程、D……リンス
処理工程、E……メツキ処理工程、F……洗浄処
理工程、G……後熱処理工程、H……組立・真空
封じ工程。
FIG. 1 is a longitudinal sectional view of a stainless steel thermos flask according to the present invention. FIG. 2 is a manufacturing process diagram of a thermos flask according to the present invention. 1...Inner tank, 2...Outer tank, 3...Insulation plug, 4...
...Vacuum exhaust port, 5...Sealing plate, 6...Vacuum insulation space, 7...Silver film, A...Molding process, B...Chemical cleaning process, C...Heat treatment process, D...Rinse process , E... Plating process, F... Cleaning process, G... Post heat treatment process, H... Assembly/vacuum sealing process.
Claims (1)
メツキ処理に於いて、内槽及び外槽を圧力1×
10-2torr以下、温度700℃以上とした真空加熱炉
内で熱処理し、当該熱処理後の内槽外表面と外槽
内表面の両方若しくは何れか一方に無電解メツキ
方式により直接メツキを施すことを特徴とするス
テンレス製魔法瓶の銀メツキ方法。1. When silver plating a thermos flask whose inner and outer tanks are made of stainless steel, the inner and outer tanks are heated to 1× pressure.
Heat treatment is performed in a vacuum heating furnace at a temperature of 10 -2 torr or less and a temperature of 700°C or higher, and after the heat treatment, the outer surface of the inner tank and/or the inner surface of the outer tank are directly plated using an electroless plating method. A method of silver plating a stainless steel thermos flask.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3783182A JPS58153764A (en) | 1982-03-09 | 1982-03-09 | Silver plating method of thermos made of stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3783182A JPS58153764A (en) | 1982-03-09 | 1982-03-09 | Silver plating method of thermos made of stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58153764A JPS58153764A (en) | 1983-09-12 |
JPH0144789B2 true JPH0144789B2 (en) | 1989-09-29 |
Family
ID=12508468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3783182A Granted JPS58153764A (en) | 1982-03-09 | 1982-03-09 | Silver plating method of thermos made of stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58153764A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63274776A (en) * | 1987-05-02 | 1988-11-11 | Zojirushi Vacuum Bottle Co | Method and apparatus for chemically plating inner metal vessel for vacuum bottle |
JPH0395834U (en) * | 1990-01-24 | 1991-09-30 | ||
KR100676523B1 (en) | 2005-06-23 | 2007-02-01 | 덕산산업주식회사 | Preprocessing method for hot-dip aluminizing |
CN105583583A (en) * | 2016-01-23 | 2016-05-18 | 伯恩光学(惠州)有限公司 | Machining method of insulation container |
-
1982
- 1982-03-09 JP JP3783182A patent/JPS58153764A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58153764A (en) | 1983-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880004240Y1 (en) | Thermos bottle made of stainless steel | |
US4856174A (en) | Method of making a stainless steel vacuum bottle with a silver mirrored surface | |
US3666529A (en) | Method of conditioning aluminous surfaces for the reception of electroless nickel plating | |
JP2003034894A (en) | Al ALLOY MEMBER SUPERIOR IN CORROSION RESISTANCE | |
WO2024060342A1 (en) | Method for improving thermal cycle reliability of aluminum nitride direct-bonded aluminum packaging substrate | |
JPH0144789B2 (en) | ||
US3090118A (en) | Method of making a cooking vessel | |
US4448809A (en) | Method of silver plating stainless steel vacuum bottle surfaces | |
US3498823A (en) | Electroless tin plating on electroless nickel | |
JPH0142353B2 (en) | ||
JPS61187261A (en) | Lead frame for semiconductor and manufacture thereof | |
JPS58181858A (en) | Plating pretreatment of stainless steel | |
WO2024214430A1 (en) | Surface-treated aluminum material, production method for same, and member for semiconductor processing device | |
JPH0214431B2 (en) | ||
CN109741951A (en) | A kind of Fabrication of High Specific Capacitance encashment ratio middle-high voltage electrode foil chemical synthesizing method | |
JPS60169569A (en) | Surface treatment of aluminum plate for heat exchanger | |
CN103849865A (en) | Plating activation pretreatment method of titanium alloy fastener | |
US2894890A (en) | Jacketing uranium | |
JPH0142354B2 (en) | ||
US2754222A (en) | Preparation of steel for glassing and resultant article | |
JPS59166681A (en) | Corrosion resistant member | |
JPH0415686B2 (en) | ||
JP2024150085A (en) | Surface-treated aluminum material, its manufacturing method, and semiconductor processing equipment component | |
JP4163809B2 (en) | Manufacturing method of glass substrate for information recording medium | |
SU138123A1 (en) | The method of preparing the surface of niobium and its alloys and applying a nickel coating |