JPS6237549B2 - - Google Patents

Info

Publication number
JPS6237549B2
JPS6237549B2 JP53045684A JP4568478A JPS6237549B2 JP S6237549 B2 JPS6237549 B2 JP S6237549B2 JP 53045684 A JP53045684 A JP 53045684A JP 4568478 A JP4568478 A JP 4568478A JP S6237549 B2 JPS6237549 B2 JP S6237549B2
Authority
JP
Japan
Prior art keywords
gate
voltage
transistor
threshold voltage
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53045684A
Other languages
Japanese (ja)
Other versions
JPS54137286A (en
Inventor
Yoshiharu Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4568478A priority Critical patent/JPS54137286A/en
Publication of JPS54137286A publication Critical patent/JPS54137286A/en
Publication of JPS6237549B2 publication Critical patent/JPS6237549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置に関し特に絶縁ゲート型
(以下MOS型という)半導体装置のゲート破壊を
防止する技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, and particularly to a technique for preventing gate breakdown in an insulated gate type (hereinafter referred to as MOS type) semiconductor device.

一般にMOS型半導体装置のゲート絶縁膜の破
壊は、封入容器のリード端子に直接接続されてい
るMOSトランジスタ特に回路の入力系を構成す
るMOSトランジスタに多い。これは回路の入力
系においては、外部からの静電気をトランジスタ
1つないしは2つの程度の非常に小さな容量で受
けるため異常に大きな電圧がゲートにかかる事に
なるためである。MOSトランジスタのゲート絶
縁膜は通常1000Å程度の薄いシリコン酸化膜で形
成され、その破壊電圧は70V程度であるため過剰
電圧によりゲート絶縁膜の破壊は容易に起る。こ
の現象は従来から大きな問題であり、破壊防止の
ためのゲート保護について過去に多くの提案がな
されている。入力端子にP−Nダイオードを入れ
る方法、ゲートを接地したMOSトランジスタを
用いる方法、厚いゲート絶縁膜を持つたMOSト
ランジスタを用いる方法等はよく知られた先行技
術の例である。しかしながら、ゲート保護装置と
して望まれる機能を詳細に検討し、備えるべき条
件を考察すると、これら先行技術には機能の不充
分なものが多い。
In general, breakdown of the gate insulating film of a MOS type semiconductor device is common in MOS transistors that are directly connected to lead terminals of an enclosure, especially MOS transistors that constitute the input system of a circuit. This is because in the input system of the circuit, static electricity from the outside is received by a very small capacitance of one or two transistors, so an abnormally large voltage is applied to the gate. The gate insulating film of a MOS transistor is normally formed of a thin silicon oxide film of about 1000 Å, and its breakdown voltage is about 70V, so the gate insulating film is easily destroyed by excessive voltage. This phenomenon has been a big problem for a long time, and many proposals have been made in the past regarding gate protection to prevent destruction. Examples of well-known prior art include a method of inserting a PN diode into the input terminal, a method of using a MOS transistor with its gate grounded, and a method of using a MOS transistor with a thick gate insulating film. However, when the desired functions of a gate protection device are examined in detail and the conditions to be provided are considered, many of these prior art techniques have insufficient functions.

一般にゲート破壊を防止する基本的考え方は、
外部リードからチツプ内に帯電電荷が流入する過
程で、電圧がゲートの破壊電圧まで上昇する前に
電荷をチツプ内に分散してしまう事にある。従つ
て充分な効果を持つゲート保護装置は、次の条件
を満たす事が必要である。
In general, the basic idea of preventing gate destruction is as follows:
In the process of charging charges flowing into the chip from the external leads, the charges are dispersed within the chip before the voltage rises to the gate breakdown voltage. Therefore, a sufficiently effective gate protection device must satisfy the following conditions.

(1) 帯電電荷を放電する閾値電圧は、ゲート破壊
電圧より充分低い事が必要で、低ければ低いほ
ど好ましい。
(1) The threshold voltage for discharging charged charges must be sufficiently lower than the gate breakdown voltage, and the lower the voltage, the better.

(2) しかし正常な動作のさまたげとならない様に
帯電電荷を放電するための閾値電圧は、通常の
使用状態においてはその端子に印加される動作
電圧より充分高い事が必要である。
(2) However, in order to avoid interfering with normal operation, the threshold voltage for discharging the charged charge must be sufficiently higher than the operating voltage applied to its terminals under normal usage conditions.

(3) 帯電により電圧が閾値電圧を越えた後は、極
力速やかに放電が行われる必要がある。
(3) After the voltage exceeds the threshold voltage due to charging, discharging must occur as quickly as possible.

(4) 保護装置自身が破壊されてはならない。(4) The protective device itself must not be destroyed.

従来考案されている保護装置はこれらのいずれ
かの条件に対し効果不充分なものである。
Conventionally devised protective devices are insufficiently effective against either of these conditions.

例えば第1図は、拡散層によるP−Nダイオー
ドを保護装置として用いた従来技術の等価回路図
である。Nチヤンネルの場合につき述べると、ボ
ンデイングパツド1から導入された配線2はN型
不純物拡散層3とP型基板4で構成されるダイオ
ード5を経て内部トランジスタ6のゲートへ導か
れる。本構造ではP−Nダイオードの逆方向耐圧
をトランジスタ6のゲート耐圧以下に設定する事
により高電圧に対しトランジスタのゲートが破壊
する前にP−N接合が降伏を起し、電荷を拡散層
3から基板4へ放出する。しかしこの方法では、
一般にP−N接合の耐圧が40〜50vと高いためゲ
ートの破壊電圧70vに対しわずかの余裕しか取れ
ず、前述(1)項の条件に欠ける。即ち帯電が瞬間的
でP−N接合の降伏が追従できない様な場合に
は、瞬間的に接合耐圧以上に電圧が上昇し、実質
的に保護の機能を持たない場合が起るが、本例で
はその過大電圧に対する余裕が極めて小さい。
For example, FIG. 1 is an equivalent circuit diagram of a conventional technique using a PN diode with a diffusion layer as a protection device. In the case of an N-channel, a wiring 2 introduced from a bonding pad 1 is guided to the gate of an internal transistor 6 via a diode 5 composed of an N-type impurity diffusion layer 3 and a P-type substrate 4. In this structure, by setting the reverse breakdown voltage of the P-N diode to be lower than the gate breakdown voltage of the transistor 6, the P-N junction breaks down before the gate of the transistor is destroyed by high voltage, and the charge is transferred to the diffusion layer 3. and discharges it to the substrate 4. But with this method,
Generally, the withstand voltage of the P-N junction is as high as 40 to 50V, so there is only a small margin for the gate breakdown voltage of 70V, and the condition (1) above is not met. In other words, if the charging is instantaneous and the breakdown of the P-N junction cannot be followed, the voltage will instantaneously rise above the junction breakdown voltage and there will be no protection function, but in this example In this case, the margin against such excessive voltage is extremely small.

第2図は従来技術の別の例としてMOSトラン
ジスタを保護装置として用いた構造の等価回路図
を示す。この場合入力信号線の拡散層3をドレイ
ンとする様に保護用のMOSトランジスタが付加
される。保護用MOSトランジスタのゲート7及
びソース8は通常接地電位に接続される。この様
に構成すると、ドレイン3の耐圧はゲート絶縁膜
9と、ゲート電極7により生じる電界効果により
単なるP−N接合の耐圧より低くなる。例えば、
ゲート絶縁膜9の厚さを1000Å、基板の比較抵抗
を4π・cmとする事により拡散層3の耐圧を30v
程度にする事ができる。従つて第1図に示した例
よりも保護すべきトランジスタ6のゲート耐圧に
対して余裕があり、より好ましい効果が得られ
る。しかし通常はゲート保護装置としてのMOS
トランジスタは、内部に用いられているMOSト
ランジスタと同じ構造で作られるため、保護トラ
ンジスタのゲート絶縁物9の自身が破壊するとい
う欠点がある。
FIG. 2 shows an equivalent circuit diagram of a structure using a MOS transistor as a protection device as another example of the prior art. In this case, a protective MOS transistor is added so that the diffusion layer 3 of the input signal line serves as a drain. The gate 7 and source 8 of the protection MOS transistor are normally connected to ground potential. With this structure, the breakdown voltage of the drain 3 becomes lower than that of a simple PN junction due to the electric field effect generated by the gate insulating film 9 and the gate electrode 7. for example,
By setting the thickness of the gate insulating film 9 to 1000 Å and the comparative resistance of the substrate to 4π cm, the breakdown voltage of the diffusion layer 3 is set to 30 V.
It can be done to a certain extent. Therefore, there is more margin for the gate breakdown voltage of the transistor 6 to be protected than in the example shown in FIG. 1, and a more favorable effect can be obtained. However, usually MOS as a gate protection device
Since the transistor is made with the same structure as the MOS transistor used inside, there is a drawback that the gate insulator 9 of the protection transistor itself is destroyed.

第3図はさらに別の例で、保護トランジスタと
して内部素子と同じ構造のMOSトランジスタで
なく、厚いゲート絶縁物9を持つMOSトランジ
スタを用いた例である。この場合、ゲート電極7
を入力信号線2の電位に接続して用いる。本例で
は帯電電荷を厚いゲートを持つMOSトランジス
タのオン電流として放電する。従つて放電の閾値
電圧は保護MOSトランジスタの閾値電圧であ
る。
FIG. 3 shows yet another example in which a MOS transistor having a thick gate insulator 9 is used as a protection transistor instead of a MOS transistor having the same structure as the internal element. In this case, the gate electrode 7
is used by connecting it to the potential of the input signal line 2. In this example, the charged charges are discharged as on-current of a MOS transistor with a thick gate. Therefore, the discharge threshold voltage is the threshold voltage of the protection MOS transistor.

この構造は保護装置として巧妙に働く。即ち一
般にゲート破壊は半導体デパイスが実装された後
よりも、実装される前の取り扱い状態において高
い確率で発生するという経験的事実であり、この
様な状態では帯電する端子以外の他の全ての端子
がフロートの状態になつている。通常は基板にバ
イアスをかけて使用されるN−チヤンネルデバイ
スにおいては、基板バイアスが無い状態ではトラ
ンジスタの閾値電圧が低く、ゲート絶縁物9とし
て厚い絶縁物を用いても基板バイアスがかかつて
いない状態でその閾値電圧を10v程度に設定する
事は容易である。従つて本構造が他に優る点は放
電の閾値電圧が充分低い事と、保護装置のゲート
絶縁物が厚いため、第2図で示した様な保護装置
のゲートが破壊するという不都合がない事であ
る。基板バイアスがかかる通常の使用状態では、
このトランジスタの閾値電圧は80v以上になり通
常動作に対しては全く影響を与えない。
This structure works well as a protector. In other words, it is an empirical fact that gate breakdown generally occurs with a higher probability when a semiconductor device is handled before it is mounted than after it is mounted. is in a floating state. In N-channel devices that are normally used with a substrate biased, the threshold voltage of the transistor is low in the absence of substrate bias, and even if a thick insulator is used as the gate insulator 9, the substrate bias remains unchanged. It is easy to set the threshold voltage to about 10V. Therefore, the advantages of this structure over others are that the discharge threshold voltage is sufficiently low, and because the gate insulator of the protection device is thick, there is no problem of the gate of the protection device being destroyed as shown in Figure 2. It is. Under normal usage conditions with substrate bias,
The threshold voltage of this transistor is 80V or higher and has no effect on normal operation.

この様に本構造は前述の条件の(1)〜(3)項を満た
し、現在のところ最も効果的と思われるものであ
るが、この構造の欠点はトランジスタのオン電流
として電荷を放電する原理を持つにもかかわらず
ゲート絶縁膜が厚いためトランジスタのコンダク
タンスが小さく、そのため放電の速度が遅く、瞬
間的なパルスに追従できないという点である。こ
の欠点を膜厚を薄くする事により避けようとすれ
ば、閾値電圧が低下し、正常な使用状態における
閾値電圧を充分高く保つ事ができなくなる。
In this way, this structure satisfies the conditions (1) to (3) above and is considered to be the most effective at present. However, the drawback of this structure is that the principle of discharging the charge as the on-current of the transistor is Despite this, the conductance of the transistor is small because the gate insulating film is thick, so the discharge speed is slow and cannot follow instantaneous pulses. If this drawback is attempted to be avoided by reducing the film thickness, the threshold voltage will drop, making it impossible to maintain the threshold voltage sufficiently high under normal usage conditions.

本発明の目的は正常な使用状態における高い閾
値電圧を保ち、かつ保護機能を発揮する際には高
い伝導度を持つ、保護装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a protection device that maintains a high threshold voltage under normal use and has high conductivity when performing its protection function.

本発明による半導体装置は閾値電圧が比較的高
い領域と、電流能力が比較的大きい領域とを同一
チヤンネル内に備えたMOSトランジスタを保護
回路として用いたことを特徴とする。
A semiconductor device according to the present invention is characterized in that a MOS transistor having a region with a relatively high threshold voltage and a region with a relatively large current capacity in the same channel is used as a protection circuit.

以下に第4図A〜Cを参照して本発明の一実施
例を詳述する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 4A to 4C.

外部からの入力信号はボンデイングパツド1に
つながる金属配線2を経て拡散層3に導入され、
入力回路のトランジスタ6のゲートに導かれる。
保護装置は、入力信号線である拡散層3の一部を
そのままドレインとし、第1のゲート電極10及
び第2のゲート電極11をゲート電極とし、追加
された拡散層8をソースとするMOSトランジス
タから成る、第1ゲート10の下のゲート絶縁物
12は、比較的薄く構成され、電流能力の大きな
チヤンネル領域13を構成する。第2ゲート11
の下のゲート絶縁物14は厚く構成され、比較的
閾値電圧の高いチヤンネル領域15を構成する。
第一の電極10及び第2の電極11はコンタクト
孔16を介して互いに電気的に接続され、配線2
により入力端子に接続される。拡散層8はソース
として接地電位に接続される。一例として現在一
般的なシリコンゲート技術により本構造を構成す
る場合を述べれば、第1のゲート10を多結晶シ
リコンで第2のゲート11をアルミニウムで構成
する事ができる。また比較的薄い絶縁物13を
4000Å程度、厚い絶縁物14を8000Å程度に設定
する事ができる。この様な構造を取る事により保
護装置として備えるべき条件を全て満たす事がで
きる。即ちゲート破壊が起り易い実装に至る前
の、基板バイアスがかからない状態で第2ゲート
11の閾値電圧が10v程度に設定する事は容易で
あり、ゲート破壊電圧60〜70vに対し充分小さく
設定でき1項の条件は満足できる。通常動作に対
しては基板バイアスが印加され第2ゲート6の閾
値電圧を上げて使用する事になるので動作電圧に
対し充分高い閾値電圧にする事は容易であり、(2)
項の条件も満足できる。本発明においては、放電
と開始する閾値電圧を4チヤンネル15の領域で
決めており、チヤンネル13の部分は絶縁物12
を薄くし電流能力を大きく設定してあるため、ひ
とたびゲート電圧が閾値電圧を越えると速やかに
電荷は放電され(2)項の条件を満足する。
An input signal from the outside is introduced into the diffusion layer 3 via the metal wiring 2 connected to the bonding pad 1.
It is led to the gate of transistor 6 of the input circuit.
The protection device is a MOS transistor in which a part of the diffusion layer 3, which is an input signal line, is used as the drain, the first gate electrode 10 and the second gate electrode 11 are used as the gate electrodes, and the added diffusion layer 8 is used as the source. The gate insulator 12 under the first gate 10 is constructed relatively thin and constitutes a channel region 13 with a large current capacity. 2nd gate 11
The gate insulator 14 underneath is thick and forms a channel region 15 with a relatively high threshold voltage.
The first electrode 10 and the second electrode 11 are electrically connected to each other through a contact hole 16, and the wiring 2
is connected to the input terminal by Diffusion layer 8 is connected to ground potential as a source. As an example, if this structure is constructed using the currently common silicon gate technology, the first gate 10 can be constructed of polycrystalline silicon and the second gate 11 can be constructed of aluminum. In addition, a relatively thin insulator 13 is
The thickness of the thick insulator 14 can be set to about 4000 Å, and the thickness of the thick insulator 14 to about 8000 Å. By adopting such a structure, all the conditions required for a protective device can be satisfied. In other words, it is easy to set the threshold voltage of the second gate 11 to about 10 V in a state where no substrate bias is applied before mounting where gate breakdown is likely to occur, and it can be set sufficiently small compared to the gate breakdown voltage of 60 to 70 V. The conditions in section can be satisfied. For normal operation, a substrate bias is applied and the threshold voltage of the second gate 6 is raised and used, so it is easy to make the threshold voltage sufficiently high compared to the operating voltage, (2)
The conditions in section 2 can also be satisfied. In the present invention, the threshold voltage for starting discharge is determined in the area of 4 channels 15, and the channel 13 portion is
Since the capacitor is made thin and the current capacity is set large, once the gate voltage exceeds the threshold voltage, the charge is quickly discharged and the condition (2) is satisfied.

また、本発明では帯電によりゲート10及び1
1の電位が上昇する時、ゲート絶縁物12及び1
4を通常のMOSトランジスタのゲート絶縁物よ
り厚く構成するので、保護装置自身のゲート耐圧
は充分高くする事ができ(4)項の条件も満たす。
Furthermore, in the present invention, the gates 10 and 1 are
When the potential of 1 increases, the gate insulators 12 and 1
4 is made thicker than the gate insulator of a normal MOS transistor, the gate withstand voltage of the protection device itself can be made sufficiently high, and the condition (4) is also satisfied.

第5図、第6図は保護装置の占める面積を小さ
くするための本発明の別の実施例を示したもので
第1のゲート10と第2のゲート11を非対称に
重ね合せても本発明の目的は達せられることは勿
論である。又本発明はNチヤンネル、Pチヤンネ
ルのいずれの半導体装置にも適用しうることも明
らかである。
FIGS. 5 and 6 show another embodiment of the present invention for reducing the area occupied by the protection device. Needless to say, this goal can be achieved. It is also clear that the present invention can be applied to both N-channel and P-channel semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はそれぞれ従来技術による
半導体装置の等価回路を示す図、第4図A〜Cは
それぞれ本発明の一実施例による半導体装置を示
す平面図、断面図および等価回路を示す図、第5
図および第6図はそれぞれ本発明の別の実施例を
示す断面図である。 図中の符号、1……ボンデングパツド、2,3
……拡散層、5……P−N接合、6……MOSト
ランジスタ、10……第1ゲート、11……第2
ゲート。
1 to 3 are diagrams each showing an equivalent circuit of a semiconductor device according to the prior art, and FIGS. 4A to 4C are a plan view, a sectional view, and an equivalent circuit, respectively, showing a semiconductor device according to an embodiment of the present invention. Figure, 5th
FIG. 6 is a sectional view showing another embodiment of the present invention. Codes in the diagram: 1... Bonding pad, 2, 3
...diffusion layer, 5...P-N junction, 6...MOS transistor, 10...first gate, 11...second
Gate.

Claims (1)

【特許請求の範囲】[Claims] 1 入力端子に接続された絶縁ゲート型トランジ
スタのゲート破壊を防止するトランジスタであつ
て、一端を前記入力端子に接続し、他端を基準電
位に接続し、チヤンネル上に厚いゲート酸化膜と
薄いゲート酸化膜とを設け、前記薄いゲート酸化
膜上に第1のゲート電極を、前記厚いゲート酸化
膜上および前記第1のゲート電極上に第2のゲー
ト電極を夫々設け、前記第2のゲート電極を前記
第1のゲート電極に接続するとともに前記入力端
子にも接続した保護トランジスタを含むことを特
徴とする半導体装置。
1 A transistor that prevents gate breakdown of an insulated gate transistor connected to an input terminal, with one end connected to the input terminal and the other end connected to a reference potential, with a thick gate oxide film and a thin gate on the channel. a first gate electrode on the thin gate oxide film; a second gate electrode on the thick gate oxide film and the first gate electrode; A semiconductor device comprising: a protection transistor connected to the first gate electrode and also connected to the input terminal.
JP4568478A 1978-04-17 1978-04-17 Semiconductor device Granted JPS54137286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4568478A JPS54137286A (en) 1978-04-17 1978-04-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4568478A JPS54137286A (en) 1978-04-17 1978-04-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS54137286A JPS54137286A (en) 1979-10-24
JPS6237549B2 true JPS6237549B2 (en) 1987-08-13

Family

ID=12726212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4568478A Granted JPS54137286A (en) 1978-04-17 1978-04-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS54137286A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0087155B1 (en) * 1982-02-22 1991-05-29 Kabushiki Kaisha Toshiba Means for preventing the breakdown of an insulation layer in semiconductor devices
DE3586268T2 (en) * 1984-05-03 1993-02-25 Digital Equipment Corp INPUT PROTECTIVE ARRANGEMENT FOR VLSI CIRCUIT ARRANGEMENTS.
JPS61283155A (en) * 1985-06-07 1986-12-13 Mitsubishi Electric Corp Input protecting circuit of semiconductor device
US5436183A (en) * 1990-04-17 1995-07-25 National Semiconductor Corporation Electrostatic discharge protection transistor element fabrication process
JP3587537B2 (en) 1992-12-09 2004-11-10 株式会社半導体エネルギー研究所 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181579A (en) * 1975-01-16 1976-07-16 Hitachi Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181579A (en) * 1975-01-16 1976-07-16 Hitachi Ltd

Also Published As

Publication number Publication date
JPS54137286A (en) 1979-10-24

Similar Documents

Publication Publication Date Title
US5218222A (en) Output ESD protection circuit
US5682047A (en) Input-output (I/O) structure with capacitively triggered thyristor for electrostatic discharge (ESD) protection
US4509067A (en) Semiconductor integrated circuit devices with protective means against overvoltages
US5686751A (en) Electrostatic discharge protection circuit triggered by capacitive-coupling
US5079608A (en) Power MOSFET transistor circuit with active clamp
US5548134A (en) Device for the protection of an integrated circuit against electrostatic discharges
US5925922A (en) Depletion controlled isolation stage
KR100190008B1 (en) Electorstatic protection device of semiconductor device
JP2632720B2 (en) Variable protection threshold integrated circuit with protection against electrostatic discharge
EP0242383B1 (en) Protection of igfet integrated circuits from electrostatic discharge
US5844280A (en) Device for protecting a semiconductor circuit
US6303445B1 (en) Method of ESD protection scheme
JPS6237819B2 (en)
EP0068844B1 (en) A protective device for a semiconductor integrated circuit
US5710452A (en) Semiconductor device having electrostatic breakdown protection circuit
JPS626662B2 (en)
JPS6237549B2 (en)
EP0292327A2 (en) Electrostatic breakdown protection circuits
US5637887A (en) Silicon controller rectifier (SCR) with capacitive trigger
US5698886A (en) Protection circuit against electrostatic discharges
JP2783191B2 (en) Semiconductor device protection circuit
EP0606667A1 (en) Semiconductor device with an integrated circuit provided with over voltage protection means
JPS6127916B2 (en)
KR100591125B1 (en) Gate Grounded NMOS Transistor for protection against the electrostatic discharge
JP2003017694A (en) Semiconductor device