JPS6237299B2 - - Google Patents

Info

Publication number
JPS6237299B2
JPS6237299B2 JP55123451A JP12345180A JPS6237299B2 JP S6237299 B2 JPS6237299 B2 JP S6237299B2 JP 55123451 A JP55123451 A JP 55123451A JP 12345180 A JP12345180 A JP 12345180A JP S6237299 B2 JPS6237299 B2 JP S6237299B2
Authority
JP
Japan
Prior art keywords
weight
less
stainless steel
wavelength band
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123451A
Other languages
Japanese (ja)
Other versions
JPS5653346A (en
Inventor
Toshihiro Ishibashi
Kinya Horibe
Masaharu Ishida
Yoji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP12345180A priority Critical patent/JPS5653346A/en
Publication of JPS5653346A publication Critical patent/JPS5653346A/en
Publication of JPS6237299B2 publication Critical patent/JPS6237299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Description

【発明の詳細な説明】 本発明は太陽熱利用集熱器の選択吸収性受熱面
殊に鏡面を有する基板上に一定の組成を有する金
属組成物の酸化被膜を一定の厚さ密着して形成し
た選択吸収性受熱面に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for forming an oxide film of a metal composition having a certain composition in close contact with a certain thickness on a substrate having a selectively absorbing heat-receiving surface, especially a mirror surface, of a solar heat collector. Relating to a selectively absorbing heat receiving surface.

従来の太陽熱利用集熱器の受熱面は集熱器運転
温度が上昇するに従つて集熱効率が大巾に減少す
る欠点を有していた。かゝる欠点を除去するため
受熱面として太陽熱放射の波長帯(0.3〜2.5μ
m)において完全黒体と同程度のエネルギー吸収
率を有するが、集熱器運転温度と同一温度の黒体
放射の波長帯(100℃運転温度の場合、波長3〜
50μm)において低い放射率となる光学的分光特
性を有するいわゆる選択吸収面が使用されること
が知られている。
The heat-receiving surface of conventional solar heat collectors has the drawback that the heat collection efficiency decreases significantly as the operating temperature of the collector increases. In order to eliminate such drawbacks, the solar heat radiation wavelength range (0.3 to 2.5μ) is used as the heat receiving surface.
m) has an energy absorption rate comparable to that of a perfect blackbody, but in the wavelength range of blackbody radiation at the same temperature as the collector operating temperature (in the case of an operating temperature of 100°C, wavelengths 3 to 3
It is known to use so-called selective absorption surfaces which have optical spectral properties that result in a low emissivity at 50 μm).

しかし、上記分光特性を有する選択吸収面は天
然には得がたいので、本出願人は先にフエライト
系不銹鋼酸化物であつて、500―2000Åの膜厚を
有し、しかも0.3ないし2.5μmの波長帯において
高いエネルギー吸収率を示し、また3ないし50μ
mの波長帯において低いエネルギー放射率を示す
被覆を、JIS B0601に規定される表面あらさRaが
0.07μ以下またはRzが0.2μ以下の表面状態を有
する基板上に施した太陽熱利用集熱器の選択吸収
面について特許出願した。
However, since it is difficult to obtain a selective absorption surface having the above-mentioned spectral characteristics in nature, the applicant has developed a ferrite-based stainless steel oxide with a film thickness of 500-2000 Å and a wavelength band of 0.3-2.5 μm. It shows high energy absorption rate in 3 to 50μ
The surface roughness Ra specified in JIS B0601 is
We have filed a patent application for a selective absorption surface for a solar heat collector formed on a substrate with a surface condition of 0.07μ or less or Rz of 0.2μ or less.

又基板としてフエライト系不銹鋼を用いる場合
は分光特性がすぐれ安価である利点があるが溶接
性、加工性、耐蝕性においてオーステナイト系不
銹鋼に比べ若干劣るのでこれらの諸欠点を改良す
るためフエライト系不銹鋼に特定金属(Ti、
Mo、Nb、Ta、U、Th、W、Zr、Hfなど)の少
なくとも1種類以上配合したものを使用した選択
吸収面についても特許出願した。
In addition, when using ferritic stainless steel as a substrate, it has the advantage of excellent spectral properties and low cost, but it is slightly inferior to austenitic stainless steel in terms of weldability, workability, and corrosion resistance. Specific metals (Ti,
We have also filed a patent application for a selective absorption surface using a combination of at least one of the following: Mo, Nb, Ta, U, Th, W, Zr, Hf, etc.).

本発明の目的はC 0.001―0.15重量%、Si
0.005―3.00重量%、Mn 0.005―10.00重量%、Cr
11.00―30.00重量%および添加元素としてN、
Cu、Al、V、Ti、Nb、Mo、W、Zr、Y、U、
Ta、Th、Hfから選ばれた少なくとも1種類の元
素を各元素につき5.0重量%以下、残部Feより成
る金属組成物の酸化物であつて500―2000Åの膜
厚を有し、しかも0.3ないし2.5μmの波長帯にお
いて高いエネルギー吸収率を示しまた3ないし50
μmの波長帯において低いエネルギー放射率を示
す被覆JIS B0601に規定される表面あらさRaが
0.07μ以下またはRzが0.2μ以下である表面状態
を有する基板上に施した太陽熱利用集熱器の選択
吸収面を提供することにある。
The purpose of the present invention is to contain C 0.001-0.15% by weight, Si
0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr
11.00-30.00% by weight and N as an additional element,
Cu, Al, V, Ti, Nb, Mo, W, Zr, Y, U,
It is an oxide of a metal composition consisting of at least one element selected from Ta, Th, and Hf, each element in an amount of 5.0% by weight or less, and the balance is Fe, and has a film thickness of 500 to 2000 Å, and has a thickness of 0.3 to 2.5 Å. It exhibits a high energy absorption rate in the wavelength band of 3 to 50 μm.
The coating has a surface roughness Ra specified in JIS B0601 that shows low energy emissivity in the μm wavelength band.
The object of the present invention is to provide a selective absorption surface for a solar heat collector formed on a substrate having a surface condition in which Rz is 0.07μ or less or Rz is 0.2μ or less.

本発明で使用する一定組成を有する金属組成物
の1つはフエライト系不銹鋼を基体とし、これに
一定の添加元素を配合したもの又はこれを低炭素
にしてしかも一定の添加元素を配合したものであ
る。その代表的なものはC 0.001―0.15重量
%、Si 0.005―3.00重量%、Mn 0.005―10.00重
量%、Cr 11.00―30.00重量%および添加元素と
してN、Cu、Al、V、Ti、Nb、Mo、W、Zr、
Y、U、Ta、Th、Hfから選ばれた少なくとも1
種類の元素と各元素につき5.0重量%以下、残部
Feより成る金属組成物であつて、各添加元素
(Me)と(C+M)との重量比(Me/C+N)
が5.0以上が好ましく、又添加元素がNb、Ta、Ti
などの場合には8.0以上が好ましい。
One of the metal compositions having a certain composition used in the present invention is one that has a ferritic non-rusting steel as a base and has certain additive elements mixed therein, or one that has been made low carbon and has certain additive elements mixed therein. be. Typical examples include C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, and additional elements such as N, Cu, Al, V, Ti, Nb, and Mo. ,W,Zr,
At least one selected from Y, U, Ta, Th, Hf
Types of elements and 5.0% by weight or less for each element, the balance
A metal composition consisting of Fe, the weight ratio of each additive element (Me) to (C+M) (Me/C+N)
is preferably 5.0 or more, and the additive elements are Nb, Ta, and Ti.
In such cases, 8.0 or higher is preferable.

前記金属組成物の酸化物を製造する方法には、 (1) 前記金属組成物の湿式及び乾式化成処理法。 The method for producing the oxide of the metal composition includes: (1) Wet and dry chemical conversion treatment methods for the metal composition.

(2) 前記金属組成物例えば一定組成を有する不銹
鋼を該不銹鋼板以外の鏡面を有する基板上に密
着させ、これを化成処理する方法。
(2) A method in which the metal composition, for example, rustless steel having a certain composition, is brought into close contact with a substrate having a mirror surface other than the rustless steel plate, and then subjected to chemical conversion treatment.

(3) 前記金属組成物例えば一定組成を有する不銹
鋼を活性真空蒸着法、活性スパツタリング法、
活性アーク放電法によつて酸化させながら鏡面
を有する基板上に密着させ不銹鋼の酸化物被膜
を形全させる方法がある。
(3) The metal composition, for example, stainless steel having a certain composition, is deposited by an active vacuum evaporation method, an active sputtering method,
There is a method in which the oxide film of rustless steel is completely formed by oxidizing it by an active arc discharge method and adhering it closely to a substrate having a mirror surface.

前記方法のうち特に好ましい方法は酸性酸化法
およびアルカリ性酸化法である。
Among the above methods, particularly preferred are the acidic oxidation method and the alkaline oxidation method.

(1) 酸性酸化法 (a) 重クロム酸ナトリウム又は重クロム酸カリ
ウム 100〜400g/ 硫 酸 400〜800g/ 温 度 50℃ないし沸点 好ましくは70〜120℃ 浸漬時間 3〜40分 (b) 無水クロム酸 40〜700g/ 硫 酸 150〜700g/ 温 度 50℃ないし沸点 好ましくは70〜120℃ 浸漬時間 3〜40分 (2) アルカリ性酸化法 水酸化ナトリウム又は水酸化カリウム
130〜200g/ リン酸三ナトリウム又はリン酸三カリウム
30〜40g/ 亜硝酸ナトリウムもしくは亜硝酸カリウム又は
硝酸ナトリウムもしくは硝酸カリウム
20〜30g/ 以上を基本浴としこれに触媒的作用物質例えば 水酸化第二鉄 1〜3g/ 過酸化鉛 20〜30g/ を添加することができる。
(1) Acid oxidation method (a) Sodium dichromate or potassium dichromate 100-400g/Sulfuric acid 400-800g/Temperature 50℃ or boiling point preferably 70-120℃ Soaking time 3-40 minutes (b) Anhydrous Chromic acid 40-700g/ Sulfuric acid 150-700g/ Temperature 50℃ or boiling point preferably 70-120℃ Soaking time 3-40 minutes (2) Alkaline oxidation method Sodium hydroxide or potassium hydroxide
130-200g/trisodium phosphate or tripotassium phosphate
30-40g/ Sodium nitrite or potassium nitrite or sodium nitrate or potassium nitrate
20-30 g/or more of the basic bath can be added with a catalytically active substance, such as 1-3 g/lead peroxide, for example 1-3 g/20-30 g/lead peroxide.

温 度 100〜150℃ 浸漬時間 3〜50分 化成処理に際しては、被覆面を予じめ前処理す
ることが適当である。
Temperature: 100-150°C Immersion time: 3-50 minutes During chemical conversion treatment, it is appropriate to pre-treat the coated surface in advance.

処理方法には酸性酸化法では硝酸1容、水1容
の混液に1時間程度浸漬する方法、過塩素酸30重
量%、塩化カリ1重量%の水溶液に2―3分浸漬
する方法がある。
In the acid oxidation method, there are two methods: immersion in a mixture of 1 volume of nitric acid and 1 volume of water for about 1 hour, and immersion in an aqueous solution of 30% by weight of perchloric acid and 1% by weight of potassium chloride for 2 to 3 minutes.

次に金属組成物の酸化物を密着させる場合(鏡
面を有する基板には特に制限はないが)次の諸要
件を具備することが必要である。
Next, when adhering the oxide of the metal composition (although there are no particular restrictions on the substrate having a mirror surface), it is necessary to meet the following requirements.

(1) 選択吸収面の特性(赤外域で反射率が高いこ
と)を具備するため、酸化物は赤外域で透明で
赤外線を照射すれば酸化物を透過して基板で反
射されること。
(1) Because it has the characteristics of a selective absorption surface (high reflectance in the infrared region), the oxide is transparent in the infrared region, and when infrared rays are irradiated, it passes through the oxide and is reflected by the substrate.

(2) 酸化被膜の生長は基板の凹凸に左右され、平
滑面上に生成する被膜は堅く密着性が良いこ
と。
(2) The growth of the oxide film depends on the unevenness of the substrate, and the film formed on a smooth surface is hard and has good adhesion.

(3) 可視および近赤外域において鏡面を有するこ
とは干渉効果がぼけない。
(3) Having a mirror surface in the visible and near-infrared regions prevents interference effects from blurring.

従つて反射防止効果がしつかり現われる。 Therefore, the anti-reflection effect appears strongly.

吸収に関しては粗面化した面においても吸収
率が増すがどちらの効果を重視するかの選択は
製作者の選択による。
Regarding absorption, the absorption rate increases even on a roughened surface, but it is up to the manufacturer to choose which effect to emphasize.

(4) 基板の平滑さについては基板の赤外線放射を
低くすることが必要で、そのためには赤外線に
対して殆んど平滑であることが必要である。
(4) Regarding the smoothness of the substrate, it is necessary to reduce the infrared radiation of the substrate, and for this purpose, it is necessary that the substrate be almost smooth against infrared rays.

鏡面が過度に粗面化した場合には、選択吸収
面の吸収域が波長3〜8μmの赤外領域まで達
し分光特性上好ましくない。
If the mirror surface is excessively roughened, the absorption range of the selective absorption surface will reach the infrared region with a wavelength of 3 to 8 μm, which is unfavorable in terms of spectral characteristics.

基板の材料には例えば、各種金属板、不銹鋼
板、合成樹脂板などが使用される。太陽放射の波
長帯において吸収率が大(すなわち反射率が
小)、赤外域における放射率が小(すなわち反射
率大)なる選択吸収面の分光的特性を十二分に発
揮させる為には不銹鋼酸化物を密着させる基板の
密着前の面状態が非常に重要なものとなる。
Examples of materials used for the substrate include various metal plates, stainless steel plates, and synthetic resin plates. In order to fully utilize the spectral characteristics of the selective absorption surface, which has a high absorption rate (that is, a small reflectance) in the solar radiation wavelength band and a small emissivity (that is, a large reflectance) in the infrared region, stainless steel is used. The surface condition of the substrate to which the oxide is adhered before the adhesion is very important.

通常選択吸収面の性能向上の為に、太陽放射の
波長に対しては十分粗面であり、赤外の波長に対
しては十分平滑な面が良しとされているが、明確
な実験的裏付けはなされていない。粗面化された
面は繰り返し反射により、吸収率を増すが干渉効
果を利用した反射防止膜にはマイナスの効果が予
想される。しかしこの事も実際は面の凹凸の程度
によるものである。
Normally, in order to improve the performance of a selective absorption surface, a surface that is sufficiently rough for solar radiation wavelengths and sufficiently smooth for infrared wavelengths is considered good, but there is no clear experimental support for this. Not talked about. A roughened surface increases absorption through repeated reflections, but antireflection films that utilize interference effects are expected to have negative effects. However, this actually depends on the degree of unevenness of the surface.

本発明においては、基板表面の粗さは同一出願
人の出願に係る特願昭54−151980号明細書に記載
の如く、JIS B0601に規定される表面あらさRaが
0.07μ以下またはRzが0.2μ以下の表面状態が適
当である。
In the present invention, the roughness of the substrate surface is determined by the surface roughness Ra specified in JIS B0601, as described in Japanese Patent Application No. 151980/1980 filed by the same applicant.
A surface condition with Rz of 0.07μ or less or Rz of 0.2μ or less is suitable.

金属板の表面加工は機械研摩、化学研摩、電解
研摩の方法によつてなされる。
The surface of the metal plate is processed by mechanical polishing, chemical polishing, or electrolytic polishing.

次に金属組成物の酸化物を基板に密着させる方
法には次の方法がある。
Next, there are the following methods for bringing the oxide of the metal composition into close contact with the substrate.

(1) 一定組成を有する不銹鋼自体の表面を酸性酸
化法又はアルカリ性酸化法で化成処理する方
法。
(1) A method in which the surface of stainless steel itself, which has a certain composition, is chemically treated using an acid oxidation method or an alkaline oxidation method.

(2) 密着性を改善するためスパツタリング法、ア
ーク放電法などの特殊活性蒸着法。
(2) Special active deposition methods such as sputtering and arc discharge methods to improve adhesion.

この方法では活性化ガスとして酸素が使用さ
れ、酸素中で蒸着すれば金属酸化物の被膜が得
られる。
In this method, oxygen is used as the activating gas, and metal oxide coatings are obtained when deposited in oxygen.

(3) 金属組成物の酸化物粉末を可視光線および赤
外線において比較的透明なバインダー例えばポ
リエチレン、ケイ素樹脂で接着させる方法。
(3) A method of bonding oxide powder of a metal composition with a binder that is relatively transparent in visible light and infrared rays, such as polyethylene or silicone resin.

(4) 不銹鋼以外の基板上に不銹鋼を密着させ、こ
れを化成処理する方法。密着方法には例えば鉄
板上にクロマイジング(クロムを拡散浸透する
方法)を施す方法、クラツドメタル等がある。
(4) A method of attaching rustless steel to a substrate other than stainless steel and subjecting it to chemical conversion treatment. Examples of adhesion methods include chromizing (a method of diffusing and penetrating chromium) on an iron plate, clad metal, and the like.

このようにして形成された一定組成を有する金
属の酸化物薄膜による選択吸収性受熱面の分光学
的特性および反射防止効果は不銹鋼酸化被膜の膜
厚に左右され、干渉作用による反射防止効果をも
兼ね備えた不銹鋼酸化被膜の適正膜厚(dc)
は、膜の光学的厚さn.dが1250Å≦n.d≦2500Åで
屈折率(n1)が2.0≦n1≦2.5とすると、500Å≦d
≦1250Åとなる。
The spectroscopic properties and anti-reflection effect of the selectively absorbing heat-receiving surface formed in this manner by the metal oxide thin film having a certain composition depend on the thickness of the stainless steel oxide film, and the anti-reflection effect due to interference effects also depends on the thickness of the stainless steel oxide film. Appropriate film thickness (dc) of stainless steel oxide film
If the optical thickness nd of the film is 1250 Å≦nd≦2500 Å and the refractive index (n 1 ) is 2.0≦n 1 ≦2.5, then 500 Å≦d
≦1250Å.

適正膜厚がこの範囲から若干ずれた場合でも選
択吸収面としての性能はかなりのものがあるた
め、適正膜厚の範囲は500Åないし2000Åにして
も何等差しつかえない。
Even if the proper film thickness deviates slightly from this range, the performance as a selective absorption surface is quite good, so there is no problem even if the proper film thickness is in the range of 500 Å to 2000 Å.

この値は、基板として不銹鋼を選んだ場合のみ
でなく、不銹鋼以外適当な鏡面を有する基板上に
不銹鋼酸化物被膜を密着せしめた場合も有効であ
る。
This value is valid not only when stainless steel is selected as the substrate, but also when the stainless steel oxide film is closely adhered to a substrate other than stainless steel with a suitable mirror surface.

この場合、基板の屈折率が4.0以上の高い値を
示す材料を基板として選んだ場合には、基板とし
て不銹鋼を使用した場合よりも一層優れた選択吸
収面となる。
In this case, if a material with a high refractive index of 4.0 or more is selected as the substrate, the selective absorption surface will be even better than if stainless steel is used as the substrate.

例 〔683/8(ISO)、430(AISI)、SUS430
(JIS)〕で代表されるフエライト系不銹鋼に一定
量の新規添加元素を配合したものを次の酸化条件
で酸化処理して酸化被膜を形成させた。
Example [683/8 (ISO), 430 (AISI), SUS430
(JIS)] was mixed with a certain amount of new additive elements and was oxidized to form an oxide film under the following oxidation conditions.

酸化条件: 重クロム酸ナトリウム 100g/ 硫 酸 400g/ 温 度 106―108℃ 処理時間 30〜35分 得られた選択吸収面の分光反射特性を第1図に
示した。第1図において曲線1はフエライト系不
銹鋼に本発明の新規添加元素を加えたものを酸化
処理して得られた選択吸収面の分光反射特性を示
すものである。
Oxidation conditions: Sodium dichromate 100g/Sulfuric acid 400g/Temperature 106-108°C Treatment time 30-35 minutes The spectral reflection characteristics of the selective absorption surface obtained are shown in Figure 1. In FIG. 1, curve 1 shows the spectral reflection characteristics of a selective absorption surface obtained by oxidizing ferritic stainless steel to which the novel additive element of the present invention is added.

第1図からわかるようにフエライト系不銹鋼に
本発明の新規添加元素を加えたものを酸化処理し
て得られた選択吸収面の分光反射特性は本出願人
と同一出願人の出願に係る特願昭54−151980号第
10図曲線1に示されるようにフエライト系不銹
鋼に添加元素を加えたものを酸化処理して得られ
る選択吸収面の分光反射特性と同程度の優れた分
光反射特性を示すことがわかつた。
As can be seen from Figure 1, the spectral reflection characteristics of the selective absorption surface obtained by oxidizing ferritic stainless steel to which the new additive element of the present invention has been added are related to the patent application filed by the same applicant as the present applicant. As shown in Figure 10 of Curve 1 of No. 151980/1984, it exhibits excellent spectral reflection characteristics comparable to the spectral reflection characteristics of the selective absorption surface obtained by oxidizing ferritic stainless steel with additive elements added. I found out.

又フエライト系不銹鋼の低炭素含量のものにそ
れぞれ新規添加元素としてN、Cu、Al、V、
Y、Mo、Ti、Nb、W、Zr、U、Ta、Hf、Thか
ら選ばれた少なくとも1種類の元素を各元素につ
き5.0重量%以下添加したものを前記酸化条件で
酸化処理して得られた選択吸収面の分光反射特性
は第1図曲線1に示すものと同程度であつた。
In addition, new elements such as N, Cu, Al, V,
Obtained by oxidizing a material to which at least one element selected from Y, Mo, Ti, Nb, W, Zr, U, Ta, Hf, and Th is added in an amount of 5.0% by weight or less for each element under the above-mentioned oxidation conditions. The spectral reflection characteristics of the selected absorption surface were comparable to those shown in curve 1 of FIG.

本発明の選択吸収面の特長を示せば次の如くで
ある。
The features of the selective absorption surface of the present invention are as follows.

基板としてフエライト系不銹鋼を用いる場合は
分光特性がすぐれ安価である利点があるが、溶接
性、加工性、耐蝕性においてオーステナイト系不
銹鋼に比べ若干劣るのでこれらの諸欠点を改良し
た。即ちフエライト系不銹鋼を基板としこれに一
定の新規添加元素を配合したものを使用し、特に
フエライト系不銹鋼を低炭素含量にしたものに一
定の新規添加元素を配合したものを使用すること
によつてオーステナイト系不銹鋼と同程度のすぐ
れた耐蝕性、溶接性を維持できる利点がある。
When using ferritic stainless steel as a substrate, it has the advantage of excellent spectral properties and low cost, but it is slightly inferior to austenitic stainless steel in terms of weldability, workability, and corrosion resistance, so these drawbacks were improved. That is, by using a ferritic stainless steel as a substrate and blending certain new additive elements with it, in particular, by using a ferritic stainless steel with a low carbon content and a certain new additive element blending. It has the advantage of maintaining excellent corrosion resistance and weldability comparable to austenitic stainless steel.

追加の関係 特許第1367349号(特公昭61−36142号)はフエ
ライト系不銹鋼を基板とした選択吸収面に関する
ものであり、更にフエライト系不銹鋼に特定の添
加元素(Ti、Nb、Ta、U、Th、W、Zr、Hf)
を配合して選択吸収面の耐腐蝕性、加工性、溶接
性を改善することに関するものである。
Additional relations Patent No. 1367349 (Japanese Patent Publication No. 61-36142) relates to a selective absorption surface using a ferritic stainless steel as a substrate, and furthermore, patent No. 1367349 (Japanese Patent Publication No. 61-36142) relates to a selective absorption surface using a ferritic stainless steel as a substrate, and furthermore, the ferritic stainless steel has specific additive elements (Ti, Nb, Ta, U, Th). , W, Zr, Hf)
This invention relates to improving the corrosion resistance, workability, and weldability of selective absorption surfaces by blending them with the following.

一方、本願はフエライト系不銹鋼に新規の特定
添加元素(N、Cu、Al、V、Y、Mo)を配合し
更にこれを低炭素にして新規特定添加元素N、
Cu、Al、V、Y、Mo、Ti、Nb、W、Zr、U、
Ta、Th、Hfを配合して選択吸収面の耐腐蝕性、
加工性、溶接性を改善することに関するものであ
る。
On the other hand, the present application blends new specific additive elements (N, Cu, Al, V, Y, Mo) into ferrite-based stainless steel, and furthermore, makes it low in carbon and adds new specific additive elements (N, N, Cu, Al, V, Y, Mo).
Cu, Al, V, Y, Mo, Ti, Nb, W, Zr, U,
Combining Ta, Th, and Hf to improve corrosion resistance on the selective absorption surface.
This relates to improving workability and weldability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフエライト系不銹鋼に新規特定添加元
素を加えたものを酸化処理して得られた選択吸収
面の分光反射特性を示す図である。
FIG. 1 is a diagram showing the spectral reflection characteristics of a selective absorption surface obtained by oxidizing a ferritic stainless steel to which a new specific additive element has been added.

Claims (1)

【特許請求の範囲】 1 C 0.001―0.15重量%、Si 0.005―3.00重量
%、Mn 0.005―10.00重量%、Cr 11.00―30.00重
量%および添加元素としてN、Cu、Al、V、
Ti、Nb、Mo、W、Zr、Y、U、Ta、Th、Hfか
ら選ばれる少なくとも1種類の元素を各元素につ
き5.0重量%以下、残部Feより成る金属組成物の
酸化物で構成され、500―2000Åの膜厚を有す
る、0.3ないし2.5μmの波長帯において高いエネ
ルギ吸収率を示すとともに、3ないし50μmの波
長帯において低いエネルギ放射率を示す被膜を、
JIS B 0601に規定される表面あらさRaが0.07
μ以下、またはRzが0.2μ以下である鏡面を有す
る基板上に形成してなる、太陽熱利用集熱器の選
択吸収面。 2 C 0.001―0.15重量%、Si 0.005―3.00重量
%、Mn 0.005―10.00重量%、Cr 11.00―30.00重
量%および添加元素としてN、Cu、Al、V、
Ti、Nb、Mo、W、Zr、Y、U、Ta、Th、Hfか
ら選ばれる少なくとも1種類の元素を各元素につ
き5.0重量%以下、残部Feより成る組成を有し、
しかもJIS B 0601に規定される表面あらさRa
が0.07μ以下、またはRzが0.2μ以下である鏡面
を有する不銹鋼板を、重クロム酸ナトリウムまた
は重クロム酸カリウム100ないし400g/および
硫酸400ないし800g/で成る酸性浴または無水
クロム酸40ないし700g/および硫酸150ないし
700g/で成る酸性浴中、50℃ないし前記酸性浴
の沸点温度の範囲の温度、浸漬時間3ないし40分
間で化成処理して膜厚500ないし2000Åする、0.3
ないし2.5μmの波長帯において高いエネルギ吸
収率を示すとともに、3ないし50μmの波長帯に
おいて低いエネルギ放射率を示す被膜を、前記不
銹鋼板の鏡面上に形成することを特徴とする、太
陽熱利用集熱器の選択吸収面の製法。 3 C 0.001―0.15重量%、Si 0.005―3.00重量
%、Mn 0.005―10.00重量%、Cr 11.00―30.00重
量%および添加元素としてN、Cu、Al、V、
Ti、Nb、Mo、W、Zr、Y、U、Ta、Th、Hfか
ら選ばれる少なくとも1種類の元素を各元素につ
き5.0重量%以下、残部Feより成る組成を有し、
しかもJIS B 0601に規定される表面あらさRa
が0.07μ以下、またはRzが0.2μである鏡面を有
する不銹鋼板を、水酸化ナトリウム又は水酸化カ
リウム130ないし200g/、リン酸三ナトリウム
又はリン酸三カリウム30ないし40g/、亜硝酸
ナトリウムもしくは亜硝酸カリウム又は硝酸ナト
リウムもしくは硝酸カリウム20ないし30g/を
基本浴とし、これに触媒として水酸化第二鉄1な
いし3g/及び酸化鉛を添加してなるアルカリ
浴中、温度100ないし150℃、浸漬時間3ないし50
分間で化成処理して膜厚500ないし2000Åする、
0.3ないし2.5μmの波長帯において高いエネルギ
吸収率を示すとともに、3ないし50μmの波長帯
において低いエネルギ放射率を示す被膜を、前記
不銹鋼板の鏡面上に形成することを特徴とする、
太陽熱利用集熱器の選択吸収面の製法。
[Claims] 1 C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, and additional elements such as N, Cu, Al, V,
Consisting of an oxide of a metal composition consisting of at least one element selected from Ti, Nb, Mo, W, Zr, Y, U, Ta, Th, Hf, each element in an amount of 5.0% by weight or less, and the balance Fe, A coating having a film thickness of 500-2000 Å that exhibits high energy absorption in the wavelength band of 0.3 to 2.5 μm and low energy emissivity in the wavelength band of 3 to 50 μm,
Surface roughness Ra specified by JIS B 0601 is 0.07
A selective absorption surface of a solar heat collector formed on a substrate having a mirror surface with an Rz of 0.2 μ or less. 2 C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, and additional elements such as N, Cu, Al, V,
It has a composition of at least one element selected from Ti, Nb, Mo, W, Zr, Y, U, Ta, Th, and Hf, with each element containing 5.0% by weight or less, and the balance consisting of Fe,
Moreover, the surface roughness Ra specified in JIS B 0601
is 0.07μ or less, or Rz is 0.2μ or less, in an acid bath consisting of 100 to 400 g of sodium dichromate or potassium dichromate and 400 to 800 g of sulfuric acid, or 40 to 700 g of chromic anhydride. / and sulfuric acid 150 to
0.3 to 500 to 2,000 Å in thickness in an acidic bath consisting of 700 g/g/g/m at a temperature ranging from 50°C to the boiling point of the acidic bath for immersion time of 3 to 40 minutes.
2.5 μm to 2.5 μm wavelength band, and 3 to 50 μm wavelength band exhibiting low energy emissivity coating is formed on the mirror surface of the stainless steel plate. How to make the absorbent surface of the vessel. 3 C 0.001-0.15% by weight, Si 0.005-3.00% by weight, Mn 0.005-10.00% by weight, Cr 11.00-30.00% by weight, and additional elements such as N, Cu, Al, V,
It has a composition of at least one element selected from Ti, Nb, Mo, W, Zr, Y, U, Ta, Th, and Hf, with each element containing 5.0% by weight or less, and the balance consisting of Fe,
Moreover, the surface roughness Ra specified in JIS B 0601
A stainless steel plate with a specular surface of 0.07 μ or less or Rz of 0.2 μ is treated with 130 to 200 g of sodium hydroxide or potassium hydroxide, 30 to 40 g of trisodium phosphate or tripotassium phosphate, and sodium nitrite or nitrite. In an alkaline bath consisting of potassium nitrate, sodium nitrate, or 20 to 30 g of potassium nitrate as a basic bath, to which 1 to 3 g of ferric hydroxide and lead oxide are added as catalysts, at a temperature of 100 to 150°C, for an immersion time of 3 to 3. 50
Chemical conversion treatment takes just a few minutes to achieve a film thickness of 500 to 2000 Å.
characterized by forming a coating on the specular surface of the stainless steel plate that exhibits a high energy absorption rate in a wavelength band of 0.3 to 2.5 μm and a low energy emissivity in a wavelength band of 3 to 50 μm;
Manufacturing method for selective absorption surfaces of solar heat collectors.
JP12345180A 1980-09-08 1980-09-08 Selective absorption face of solar heat utilizing heat collector and preparation thereof Granted JPS5653346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12345180A JPS5653346A (en) 1980-09-08 1980-09-08 Selective absorption face of solar heat utilizing heat collector and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12345180A JPS5653346A (en) 1980-09-08 1980-09-08 Selective absorption face of solar heat utilizing heat collector and preparation thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP542276A Division JPS5289837A (en) 1975-09-22 1976-01-22 Selective absorption surface for heat collector utilizing solar heat

Publications (2)

Publication Number Publication Date
JPS5653346A JPS5653346A (en) 1981-05-12
JPS6237299B2 true JPS6237299B2 (en) 1987-08-12

Family

ID=14860926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12345180A Granted JPS5653346A (en) 1980-09-08 1980-09-08 Selective absorption face of solar heat utilizing heat collector and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5653346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279780A (en) * 2013-07-04 2015-01-14 北京有色金属研究总院 Transition metal nitride heat absorption coating

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146083A1 (en) * 1981-11-20 1983-05-26 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Method of producing an absorber for solar installations
JPS59203477A (en) * 1983-05-02 1984-11-17 Nikken Sutamii Kk Processed food made from seaweed and its preparation
JPS6043359A (en) * 1983-08-22 1985-03-07 Nikken Sutamii Kk Low-calorific food and production thereof
CN103017384B (en) * 2012-11-30 2014-10-15 中国科学院上海技术物理研究所 Carbon film auxiliary solar energy selective absorption film system and preparation method thereof
CN106091443A (en) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 A kind of slective solar energy absorbing coating
CN106091444A (en) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 A kind of coating for selective absorption of sunlight spectrum
CN106091445A (en) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 A kind of solar selectively absorbing coating
CN106091442A (en) * 2016-06-06 2016-11-09 南宁可煜能源科技有限公司 A kind of slective solar energy absorbing coating with double ceramic structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415327A (en) * 1977-07-07 1979-02-05 Obayashi Gumi Kk Hydraulic concrete crusher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415327A (en) * 1977-07-07 1979-02-05 Obayashi Gumi Kk Hydraulic concrete crusher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279780A (en) * 2013-07-04 2015-01-14 北京有色金属研究总院 Transition metal nitride heat absorption coating
CN104279780B (en) * 2013-07-04 2016-07-06 北京有色金属研究总院 A kind of transition metal nitride heat absorbing coating

Also Published As

Publication number Publication date
JPS5653346A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
US4097311A (en) Absorption surface of solar collector
JPS6237299B2 (en)
JPWO2009041528A1 (en) Watch cover glass
US5253105A (en) Solar mirror, process for its manufacture and its use
US4490184A (en) Corrosion resistant thermal control material and process
JP2005114649A (en) Cover glass for timepiece
NO144365B (en) SELECTIVE ABSORPTION SURFACE, FOR SOLAR COLLECTOR, AND PROCEDURES IN THE PREPARATION OF THIS
TW415922B (en) Light absorptive anti-reflector and method for manufacturing the same
JPS6135456B2 (en)
JPS5819950B2 (en) Manufacturing method of solar heat selective absorption board
JPS6136142B2 (en)
US4145234A (en) Process for providing aluminum substrates with light-absorptive surface layer
US4444600A (en) Process for making a selective absorber for a solar collector and selective absorber obtained
EP0067567A2 (en) Selective solar surfaces
KR820001485B1 (en) Absorbing surface of solar collecting
KR820001483B1 (en) Method for manufacturing surface of absorption for solar collector
US4490412A (en) Method of making a solar energy collector element
JPS6042390B2 (en) Manufacturing method for selectively absorbing heat-receiving surface of solar heat collector
US4330344A (en) Selective absorber of solar energy and process for producing same
FR2476144A1 (en) SELECTIVE SOLAR ENERGY ABSORBER AND METHOD FOR MANUFACTURING THE SAME
JP2006336960A (en) Selective absorbing surface of solar heat collector and its manufacturing method
JPH07139819A (en) Solar heat absorber
JPS62155471A (en) Heat collector utilizing solar heat
EP3835682B1 (en) Solar-heat-collecting pipe
JPS60117056A (en) Heat collector and manufacture thereof