JP2005114649A - Cover glass for timepiece - Google Patents

Cover glass for timepiece Download PDF

Info

Publication number
JP2005114649A
JP2005114649A JP2003351727A JP2003351727A JP2005114649A JP 2005114649 A JP2005114649 A JP 2005114649A JP 2003351727 A JP2003351727 A JP 2003351727A JP 2003351727 A JP2003351727 A JP 2003351727A JP 2005114649 A JP2005114649 A JP 2005114649A
Authority
JP
Japan
Prior art keywords
film
sio
layer
cover glass
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003351727A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshino
信幸 吉野
Atsushi Sato
惇司 佐藤
Yukio Miya
行男 宮
Yuji Fukazawa
裕二 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2003351727A priority Critical patent/JP2005114649A/en
Publication of JP2005114649A publication Critical patent/JP2005114649A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cover glass for a timepiece having high hardness, excellent abrasion resistance, and anti-reflection function hardly damaged even if carried for a long period. <P>SOLUTION: In this cover glass for the time piece equipped with an anti-reflection coating whose outermost surface layer is made of SiO<SB>2</SB>, the hardness of the anti-reflection coating surface is raised and the abrasion resistance thereof is remarkably raised by including 0.1-10.0 atom%, more preferably, 0.2-5.0 atom% of nitrogen, in the SiO<SB>2</SB>coating of the outermost surface layer at least on the surface. Resultantly, the cover glass for the time piece has the anti-reflection function not having, even if carried for a long period, the problem wherein the surface is clouded and a pointer or a dial become difficult to be viewed because the surface of the anti-reflection coating is finely damaged or exfoliated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、時計用カバーガラスに関し、特に、長期間に亘る反射防止機能と耐傷性に優れた時計用カバーガラスに関する。   The present invention relates to a watch cover glass, and more particularly, to a watch cover glass having an excellent antireflection function and scratch resistance over a long period of time.

時計のカバーガラスには、青板ガラス(ソーダガラス)、白板ガラス、サファイアガラスなどが使用されている。これらのカバーガラスはいずれも可視光領域における反射率が大きく、指針や文字板の視認性が充分ではなかった。そのため、屋内、屋外、昼夜など様々な環境下で時刻を確認する時計では外光や照明が変化するため、これらの外光がカバーガラスの表面で反射し、時刻表示が見えにくい問題があった。   Blue glass (soda glass), white glass, sapphire glass, and the like are used for the watch cover glass. All of these cover glasses have a high reflectance in the visible light region, and the visibility of the pointer and dial is not sufficient. For this reason, in the watch that checks the time in various environments such as indoors, outdoors, and day and night, the external light and illumination change, so the external light is reflected on the surface of the cover glass and the time display is difficult to see. .

そのための解決方法としてカバーガラスの両面あるいは少なくとも片面に反射防止膜をコーティングすることが既に開示されている。(たとえば特許文献1参照)。   As a solution for that, it has already been disclosed to coat an antireflection film on both sides or at least one side of a cover glass. (For example, refer to Patent Document 1).

一般に反射防止膜は適当な屈折率を有する金属あるいは無機物の酸化物膜、窒化物膜、フッ化物膜、硫化物膜を限定した波長領域において所望の反射率となるように設計し、組み合わせることにより構成される。   In general, an antireflection film is designed and combined with a metal or inorganic oxide film, nitride film, fluoride film, or sulfide film having an appropriate refractive index so as to have a desired reflectance in a limited wavelength region. Composed.

特開2002−202401号公報(第1図、第2図)Japanese Patent Laid-Open No. 2002-202401 (FIGS. 1 and 2)

しかしながら、これらの反射防止膜はいずれも耐傷性等に劣り、例えばフッ化マグネシウムを最表層とする反射防止膜をコーティングしたカバーガラスを具備した腕時計を長期間携帯していると反射防止膜の表面に細かい傷が入ったり、剥離したりして、表面がくもってしまい、指針や文字板が見えにくくなってしまう問題があった。またフッ化マグネシウムに代わって硬度が高いといわれるSiO2を用いても上記の問題を解決することができなかった。 However, these antireflection films are inferior in scratch resistance and the like. For example, if a wristwatch equipped with a cover glass coated with an antireflection film having magnesium fluoride as the outermost layer is carried for a long time, the surface of the antireflection film There is a problem that the surface becomes cloudy due to fine scratches or peeling, and the pointer and dial are difficult to see. Further, even when SiO 2 which is said to have high hardness instead of magnesium fluoride is used, the above problem cannot be solved.

本発明の目的は、上記課題を解決して、耐摩耗性に優れ、長期間携帯しても傷の入りにくい反射防止機能を有した時計用カバーガラスを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a watch cover glass having an anti-reflection function that is excellent in wear resistance and hardly scratches even when carried for a long time.

上記目的を達成するために、本発明の時計用カバーガラスは、下記記載の構成を採用する。
本発明の時計用カバーガラスは、おもて面と裏面を有するガラス基材の両面にSiO2とSiNxとの積層膜からなる反射防止膜を備えた時計用カバーガラスであって、少なくともおもて面の最表層のSiO2膜中の窒素含有量が0.1〜10.0原子%の窒素を含むことを特徴とする。
In order to achieve the above object, the watch cover glass of the present invention employs the following configuration.
The watch cover glass of the present invention is a watch cover glass having an antireflection film made of a laminated film of SiO 2 and SiNx on both surfaces of a glass substrate having a front surface and a back surface. The nitrogen content in the outermost SiO 2 film of the top surface is characterized by containing 0.1 to 10.0 atomic% of nitrogen.

本発明の時計用カバーガラスは、おもて面と裏面を有するガラス基材の両面にSiO2とSiNxとの積層膜を有する反射防止膜を備えた時計用カバーガラスであって、少なくともおもて面の最表層のSiO2膜中の窒素の含有量が0.2原子%から5.0原子%の範囲にあることが好ましい。 The watch cover glass of the present invention is a watch cover glass comprising an antireflection film having a laminated film of SiO 2 and SiNx on both surfaces of a glass substrate having a front surface and a back surface. It is preferable that the content of nitrogen in the outermost surface SiO 2 film is in the range of 0.2 atomic% to 5.0 atomic%.

本発明の時計用カバーガラスは、前記反射防止膜が反応性スパッタリング法によって作
製することが好ましい。
In the watch cover glass of the present invention, the antireflection film is preferably produced by a reactive sputtering method.

本発明の時計用カバーガラスは、前記最表層のSiO2の膜厚が80nm以上であることが好ましい。 In the watch cover glass of the present invention, the thickness of the outermost SiO 2 film is preferably 80 nm or more.

(作用)
本発明者は、時計用カバーガラスにおける反射防止膜について鋭意、検討を進めた結果、おもて面と裏面の最表層がSiO2 膜とする反射防止膜を備えたガラス基板であり、少なくともおもて面の最表層のSiO2中にSiと結合した窒素原子(以下、Nと記す)を含有することによって、耐摩耗性に優れ、長期間携帯しても傷の入りにくい反射防止機能を有した時計用カバーガラスを提供することを可能にした。ここでおもて面とは時計のカバーガラスにおいて外気に曝されている面を言う。Nを最表層のSiO2 中のSiと結合させ、含有させるにはSiをターゲットとしてガスの交換だけでSiO2とSiNxを形成できる反応性スパッタリング法が適しており、O2ガスやArガスと共に少なくとも最表層のSiO2 の成膜時にNを含むガスを導入して、SiO2中にNを含有させることが好ましい。このことより成膜中にSiO2膜中の酸素が、容易にNと置換し、Siと結合したNからなる内部応力の大きい窒化物が形成され、膜の耐摩耗性、硬度を向上させる現象が生じていると推察している。更には、通常N2ガス雰囲気下に含まれる水分量は極力少なく、このため水分があると強度の弱い多孔質のSiO2が形成されてしまうが、N2ガス雰囲気のような水分の割合の少ない環境下で形成されるSiO2の膜は緻密で強固なアモルファス構造を取りやすくなることも一つの要因である。このようにして着色もせず、耐摩耗性に優れたSiO2膜が形成できる。
(Function)
As a result of earnest and examination of the antireflection film in the watch cover glass, the inventor is a glass substrate provided with an antireflection film in which the outermost layers on the front surface and the back surface are SiO 2 films. By containing nitrogen atoms bonded to Si (hereinafter referred to as N) in the outermost layer of SiO 2 on the front surface, it has excellent anti-abrasion and anti-reflection function that prevents scratches even when carried for a long time. It was possible to provide a watch cover glass having the same. Here, the front surface refers to the surface of the watch cover glass exposed to the outside air. In order to combine and contain N with Si in the outermost layer SiO 2 , a reactive sputtering method that can form SiO 2 and SiN x only by exchanging gas with Si as a target is suitable, together with O 2 gas and Ar gas. by introducing a gas containing N at least the outermost layer of the SiO 2 film formation, it is preferred to incorporate N in the SiO 2. As a result, the oxygen in the SiO 2 film is easily replaced with N during film formation, and a nitride having a large internal stress composed of N combined with Si is formed, thereby improving the wear resistance and hardness of the film. I guess that has occurred. Furthermore, the amount of water contained in the under normal N 2 gas atmosphere minimize this for SiO 2 weak porous strength when there is water will be formed, but the proportion of water, such as N 2 gas atmosphere One factor is that the SiO 2 film formed in a small environment is likely to have a dense and strong amorphous structure. In this way, it is possible to form a SiO 2 film which is not colored and has excellent wear resistance.

本発明者によるとNを含むガスを導入をしたサンプルの最適N含有量は、XPS(X線光電子分光装置)分析によって確認されており、その最適量は約0.1原子%〜約10.0原子%の範囲にあり、さらに耐摩耗性や硬度の観点から、さらに好ましくは0.2原子%〜5.0原子%の範囲が良いことが本発明者によって確認された。このようなN含有量を含むようにするためにはO2とN2とのガス流量の和に対するN2流量の比であるN2/(N2+O2 )の値が50%以上が好ましい。またガス流量比N2/(N2+O2 )の値が90%まで導入しても本発明ではSiO2膜の屈折率の値である1.47の値は殆ど変化せず、物質固有の値とほぼ同等であったが、90%を越えると屈折率は急激に大きくなり、SiNxの屈折率に近づく傾向にあることが分かった。 According to the present inventor, the optimum N content of a sample into which a gas containing N is introduced has been confirmed by XPS (X-ray photoelectron spectroscopy) analysis, and the optimum amount is about 0.1 atomic% to about 10. It has been confirmed by the present inventors that it is in the range of 0 atomic%, and more preferably in the range of 0.2 atomic% to 5.0 atomic% from the viewpoint of wear resistance and hardness. In order to include such N content, the value of N 2 / (N 2 + O 2 ), which is the ratio of the N 2 flow rate to the sum of the gas flow rates of O 2 and N 2 , is preferably 50% or more. . Further, even if the gas flow ratio N 2 / (N 2 + O 2 ) is introduced up to 90%, in the present invention, the value of 1.47 which is the refractive index value of the SiO 2 film hardly changes, and it is specific to the substance. Although it was almost the same as the value, when it exceeded 90%, the refractive index increased rapidly, and it was found that the refractive index tends to approach the refractive index of SiNx.

図4に本発明によるXPSによるN1s軌道光電子スペクトルを示す。この図から明らかなように本発明のSiO2中にSiと結合した窒素原子を含有する膜とSiNx膜とは明らかに異なるものであることが確認された。 FIG. 4 shows an N1s orbital photoelectron spectrum by XPS according to the present invention. As is clear from this figure, it was confirmed that the film containing nitrogen atoms bonded to Si in the SiO 2 of the present invention and the SiNx film are clearly different.

最表層のSiO2にNを含有させる際に、スパッタリングに使うターゲットをSiO2にした場合にはN2を含むガスを導入しても効果が無く、Siターゲットを用いた際の反応性スパッタ特有の現象であることも本発明者によって確認されている。これはSiターゲットをスパッタする方がSiO2ターゲットを用いてスパッタするよりもプラズマ空間や堆積する膜表面がより活性化した状態となって反応が促進されるためと考えられる。また、成膜速度もSiターゲットを用いる方が格段に早く、生産性の向上が期待できる。 When N is contained in the outermost layer SiO 2 , if the target used for sputtering is SiO 2 , there is no effect even if a gas containing N 2 is introduced, and it is unique to reactive sputtering when using a Si target. This phenomenon has also been confirmed by the present inventors. This is presumably because the sputtering of the Si target promotes the reaction because the plasma space and the deposited film surface are more activated than the sputtering using the SiO 2 target. In addition, the film formation rate is much faster when the Si target is used, and improvement in productivity can be expected.

最表層のSiO2の膜厚は80nm以上が適している。これは80nm未満で下地の影響を受け、硬度や耐摩耗性が劣るようになるためである。 The thickness of the outermost layer SiO 2 is suitably 80 nm or more. This is because the hardness and wear resistance are inferior due to the influence of the substrate below 80 nm.

スパッタ時には基板温度は70℃以上にしておくことが望ましい。これは基板温度を高くすることはスパッタされた粒子の基板上でのマイグレーションが活発となり、より緻密な膜ができるためと考えられる。このようにして、最表層のSiO2は硬度が高く、耐摩
耗性に優れるようになり、透明性を保持し、反射防止機能を有した時計用カバーガラスを提供することが可能となる。
It is desirable that the substrate temperature be 70 ° C. or higher during sputtering. This is presumably because an increase in the substrate temperature leads to active migration of sputtered particles on the substrate, resulting in a denser film. In this way, the outermost layer SiO 2 has high hardness and excellent wear resistance, and it is possible to provide a watch cover glass having transparency and an antireflection function.

以上、説明したように、本発明の時計用カバーガラスは最表層をSiO2 膜とする反射防止膜を備えた時計用カバーガラスであって、少なくとも表面の最表層のSiO2膜中にSiと結合したNを含有させたことによって反射防止膜表面の硬度が上昇し、耐摩耗性が著しく上昇する。その結果、長期間携帯しても反射防止膜が表面に細かい傷が入ったり、剥離したりして、表面がくもってしまい、指針や文字板が見えにくくなってしまう問題のない反射防止機能を有した時計用カバーガラスを提供することが可能となった。また、本発明によれば反射防止機能の劣化がないために文字板の装飾性が経時変化によって損なわれることがなくなる効果もある。また、文字板に太陽電池が装着されており、カバーガラスを通過した光を受光して時計を駆動させるための起電力を発生させる時計の場合、本発明では反射防止機能が劣化することがないため太陽電池の発電効率をさらに向上させる効果もある。 As described above, the watch cover glass of the present invention is a Si the outermost layer a watch cover glass having the antireflection film and SiO 2 film, in the outermost layer of the SiO 2 film of at least the surface By containing the bonded N, the hardness of the antireflection film surface is increased, and the wear resistance is remarkably increased. As a result, the anti-reflection film has an anti-reflection function that does not cause the problem that the anti-reflection film may be finely scratched or peeled off even if it is carried for a long time and the surface becomes cloudy, making it difficult to see the pointer and dial. It became possible to provide a cover glass for a watch. In addition, according to the present invention, since the antireflection function is not deteriorated, there is an effect that the decorativeness of the dial is not impaired by a change with time. Further, in the case of a timepiece in which a solar cell is mounted on the dial plate and receives electromotive force for driving the timepiece by receiving light that has passed through the cover glass, the antireflection function does not deteriorate in the present invention. Therefore, there is an effect of further improving the power generation efficiency of the solar cell.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の時計用カバーガラスの構造を示す断面模式図である。サファイヤガラス10のおもて面と裏面にSiO2あるいはSiNx(xは0より大きい任意の数字である)の窒化物膜の積層からなる反射防止膜110と210が被覆されており、さらにはおもて面の反射防止膜110の最表層にはSiO2膜1が被覆されており、この膜は一部がNと結合したSiO2 から構成されている。図2は反射防止膜を積層するためのスパッタリング装置の断面模式図である。本発明ではDC反応性スパッタリング装置を用いた。ターゲットはSiであり、ガス導入口32よりAr、HeあるいはNe等の不活性ガス、O2、N2ガスを導入してSiターゲットに電圧を印加することによりスパッタリングを行い、サファイヤガラス10に積層する。この時、Siターゲットに導電性を持たせ、安定なスパッタリングを行うためにボロンをドーピングしたSiターゲットを用いても良い。Siターゲットのスパッタリング法によって作製される膜はSiO2膜あるいSiNxで表せる窒化物膜、あるいSiOxNyであり、これは反応性ガスであるO2とN2ガスを切り換えることにより形成が可能である。 FIG. 1 is a schematic cross-sectional view showing the structure of a watch cover glass of the present invention. The front and back surfaces of the sapphire glass 10 are coated with antireflection films 110 and 210 made of a laminate of a nitride film of SiO 2 or SiNx (x is an arbitrary number greater than 0). The outermost surface layer of the antireflection film 110 on the front surface is covered with the SiO 2 film 1, and this film is made of SiO 2 partially bonded with N. FIG. 2 is a schematic sectional view of a sputtering apparatus for laminating an antireflection film. In the present invention, a DC reactive sputtering apparatus is used. The target is Si, and an inert gas such as Ar, He or Ne, O 2 , N 2 gas, etc. is introduced from the gas inlet 32 and a voltage is applied to the Si target to perform sputtering, and the sapphire glass 10 is laminated. To do. At this time, a Si target doped with boron may be used in order to give conductivity to the Si target and perform stable sputtering. The film produced by the sputtering method of the Si target is a SiO 2 film or a nitride film expressed by SiNx, or SiOxNy, which can be formed by switching between O 2 and N 2 gases which are reactive gases. is there.

反射防止膜の特性は積層する酸化物膜、窒化物膜の層数、配列順序、各膜の屈折率と膜厚に大きく依存しており、仕様を満足する反射率特性をシミュレーションによって計算し、最適化することができる。また、酸化物膜および窒化物膜の屈折率は成膜条件によって変えることも可能である。   The characteristics of the antireflection film are greatly dependent on the number of oxide films and nitride films to be stacked, the order of arrangement, the refractive index and thickness of each film, and the reflectance characteristics that satisfy the specifications are calculated by simulation. Can be optimized. Further, the refractive indexes of the oxide film and the nitride film can be changed depending on the film formation conditions.

また、時計用の反射防止膜としては波長400nmから700nmまでの可視光領域で図3に示すように反射率が5%以下であることが望ましく、そのためには図1に示すようにサファイヤガラス10のおもて面と裏面に反射防止膜を形成することが必須である。   Further, the antireflection film for a watch preferably has a reflectance of 5% or less as shown in FIG. 3 in the visible light region having a wavelength of 400 nm to 700 nm. For this purpose, the sapphire glass 10 is used as shown in FIG. It is essential to form antireflection films on the front and back surfaces.

以下に本発明の具体的な実施例について、図1〜図3を参照しながら説明する。
(実施例1)
本実施例における時計用カバーガラスは、図1に示すようにサファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210が被覆されている。反射防止膜110と反射防止膜210の膜構成は同じであり、本実施例ではSiO2とSiNxを用い、交互に積層した4層構造とした。最表層(第4層)からSiO2、SiNx、SiO2、SiNxの順番であり、膜厚は最表層(第4層)から100nm、70nm、20
nm、40nmである。また、SiNxの屈折率は1.97である。また、SiO2膜およびSiNx膜の屈折率はスパッタリング条件によって変えることも可能である。
Hereinafter, specific embodiments of the present invention will be described with reference to FIGS.
(Example 1)
In the watch cover glass in this embodiment, as shown in FIG. 1, the front surface of the sapphire glass 10 is coated with an antireflection film 110 and the back surface is coated with an antireflection film 210. The film configurations of the antireflection film 110 and the antireflection film 210 are the same. In this embodiment, SiO 2 and SiNx are used to form a four-layer structure in which the layers are alternately stacked. The order is from the outermost layer (fourth layer) to SiO 2 , SiNx, SiO 2 , SiNx, and the film thickness is 100 nm, 70 nm, 20 from the outermost layer (fourth layer).
nm, 40 nm. The refractive index of SiNx is 1.97. Further, the refractive indexes of the SiO 2 film and the SiNx film can be changed depending on the sputtering conditions.

本実施例での反射防止膜の製造方法であるDC反応性スパッタリング装置の概念図を図2に示す。   FIG. 2 shows a conceptual diagram of a DC reactive sputtering apparatus which is a method for producing an antireflection film in this example.

真空槽31の中にSiターゲット30を配置し、Siターゲット30に直流電圧を印加する。サファイヤガラス10は、Siターゲット30に対向するように設置する。Siターゲット30にはDC電源34が接続されている。   The Si target 30 is disposed in the vacuum chamber 31 and a DC voltage is applied to the Si target 30. The sapphire glass 10 is installed so as to face the Si target 30. A DC power source 34 is connected to the Si target 30.

図示していない真空ポンプにより、真空槽31内を1×10-5Torrまで排気し、図示していないヒーターにより、サファイヤガラス10を約200℃に加熱する。そしてガス導入口32より、混合ガスを導入し、以下の条件でDC反応性スパッタリングを行ない、反射防止膜110を積層させた。SiO2とSiNxの膜形成はガス種およびガス流量比を切り換えることにより可能である。以下に各層の成膜条件を下記に示す。
第1層(11)
Ar流量 20sccm
2流量 40sccm
DC出力 2000W(300V)
ガス圧力 3×10-3Torr

第2層(12)
Ar流量 20sccm
2流量 40sccm
DC出力 1500W(200V)
ガス圧力 3×10-3Torr

第3層(13)
Ar流量 20sccm
2流量 40sccm
DC出力 2000W(150V)
ガス圧力 3×10-3Torr

第4層(1)
Ar流量 20sccm
2流量 15sccm
2流量 15sccm
DC出力 2000W(300V)
ガス圧力 8×10-3Torr
The inside of the vacuum chamber 31 is exhausted to 1 × 10 −5 Torr by a vacuum pump (not shown), and the sapphire glass 10 is heated to about 200 ° C. by a heater (not shown). Then, a mixed gas was introduced from the gas inlet 32, DC reactive sputtering was performed under the following conditions, and the antireflection film 110 was laminated. The film formation of SiO 2 and SiNx is possible by switching the gas type and gas flow ratio. The film forming conditions for each layer are shown below.
First layer (11)
Ar flow rate 20sccm
N 2 flow rate 40sccm
DC output 2000W (300V)
Gas pressure 3 × 10 -3 Torr

Second layer (12)
Ar flow rate 20sccm
O 2 flow rate 40sccm
DC output 1500W (200V)
Gas pressure 3 × 10 -3 Torr

Third layer (13)
Ar flow rate 20sccm
N 2 flow rate 40sccm
DC output 2000W (150V)
Gas pressure 3 × 10 -3 Torr

Fourth layer (1)
Ar flow rate 20sccm
N 2 flow rate 15sccm
O 2 flow rate 15sccm
DC output 2000W (300V)
Gas pressure 8 × 10 -3 Torr

以上のようにしてサファイヤガラス10のおもて面に反射防止膜110を積層させた。この時、最表層(第4層)作製時にはO2とN2ガスの和に対するN2ガスのガス流量比(以下、ガス流量比)N2/(N2+O2)の値が50%になるように混合して導入した。このことによって、最表層(第4層)にはNが0.1原子%導入された。その後、サファイヤガラス10を裏返し、サファイヤガラス10の裏面にもおもて面と同様の操作を行い、反射防止膜210を積層させた。裏面の反射防止膜210もおもて面の反射防止膜110と同じ成膜条件であり、その膜構成も同じである。すなわち、最表層(第4層)からSiO2膜24、SiNx膜23、SiO2膜22、SiNx膜21の順番であり、膜厚は最表層(第4層)から100nm、70nm、20nm、40nmとなっている。 The antireflection film 110 was laminated on the front surface of the sapphire glass 10 as described above. At this time, the surface layer (fourth layer) O 2 and N 2 gas N 2 gas flow rate ratio of to the sum of the time produced (hereinafter, the gas flow rate) to 50% the value of N 2 / (N 2 + O 2) It mixed and introduced so that it might become. As a result, 0.1 atomic% of N was introduced into the outermost layer (fourth layer). Thereafter, the sapphire glass 10 was turned over, and the same operation as that of the front surface was performed on the back surface of the sapphire glass 10 so that the antireflection film 210 was laminated. The antireflection film 210 on the back surface has the same film formation conditions as the antireflection film 110 on the front surface, and the film configuration is also the same. That is, the outermost layer (fourth layer) is followed by the SiO 2 film 24, the SiNx film 23, the SiO 2 film 22, and the SiNx film 21, and the film thicknesses are 100 nm, 70 nm, 20 nm, and 40 nm from the outermost layer (fourth layer). It has become.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例2)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が54%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが0.2原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
(Example 2)
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost surface layer (fourth layer) on the front surface was mixed and introduced so that the gas flow ratio N 2 / (N 2 + O 2 ) was 54%. As a result, 0.2 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例3)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が56%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが1.2原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
(Example 3)
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost surface layer (fourth layer) on the front surface was mixed and introduced so that the gas flow ratio N 2 / (N 2 + O 2 ) was 56%. As a result, 1.2 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例4)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110を、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が58%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが2.2原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
Example 4
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost layer (fourth layer) on the front surface was mixed and introduced so that the gas flow rate ratio N 2 / (N 2 + O 2 ) was 58%. As a result, 2.2 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例5)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が62%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが4.8原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。
(Example 5)
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost layer (fourth layer) on the front surface was mixed and introduced so that the gas flow ratio N 2 / (N 2 + O 2 ) was 62%. As a result, 4.8 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.
As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例6)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が68%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが5.4原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
(Example 6)
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost layer (fourth layer) on the front surface was mixed and introduced so that the gas flow rate ratio N 2 / (N 2 + O 2 ) was 68%. As a result, 5.4 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例7)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が76%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが6.2原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
(Example 7)
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost layer (fourth layer) on the front surface was mixed and introduced so that the gas flow ratio N 2 / (N 2 + O 2 ) was 76%. As a result, 6.2 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例8)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が82%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが7.5原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
(Example 8)
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost layer (fourth layer) on the front surface was mixed and introduced so that the gas flow ratio N 2 / (N 2 + O 2 ) was 82%. As a result, 7.5 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, a watch cover glass having an antireflection function containing N in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. 1 is completed. did.

(実施例9)
次に実施例1と同様に、サファイヤガラス10のおもて面には反射防止膜110が、裏面には反射防止膜210を被覆した。この時、おもて面の最表層(第4層)作製時にはガス流量比N2/(N2+O2)の値が88%になるように混合して導入した。このことによって、最表層(第4層)SiO2にはSiと結合したNが9.8原子%導入された。その後、サファイヤガラス10を裏返し、おもて面と同様の操作を行い、反射防止膜210を積層させた。
Example 9
Next, as in Example 1, the front surface of the sapphire glass 10 was coated with an antireflection film 110 and the back surface was coated with an antireflection film 210. At this time, the outermost layer (fourth layer) on the front surface was mixed and introduced so that the gas flow rate ratio N 2 / (N 2 + O 2 ) was 88%. As a result, 9.8 atomic% of N bonded to Si was introduced into the outermost layer (fourth layer) SiO 2 . Thereafter, the sapphire glass 10 was turned over, and the same operation as that on the front surface was performed to laminate the antireflection film 210.

以上のようにして、本実施例によって、図1に示すようなサファイヤガラス10の少なくともおもて面の最表層のSiO2膜1にSiと結合したNを含有した反射防止機能を有する時計用カバーガラスが完成した。 As described above, according to the present embodiment, for a watch having an antireflection function containing N bonded to Si in the SiO 2 film 1 on the outermost surface of the sapphire glass 10 as shown in FIG. The cover glass was completed.

(比較例1)
次に比較例1としておもて面の最表層のSiO2膜1中にNを含有しない例を示す。作製方法は実施例1と同様であり、サファイヤガラス10のおもて面に反射防止膜110を積層させた。この時、第1層から第3層までは実施例1と全く同条件であるが最表層の第4層は以下の条件でN2ガスを流すことなく成膜した。
第4層(1) Ar流量 20sccm
2流量 40sccm
DC出力 2000W(300V)
ガス圧力 8×10-3Torr
すなわち、最表層(第4層)作製時にはO2とN2ガスのガス流量比N2/(N2+O2)の値が0%になるようにして導入した。このことによって、最表層(第4層)にはSiと結合したNを含まないSiO2 からなる膜が形成された。その後、サファイヤガラス10を裏返し、サファイヤガラス10の裏面におもて面と同様の操作を行い、反射防止膜210を積層させた。裏面の反射防止膜210もおもて面の反射防止膜110と同じ成膜条件であり、その膜構成も同じである。すなわち、最表層(第4層)からSiO2膜24、SiNx膜23、SiO2膜22、SiNx膜21の順番であり、膜厚は最表層(第4層)から100nm、70nm、20nm、40nmとなっている。以上のようにしてサファイヤガラス10のおもて面に反射防止膜110を、裏面に210を積層させた。 このことによって、最表層(第4層)にはNを含まないSiO2 膜からなる膜が形成された。
(Comparative Example 1)
Next, as Comparative Example 1, an example in which N is not contained in the outermost SiO 2 film 1 on the front surface will be described. The production method was the same as in Example 1, and an antireflection film 110 was laminated on the front surface of the sapphire glass 10. At this time, the conditions from the first layer to the third layer were exactly the same as those in Example 1, but the outermost layer, the fourth layer, was formed without flowing N 2 gas under the following conditions.
Fourth layer (1) Ar flow rate 20 sccm
O 2 flow rate 40sccm
DC output 2000W (300V)
Gas pressure 8 × 10 -3 Torr
That is, when the outermost layer (fourth layer) was manufactured, the gas flow ratio N 2 / (N 2 + O 2 ) between O 2 and N 2 was introduced so that the value was 0%. As a result, a film made of SiO 2 containing no N bonded to Si was formed on the outermost layer (fourth layer). Thereafter, the sapphire glass 10 was turned over, and the same operation as that of the front surface was performed on the back surface of the sapphire glass 10 to laminate the antireflection film 210. The antireflection film 210 on the back surface has the same film formation conditions as the antireflection film 110 on the front surface, and the film configuration is also the same. That is, the outermost layer (fourth layer) is followed by the SiO 2 film 24, the SiNx film 23, the SiO 2 film 22, and the SiNx film 21, and the film thicknesses are 100 nm, 70 nm, 20 nm, and 40 nm from the outermost layer (fourth layer). It has become. As described above, the antireflection film 110 was laminated on the front surface of the sapphire glass 10 and 210 was laminated on the back surface. As a result, a film made of an SiO 2 film containing no N was formed on the outermost layer (fourth layer).

(比較例2)
次に比較例2としておもて面の最表層のSiO2膜1中に本発明のNの含有量よりも少ない例を示す。作製方法は実施例1と同様であり、サファイヤガラス10のおもて面に反射防止膜110を積層させた。この時、第1層から第3層までは実施例1と全く同条件であるが最表層の第4層はガス流量比N2/(N2+O2)の値が10%になるように混合して導入した。このことによって、最表層(第4層)にはNを0.02原子%を含むSiO2膜が形成された。その後、サファイヤガラス10を裏返し、サファイヤガラス10の裏面におもて面と同様の操作を行い、反射防止膜210を積層させた。裏面の反射防止膜210もおもて面の反射防止膜110と同じ成膜条件であり、その膜構成も同じである。すなわち、最表層(第4層)からSiO2膜24、SiNx膜23、SiO2膜22、Si34膜21の順番であり、膜厚は最表層(第4層)から100nm、70nm、20nm、40nmとなっている。以上のようにしてサファイヤガラス10のおもて面と裏面に反射防止膜110と210を積層させた。
(Comparative Example 2)
Next, an example in which the content of N in the present invention is less in the outermost SiO 2 film 1 on the front surface will be shown as Comparative Example 2. The production method was the same as in Example 1, and an antireflection film 110 was laminated on the front surface of the sapphire glass 10. At this time, the conditions from the first layer to the third layer are exactly the same as in Example 1, but the value of the gas flow rate ratio N 2 / (N 2 + O 2 ) is 10% in the outermost layer, the fourth layer. Mixed and introduced. As a result, an SiO 2 film containing 0.02 atomic% of N was formed on the outermost layer (fourth layer). Thereafter, the sapphire glass 10 was turned over, and the same operation as that of the front surface was performed on the back surface of the sapphire glass 10 to laminate the antireflection film 210. The antireflection film 210 on the back surface has the same film formation conditions as the antireflection film 110 on the front surface, and the film configuration is also the same. That is, from the outermost layer (fourth layer) to the SiO 2 film 24, SiNx film 23, SiO 2 film 22, and Si 3 N 4 film 21, the film thickness is 100 nm, 70 nm from the outermost layer (fourth layer), 20 nm and 40 nm. The antireflection films 110 and 210 were laminated on the front and back surfaces of the sapphire glass 10 as described above.

(比較例3)
次に比較例3とし比較例2よりもややNの含有量が多い例を示す。作製方法は実施例1と同様であり、サファイヤガラス10のおもて面に反射防止膜110を積層させた。この時、第1層から第3層までは実施例1と全く同条件であるが最表層の第4層はガス流量比N2/(N2+O2)の値が20%になるように混合して導入した。このことによって、最表層(第4層)にはNを0.05原子%を含むSiO2膜が形成された。その後、サファイヤガラス10を裏返し、サファイヤガラス10の裏面におもて面と同様の操作を行い、反射防止膜210を積層させた。裏面の反射防止膜210もおもて面の反射防止膜110と同じ成膜条件であり、その膜構成も同じである。すなわち、最表層(第4層)からSiO2膜24、SiNx膜23、SiO2膜22、Si34膜21の順番であり、膜厚は最表層(第4層)から100nm、70nm、20nm、40nmとなっている。以上のようにしてサファイヤガラス10のおもて面と裏面にに反射防止膜110と210を積層させた。
(Comparative Example 3)
Next, an example in which the content of N is slightly higher than Comparative Example 2 as Comparative Example 3 will be shown. The production method was the same as in Example 1, and an antireflection film 110 was laminated on the front surface of the sapphire glass 10. At this time, the conditions from the first layer to the third layer are exactly the same as in Example 1, but the value of the gas flow rate ratio N 2 / (N 2 + O 2 ) is 20% in the outermost layer, the fourth layer. Mixed and introduced. As a result, an SiO 2 film containing 0.05 atomic% of N was formed on the outermost layer (fourth layer). Thereafter, the sapphire glass 10 was turned over, and the same operation as that of the front surface was performed on the back surface of the sapphire glass 10 to laminate the antireflection film 210. The antireflection film 210 on the back surface has the same film formation conditions as the antireflection film 110 on the front surface, and the film configuration is also the same. That is, from the outermost layer (fourth layer) to the SiO 2 film 24, SiNx film 23, SiO 2 film 22, and Si 3 N 4 film 21, the film thickness is 100 nm, 70 nm from the outermost layer (fourth layer), 20 nm and 40 nm. As described above, the antireflection films 110 and 210 were laminated on the front surface and the back surface of the sapphire glass 10.

(比較例4)
次に比較例4として比較例2と同様、おもて面の最表層のSiO2膜1中に本発明のNの含有量よりも少ない例を示す。作製方法は実施例1と同様であり、サファイヤガラス1
0のおもて面に反射防止膜110を積層させた。この時、第1層から第3層までは実施例1と全く同条件であるが最表層の第4層はガス流量比N2/(N2+O2)の値が30%になるように混合して導入した。このことによって、最表層(第4層)にはNを0.08原子%を含むSiO2膜が形成された。その後、サファイヤガラス10を裏返し、サファイヤガラス10の裏面におもて面と同様の操作を行い、反射防止膜210を積層させた。裏面の反射防止膜210もおもて面の反射防止膜110と同じ成膜条件であり、その膜構成も同じである。すなわち、最表層(第4層)からSiO2膜24、SiNx膜23、SiO2膜22、Si34膜21の順番であり、膜厚は最表層(第4層)から100nm、70nm、20nm、40nmとなっている。以上のようにしてサファイヤガラス10のおもて面と裏面にに反射防止膜110と210を積層させた。
(Comparative Example 4)
Next, as Comparative Example 4, as in Comparative Example 2, an example in which the content of N in the present invention is less in the outermost SiO 2 film 1 on the front surface will be shown. The production method is the same as in Example 1, and sapphire glass 1
An antireflection film 110 was laminated on the front surface of zero. At this time, the conditions from the first layer to the third layer are exactly the same as in Example 1, but the value of the gas flow ratio N 2 / (N 2 + O 2 ) is 30% in the outermost fourth layer. Mixed and introduced. As a result, a SiO 2 film containing 0.08 atomic% N was formed on the outermost layer (fourth layer). Thereafter, the sapphire glass 10 was turned over, and the same operation as that of the front surface was performed on the back surface of the sapphire glass 10 to laminate the antireflection film 210. The antireflection film 210 on the back surface has the same film formation conditions as the antireflection film 110 on the front surface, and the film configuration is also the same. That is, from the outermost layer (fourth layer) to the SiO 2 film 24, SiNx film 23, SiO 2 film 22, and Si 3 N 4 film 21, the film thickness is 100 nm, 70 nm from the outermost layer (fourth layer), 20 nm and 40 nm. As described above, the antireflection films 110 and 210 were laminated on the front surface and the back surface of the sapphire glass 10.

(比較例5)
次に比較例5としておもて面の最表層のSiO2膜1中に10.0原子%以上のNを含有する例を示す。作製方法は実施例1と同様であり、サファイヤガラス10のおもて面に反射防止膜110を積層させた。この時、第1層から第3層までは実施例1と全く同条件であるが最表層の第4層はガス流量比N2/(N2+O2)の値が95%になるように混合して導入した。このことによって、最表層(第4層)にはNを11.2原子%を含むSiO2膜が形成された。その後、サファイヤガラス10を裏返し、サファイヤガラス10の裏面におもて面と同様の操作を行い、反射防止膜210を積層させた。裏面の反射防止膜210もおもて面の反射防止膜110と同じ成膜条件であり、その膜構成も同じである。すなわち、最表層(第4層)からSiO2膜24、SiNx膜23、SiO2膜22、Si34膜21の順番であり、膜厚は最表層(第4層)から100nm、70nm、20nm、40nmとなっている。以上のようにしてサファイヤガラス10のおもて面と裏面に反射防止膜110と210を積層させた。
(Comparative Example 5)
Next, as Comparative Example 5, an example in which 10.0 atomic% or more of N is contained in the outermost SiO 2 film 1 on the front surface will be described. The production method was the same as in Example 1, and an antireflection film 110 was laminated on the front surface of the sapphire glass 10. At this time, the conditions from the first layer to the third layer are exactly the same as in Example 1, but the value of the gas flow rate ratio N 2 / (N 2 + O 2 ) is 95% in the outermost layer, the fourth layer. Mixed and introduced. As a result, a SiO 2 film containing 11.2 atomic% of N was formed on the outermost layer (fourth layer). Thereafter, the sapphire glass 10 was turned over, and the same operation as that of the front surface was performed on the back surface of the sapphire glass 10 to laminate the antireflection film 210. The antireflection film 210 on the back surface has the same film formation conditions as the antireflection film 110 on the front surface, and the film configuration is also the same. That is, from the outermost layer (fourth layer) to the SiO 2 film 24, SiNx film 23, SiO 2 film 22, and Si 3 N 4 film 21, the film thickness is 100 nm, 70 nm from the outermost layer (fourth layer), 20 nm and 40 nm. The antireflection films 110 and 210 were laminated on the front and back surfaces of the sapphire glass 10 as described above.

以上のようにして得られた実施例1〜9と比較例1〜5について、Nを含有した最表層のSiO2膜が発現する効果を評価するため、粒径10μmのアルミナ粒を分散させたラッピングフィルムと反射防止膜をコートしたこれらの各実施例および比較例の時計用カバーガラスを接触荷重500gにて接触させ、カバーガラスの表面を複数回往復運動させて、カバーガラスに傷が入り始める往復回数を評価する摺動摩耗試験をおこなった。この評価では100回以上摺動して傷が発生しなければ、その硬度、耐摩耗性は実用上充分であり、実際に携帯し、長期間使用しても傷や剥離はほとんど発生しない。その結果、表面がくもることもなく、指針や文字板が見えにくくならないことが既に本発明者において確認されている。さらにはナノインデンター(超微小領域硬度計)により表面の硬度を測定した。その結果を表1に示す。また、反射防止効果の優劣を評価するため摺動摩耗試験前の反射率特性の測定から得られた波長550nmにおける透過率も同時に示す。 For Examples 1 to 9 and Comparative Examples 1 to 5 obtained as described above, alumina particles having a particle diameter of 10 μm were dispersed in order to evaluate the effect of the outermost SiO 2 film containing N. The watch cover glass of each of these Examples and Comparative Examples coated with a wrapping film and an antireflection film was brought into contact with a contact load of 500 g, and the surface of the cover glass was reciprocated several times to start scratching the cover glass. A sliding wear test was performed to evaluate the number of reciprocations. In this evaluation, if scratches do not occur after sliding 100 times or more, the hardness and wear resistance are practically sufficient, and scars and peeling hardly occur even when actually carried and used for a long time. As a result, it has already been confirmed by the present inventor that the surface does not become cloudy and the pointer and the dial are not difficult to see. Furthermore, the hardness of the surface was measured with a nanoindenter (ultrafine area hardness meter). The results are shown in Table 1. Moreover, in order to evaluate the superiority or inferiority of the antireflection effect, the transmittance at a wavelength of 550 nm obtained from the measurement of the reflectance characteristics before the sliding wear test is also shown.

Figure 2005114649
Figure 2005114649

表1から分かるように、実施例1〜9、すなわちSiと結合したNが0.1原子%から約10.0原子%においては耐摩耗性を評価するための摺動摩耗試験結果では、100回
以上摺動しても傷の発生は全くなく、良好な耐摩耗性が得られ、特にN含有量が0.2原子%〜5.0原子%に該当する実施例2〜5はナノインデンターによる表面硬度測定においても高い値を示した。これらの反射率特性は摺動摩耗試験後も図3に示すままであり、550nmにおける透過率は96%以上であることが確認された。
As can be seen from Table 1, in the results of the sliding wear test for evaluating wear resistance in Examples 1 to 9, that is, when N bonded to Si is 0.1 atomic% to about 10.0 atomic%, No scratches were generated even after sliding more than once, good wear resistance was obtained, and in particular, Examples 2 to 5 corresponding to N content of 0.2 atomic% to 5.0 atomic% were nanoin A high value was also obtained in the surface hardness measurement by a denter. These reflectance characteristics remain as shown in FIG. 3 even after the sliding wear test, and it was confirmed that the transmittance at 550 nm was 96% or more.

一方、比較例1〜5ではいずれも摺動摩耗試験で100回に至らないうちにキズが入り、表面にくもりが発生した。その結果、反射率も図3に示す曲線よりも大きく変化し、反射率が5%を越える波長領域が発生し、文字板が見えにくくなる問題が生じた。ナノインデンターによる表面硬度測定でも表1に示すように実施例よりも遙かに低い値を示した。また、屈折率も特にN含有量が10.0%までは1.47とほぼ一定であったが、10.0%を越えると、より大きな値になり、反射防止膜を設計することが容易でなくなることが確認された。   On the other hand, in Comparative Examples 1 to 5, scratches occurred and the surface was clouded before reaching 100 times in the sliding wear test. As a result, the reflectance also changed greatly from the curve shown in FIG. 3, and a wavelength region where the reflectance exceeded 5% was generated, resulting in a problem that the dial was difficult to see. As shown in Table 1, the surface hardness measurement with a nanoindenter showed a value much lower than that of the example. In addition, the refractive index was almost constant at 1.47 until the N content was 10.0% in particular. However, when it exceeds 10.0%, the refractive index becomes larger and it is easy to design an antireflection film. It was confirmed that

図4に本発明の実施例3と比較例3におけるXPSによるN1s軌道光電子スペクトルを示す。この図から明らかなように本発明のSiO2中にSiと結合した窒素原子を含有する膜とSiNx膜とは明らかに異なるものであることが確認された。この違いはNがSiO2膜中の空孔や粒界に吸着、置換されて内部応力が大きくなり、ケミカルシフトを生じた結果と推察している。 FIG. 4 shows N1s orbital photoelectron spectra by XPS in Example 3 and Comparative Example 3 of the present invention. As is clear from this figure, it was confirmed that the film containing nitrogen atoms bonded to Si in the SiO 2 of the present invention and the SiNx film are clearly different. This difference is presumed to be the result of N being adsorbed and replaced by vacancies and grain boundaries in the SiO 2 film, increasing the internal stress and causing a chemical shift.

このように本発明によって、表面の硬度が高く、耐摩耗性に優れ、長期間携帯しても傷の入りにくい反射防止機能を有した時計用カバーガラスを提供することが可能となる。   As described above, according to the present invention, it is possible to provide a timepiece cover glass having a high surface hardness, excellent wear resistance, and having an antireflection function that is difficult to be damaged even when carried for a long period of time.

上記実施例ではN2ガスを用いたが、NH3ガスでも同様の効果を得ることができることが本発明者によって確認されている。また、本実施例では片面に反射防止膜が4層積層されている例を示したが、反射防止膜の積層数、組合せは数多くあり、これに限定するものではない。また、上記実施例ではおもて面と裏面は全く同じ膜構成であったが、少なくともおもて面のみのの最表層のSiO2膜中の窒素の含有量を0.1原子%から10.0原子%の範囲にしても良い。また、ガラス基材も上記実施例ではサファイヤガラスの例を示したが、これに限定されるものではなく、ソーダガラスや青板ガラス、白板ガラスあるいはプラスチック製ガラスでも良い。 In the above embodiment, N 2 gas is used, but it has been confirmed by the present inventor that the same effect can be obtained with NH 3 gas. In the present embodiment, an example in which four antireflection films are laminated on one side is shown, but there are many antireflection films and combinations thereof, and the present invention is not limited to this. In the above embodiment, the front surface and the back surface have exactly the same film structure, but at least the content of nitrogen in the outermost SiO 2 film of only the front surface is 0.1 atomic% to 10%. It may be in the range of 0.0 atomic%. Moreover, although the example of the sapphire glass was shown in the said Example also in the said Example, it is not limited to this, Soda glass, blue plate glass, white plate glass, or plastic glass may be sufficient.

反射防止膜を被覆した本発明の時計用カバーガラスの構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the watch cover glass of this invention which coat | covered the antireflection film. 反射防止膜を積層するためのスパッタリング装置の断面模式図である。It is a cross-sectional schematic diagram of the sputtering device for laminating | stacking an antireflection film. 反射防止膜を被覆した本発明の時計用カバーガラスの反射率の特性を示す反射率特性スペクトル図である。It is a reflectance characteristic spectrum figure which shows the characteristic of the reflectance of the cover glass for timepieces of this invention which coat | covered the antireflection film. 本発明のNが結合したSiを含有するSiO2とSiNxとのXPS(X線光電子分光分析装置)によるN1s軌道光電子スペクトル図である。A N1s orbital photoelectron spectrum diagram by XPS (X-ray photoelectron spectrometer) of SiO 2 and SiNx which N contains Si bound of the present invention.

符号の説明Explanation of symbols

1 SiO2
10 サファイヤガラス
11、13、21,23 Si34
12、22、24 SiO2
110、210 反射防止膜
30 Siターゲット
31 真空チャンバー
32 ガス導入口
34 DC電源
50 SiNx膜のN1s軌道光電子スペクトル
51 Nを含むSiO2膜のN1s光電子スペクトル
1 SiO 2 film 10 Sapphire glass 11, 13, 21, 23 Si 3 N 4 film 12, 22, 24 SiO 2 film 110, 210 Antireflection film 30 Si target 31 Vacuum chamber 32 Gas inlet 34 DC power supply 50 SiNx film N1s orbital photoelectron spectrum 51 N1s photoelectron spectrum of SiO 2 film containing N

Claims (4)

おもて面と裏面を有するガラス基材の両面にSiO2膜とSiNx膜との積層膜を有する反射防止膜を備えた時計用カバーガラスであって、少なくともおもて面の最表層のSiO2膜中の窒素の含有量が0.1原子%から10.0原子%の範囲にある時計用カバーガラス。 A watch cover glass having the antireflection film having a multilayer film of the SiO 2 film and the SiNx film on both surfaces of a glass substrate having a front surface and a back surface, the outermost layer of at least the front surface SiO 2 A watch cover glass having a nitrogen content in the range of 0.1 atomic% to 10.0 atomic%. 前記最表層のSiO2膜中の窒素の含有量が0.2原子%から5.0原子%の範囲にあることを特徴とする請求項1に記載の時計用カバーガラス。 2. The watch cover glass according to claim 1, wherein the content of nitrogen in the outermost SiO 2 film is in the range of 0.2 atomic% to 5.0 atomic%. 前記反射防止膜が反応性スパッタリング法によって作製されていることを特徴とする請求項1または請求項2に記載の時計用カバーガラス。 The timepiece cover glass according to claim 1 or 2, wherein the antireflection film is produced by a reactive sputtering method. 前記最表層のSiO2膜の厚さが80nm以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の時計用カバーガラス。 4. The timepiece cover glass according to claim 1, wherein a thickness of the outermost SiO 2 film is 80 nm or more. 5.
JP2003351727A 2003-10-10 2003-10-10 Cover glass for timepiece Pending JP2005114649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003351727A JP2005114649A (en) 2003-10-10 2003-10-10 Cover glass for timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003351727A JP2005114649A (en) 2003-10-10 2003-10-10 Cover glass for timepiece

Publications (1)

Publication Number Publication Date
JP2005114649A true JP2005114649A (en) 2005-04-28

Family

ID=34542884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003351727A Pending JP2005114649A (en) 2003-10-10 2003-10-10 Cover glass for timepiece

Country Status (1)

Country Link
JP (1) JP2005114649A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041528A1 (en) 2007-09-26 2009-04-02 Citizen Holdings Co., Ltd. Cover glass for watch
JP2010243164A (en) * 2009-04-01 2010-10-28 Seiko Epson Corp Translucent member, timepiece, and manufacturing method of the translucent member
CN102129215A (en) * 2010-01-19 2011-07-20 精工爱普生株式会社 Timepiece cover glass and timepiece
KR20150067278A (en) * 2012-10-03 2015-06-17 코닝 인코포레이티드 Surface-modified glass substrate
EP3026468A1 (en) 2014-11-28 2016-06-01 Seiko Epson Corporation Optical component and timepiece
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9720142B2 (en) 2014-11-28 2017-08-01 Seiko Epson Corporation Optical component and timepiece
US9726786B2 (en) 2014-05-12 2017-08-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
JP2018180006A (en) * 2018-07-19 2018-11-15 セイコーエプソン株式会社 Cover member and mechanical timepiece
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
CN111480123A (en) * 2017-12-19 2020-07-31 瑞纳蔚瑧钟表股份公司 Watch glass
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041528A1 (en) 2007-09-26 2009-04-02 Citizen Holdings Co., Ltd. Cover glass for watch
EP2196870A1 (en) * 2007-09-26 2010-06-16 Citizen Holdings Co., Ltd. Cover glass for watch
US20100196685A1 (en) * 2007-09-26 2010-08-05 Citizen Holdings Co., Ltd. Watch cover glass
US8568890B2 (en) 2007-09-26 2013-10-29 Citizen Holdings Co., Ltd. Watch cover glass
EP2196870A4 (en) * 2007-09-26 2014-05-14 Citizen Holdings Co Ltd Cover glass for watch
JP2010243164A (en) * 2009-04-01 2010-10-28 Seiko Epson Corp Translucent member, timepiece, and manufacturing method of the translucent member
CN102129215A (en) * 2010-01-19 2011-07-20 精工爱普生株式会社 Timepiece cover glass and timepiece
JP2011149710A (en) * 2010-01-19 2011-08-04 Seiko Epson Corp Timepiece cover glass and timepiece
EP2363766A3 (en) * 2010-01-19 2012-01-11 Seiko Epson Corporation Timepiece cover glass and timepiece
US8867320B2 (en) 2010-01-19 2014-10-21 Seiko Epson Corporation Timepiece cover glass and timepiece
KR20150067278A (en) * 2012-10-03 2015-06-17 코닝 인코포레이티드 Surface-modified glass substrate
JP2015535804A (en) * 2012-10-03 2015-12-17 コーニング インコーポレイテッド Surface modified glass substrate
KR101964492B1 (en) * 2012-10-03 2019-04-01 코닝 인코포레이티드 Surface-modified glass substrate
KR102047017B1 (en) 2012-10-03 2019-11-20 코닝 인코포레이티드 Surface-modified glass substrate
KR20190034708A (en) * 2012-10-03 2019-04-02 코닝 인코포레이티드 Surface-modified glass substrate
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
JP2021006910A (en) * 2014-05-12 2021-01-21 コーニング インコーポレイテッド Durable and scratch-resistant anti-reflective article
US9726786B2 (en) 2014-05-12 2017-08-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
CN105652639A (en) * 2014-11-28 2016-06-08 精工爱普生株式会社 Optical component and timepiece
JP2016102757A (en) * 2014-11-28 2016-06-02 セイコーエプソン株式会社 Optical component and watch
US9720142B2 (en) 2014-11-28 2017-08-01 Seiko Epson Corporation Optical component and timepiece
EP3026468A1 (en) 2014-11-28 2016-06-01 Seiko Epson Corporation Optical component and timepiece
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US10451773B2 (en) 2015-09-14 2019-10-22 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
CN111480123A (en) * 2017-12-19 2020-07-31 瑞纳蔚瑧钟表股份公司 Watch glass
CN111480123B (en) * 2017-12-19 2023-02-14 瑞纳蔚瑧钟表股份公司 Watch glass
JP2018180006A (en) * 2018-07-19 2018-11-15 セイコーエプソン株式会社 Cover member and mechanical timepiece
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures

Similar Documents

Publication Publication Date Title
JPWO2009041528A1 (en) Watch cover glass
JP2005114649A (en) Cover glass for timepiece
JP6490810B2 (en) Temperature and corrosion resistant surface reflectors
CN102649327B (en) There is the substrate of ARC and for the method manufacturing this substrate
EP2363766B1 (en) Timepiece cover glass and timepiece
JP2004271480A (en) Cover glass for timepiece
JP2015200888A (en) Hard reflection preventive film, manufacturing of hard reflection preventive film and use thereof
CN102227815A (en) Layered element, and photovoltaic device including such element
MX2010009557A (en) Transparent substrate with anti-reflection coating.
KR20050001425A (en) High reflectance mirror
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPWO2007013269A1 (en) Reflective film laminate
MY160173A (en) Light transmittance optimizing coated glass article for solar cell and method for making
JP2004085231A (en) Cover glass for timepiece
EP0283923B1 (en) Sputtered titanium oxynitride films
JP2009204577A (en) Light-transmitting member and timepiece provided with same
MX2010013869A (en) Mirror and process for obtaining a mirror.
JP2012032551A (en) Reflective lamination film
JP2005274527A (en) Cover glass for clock
JP2011158888A (en) Reflector and visible light reflection member using the reflector
JP2007310335A (en) Front surface mirror
JP2004093437A (en) Cover glass for watch
WO2017030046A1 (en) Laminate
JP2006010930A (en) High reflectance mirror
JP2004198354A (en) Method of manufacturing cover glass for timepiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Effective date: 20090618

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208