JPS6237221A - Four-wheel-drive vehicle - Google Patents

Four-wheel-drive vehicle

Info

Publication number
JPS6237221A
JPS6237221A JP17669885A JP17669885A JPS6237221A JP S6237221 A JPS6237221 A JP S6237221A JP 17669885 A JP17669885 A JP 17669885A JP 17669885 A JP17669885 A JP 17669885A JP S6237221 A JPS6237221 A JP S6237221A
Authority
JP
Japan
Prior art keywords
hydraulic clutch
wheel
solenoid valve
rear wheels
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17669885A
Other languages
Japanese (ja)
Other versions
JPH0639210B2 (en
Inventor
Yasuhei Matsumoto
松本 廉平
Yukihiro Kodama
児玉 幸大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP60176698A priority Critical patent/JPH0639210B2/en
Publication of JPS6237221A publication Critical patent/JPS6237221A/en
Publication of JPH0639210B2 publication Critical patent/JPH0639210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the power performance, maneuverability and stability of variable torque distribution 4WD vehicle by connecting the output side of transmission through hydraulic clutch with front and rear wheels and controlling independently through duty signal from a controller. CONSTITUTION:Voltage A set through manual operating section 40 and triangular voltage B from triangular wave generating circuit 42 are processed through a comparator 43 to provide a duty signal to a solenoid valve 30. Consequently, power conduction and interruption of solenoid valve 30 are repeated to connect/ disconnect the hydraulic clutch 20 with constant period thus to transmit the power from the output shaft 5 of transmission 4 to the front wheel periodically. Similarly, the driving torque of rear wheel is controlled through manual operating section 40', triangular wave generating circuit 42', comparator 43' and solenoid valve 30'. With such arrangement, maneuverability and stability as well as the power performance are improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、前後輪の駆動トルクの配分を可能にした4輪
駆動車に関し、特に車両走行条件に応じてトルク配分を
変化させるものに関する。 4輪駆動車としてセンタデフを有するフルタイム式や、
センタデフの代りにトランスファクラッチを有してFF
、RR,FRをベースとしたパートタイム式の種々の方
式がある。 【従来の技術) そこで従来、4輪駆動車の各方式において、センタデフ
付のものは、当然、センタデフを介して#J後輪に駆動
トルクが等分に配分されている。またパートタイム式の
ものでも例えば特開昭55−4292号公報に示すよう
に、トランスファクラッチにドッグクラッチを用いた直
結式では、4輪駆動時に前後輪に重量配分に応じた駆動
トルクが配分される。更に、例えば特開昭56−430
31号公報に示すように、トランスファクラッチに油圧
クラッチを用いたものでも、4輪駆動の所定の負荷以上
の運転状態では、クラッチトルクが駆動トルク以上の大
きなものに設定されて直結状態となる。こうして、いず
れの方式でも4輪駆動では前後輪のトルク配分が定まっ
たものとなっている。 【発明が解決しようとする問題点】 ところで、上記従来の4輪駆動車にあっては、前後輪の
トルク配分が一義的に定まったものになっているため、
常に前輪のグリップ力の不足を後輪で補うようなトルク
配分を行うにすぎない。従って、舗装路のように前輪の
グリップ力の大きい走行条件では前輪駆動の11重に近
い傾向になって、安定性は良いが操縦性に欠ける。一方
、登板、雪道等のスリップし易い路面、荷物積載時のよ
うに前輪のグリップ力が低下した走行条件では、後輪側
のトルク配分が多くなって4輪駆動の性能を発揮するが
、安定性の点で充分とは言えない。 こうして、路面状態、車速、積載条件等を加味した走行
条件での4輪駆動において、動力性能以外に操縦性、車
両の安定性等も満し1qるものではないという問題があ
る。 本発明は、このような点に鑑みて創作されたもので、各
走行条件において4輪駆動の動力性能以外の操縦性、安
定性等も向上することが可能な4輪駆動車を提供するこ
とを目的としている。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to a four-wheel drive vehicle that enables distribution of drive torque between front and rear wheels, and particularly relates to a four-wheel drive vehicle that changes torque distribution according to vehicle running conditions. A full-time type with a center differential as a four-wheel drive vehicle,
FF with a transfer clutch instead of a center differential
There are various part-time systems based on , RR, and FR. [Prior Art] Conventionally, in each type of four-wheel drive vehicle, those with a center differential naturally distribute drive torque equally to the #J rear wheels via the center differential. In addition, even in the case of a part-time type, for example, as shown in Japanese Patent Laid-Open No. 55-4292, a direct-coupled type that uses a dog clutch for the transfer clutch does not distribute drive torque to the front and rear wheels according to the weight distribution during four-wheel drive. Ru. Furthermore, for example, JP-A-56-430
As shown in Publication No. 31, even when a hydraulic clutch is used as a transfer clutch, when the four-wheel drive is operating under a predetermined load or more, the clutch torque is set to be larger than the drive torque, resulting in a direct connection state. In this way, in any four-wheel drive system, the torque distribution between the front and rear wheels is fixed. [Problems to be Solved by the Invention] By the way, in the above conventional four-wheel drive vehicle, the torque distribution between the front and rear wheels is uniquely determined.
It simply distributes torque to the rear wheels to compensate for the lack of grip in the front wheels. Therefore, under driving conditions such as paved roads where the grip of the front wheels is large, the front wheel drive tends to be close to the 11-wheel drive system, which provides good stability but lacks maneuverability. On the other hand, in driving conditions where the grip of the front wheels is reduced, such as on a slippery road such as on a hill, on a snowy road, or when loaded with luggage, more torque is distributed to the rear wheels and the performance of four-wheel drive is achieved. It cannot be said that it is sufficient in terms of stability. Thus, in four-wheel drive under driving conditions that take into account road surface conditions, vehicle speed, loading conditions, etc., there is a problem in that not only power performance but also maneuverability, vehicle stability, etc. are not satisfactory. The present invention was created in view of these points, and an object of the present invention is to provide a four-wheel drive vehicle that can improve maneuverability, stability, etc. in addition to the power performance of four-wheel drive under various driving conditions. It is an object.

【問題点を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明は、変速機出力側を前
輪接所用油圧クラッチを介して前輪側に、後輪接話用油
圧クラッチを介して後輪側にそれぞれ伝動構成し、制御
ユニットからのデユーティ信号により上記両油圧クラッ
チの接続時間を各別に制御し、路面状態を含む走行条件
により前後輪のトルク配分を可変にするように構成され
ている。
In order to achieve the above object, the present invention has a configuration in which the transmission output side is transmitted to the front wheels via a hydraulic clutch for front wheel contact, and to the rear wheel via a hydraulic clutch for rear wheel contact. The engagement time of the two hydraulic clutches is controlled separately based on the duty signal, and the torque distribution between the front and rear wheels is made variable depending on driving conditions including road surface conditions.

【作  用1 上記構成に基づき、制御ユニットからのデユーティ信号
により前輪接断用油圧クラッチによる前輪への伝達トル
ク、後輪接断用油圧クラッチによる後輪への伝達トルク
を定めて、前後輪のトルク配分を任意に設定することが
可能となる。これにより、舗装路では後輪側の伝達トル
クを大きくして、「R車に近い操縦性を得、雪道等では
逆に前輪側の伝達トルクを大きくして安定性を確保する
ことができるようになる。 【実 施 例】 以下、本発明の一実施例を図面に基づいて具体的に説明
する。 第1図において、本発明による4輪駆動車の伝動系につ
いて説明すると、エンジン1.クラッチ2および変速機
4が車体前後方向にtll置き配置され、クラッチ2と
変速機4との間の下部にフロントデフ装置1Gが変速機
ケース内部に組付けて設置されることでトランスアクス
ル型をなす。変速機4は常時噛合式のもので、入力軸3
に対して出力軸5が平行に配置されて、これらの両軸3
.5に例えば第1速ないし第4速の互いに噛合う4組の
変速用ギヤ6ないし9が設けてあり、ギヤ6と7との間
の同期機構10と、ギヤ8と9との間の同期機構11を
選択的に動作することで、第1速から第4速までの各前
進変速段を得るようになっている。 また、入力軸3に設けである後退段のギヤ12に同期機
構10のスリーブ側のギヤ13を、図示しないアイドラ
ギヤを介して噛合わせることで、後退段を得るようにな
っている。 上記出力軸5は中空軸であって、その内部にフロントド
ライブ軸14が挿入され、フロントドライブ軸14の前
端のドライブピニオン15がフロントデフ装置16のク
ラウンギヤ17に噛合い、このクラウンギヤ17から前
輪に伝動構成される。 また、変速機4の後部に配設されるトランスファ装置1
8において、出力軸5と一体的なトランスファドライブ
ギヤ19が前輪接断用油圧クラッチ20を介してフロン
トドライブ軸14に運結する。そして上記トランスファ
ドライブギヤ19と常時噛合うドリブンギヤ21が後輪
接話用油圧クラッチ20−を介してリヤドライブ軸22
に運結し、リヤドライブ軸22は更にプロペラ軸23.
リヤデフ装@24を介して後輪側に伝動構成される。 油圧クラッチ20.20’ の油圧・回路として、オイ
ルポンプ25の吐出側の油路2Gがソレノイド弁30、
油路27を介して前輪接断用油圧クラッチ20に連通ず
る。ソレノイド弁30は弁体31、スプール32、コイ
ル33を有し、スプール32の一方にコイル33側のプ
ランジt34が連結し、その使方にスプリング35が付
勢する。そして、コイル33の通電によりプランジャ3
4がスプリング35に抗してスプール32を移動して、
油路26の入口ボート31aを油路27の出口ボート3
1bに連通し、コイル33の非通電によりス、ブール3
2を1mして、出口ボート31bをドレンポート31c
に連通ずるように構成される。尚、ドレンボート31c
は油路28を介して油溜側に連通している。 また、後輪接話用油圧クラッチ20’ に関しても上述
と同様にして、オイルポンプ25の吐出側の油路2らか
ら分岐する油路26′ がソレノイド弁30′  、2
7′ を介して連通している。 電気制御系として、マニアル操作部40を有し、この操
作部40によりポテンショメータ41の電圧レベルを任
意に変えるようになっている。かかるポテンショメータ
41の電圧Aと三角波発生回路42の三角波電圧Bはコ
ンパレータ43に入力し、第2図(2)に示すように比
較してΦ)に示すデユーティ信号を出力するのであり、
この信号が駆動用トランジスタ44を介してソレノイド
弁30に入力するようになっている。こうして、電圧A
のレベルが低い程デユーティ信号のON時間が長くなり
、且つソレノイド弁30の給油によるクラッチ20の接
続時間が長くなる。 また、油圧クラッチ20′ に関しても上述と同様にし
て、マニアル操作部40′、ポテンショメータ41′、
二角波発生回路42′、コンパレータ43′。 トランジスタ44′ を有し、これらにより各別にクラ
ッチ20′ の接続時間を変えるようになっている。 次いで、このように構成された4輪駆動車の作用につい
て説明する。 先ず、マニアル操作部40によりポテンショメータ41
の電圧Aのレベルを設定すると、それと三角波電圧Bに
よるデユーティ信号が出力し、この信号でソレノイド弁
30が通電による給油と非通電による排油を繰返すこと
で、油圧クラッチ20が一定の周期で断続することにな
る。そこで、変速に4の出力@5からの動力は油圧クラ
ッチ20の接続時にのみ断続的にフロントドライブ軸1
4.フロントデフ装置16を介して前輪に伝達し、クラ
ッチ20の接続時間が長い程前輪に多く動力伝達してそ
の駆動トルクが大きくなる。 一方、他のマニアル操作部40’ によりポテンショメ
ータ41′ の電圧A′のレベルを設定すると、それに
応じたデユーティ信号が出力してソレノイド弁30′ 
を動作することで、油圧クラッチ20′ が同様に断続
作用する。そこで、変速機4からの動力は油圧クラッチ
20’ の接続時にのみ断続的にトランスファギヤ19
.21.油圧クラッチ20′、リヤドライブ軸22以降
の後輪にも伝達するのであり、こうして4輪駆動の走行
となる。 ここで、舗装路の路面状況の場合に、例えばマニアル操
作部40によるデユーティ比を43%にし、マニアル操
作部40′ によるデユーティ比を100%にセットす
ると、前後輪のトルク配分は、0.43 :100=3
ニアとなり、FR車に近い走行モードとなる。 これに対し、雪道の場合に同様にデユーティ比を定めて
例えば前後輪のトルク配分を6 =4にし、[F車に近
い走行モードにすることができる。 尚、油圧クラッチ20と20′の一方のデユーティ比を
100%にし、他方のデユーティ比を0%にすることで
、一方の油圧クラッチのみが常に係合して、「F又はF
llの2輪駆動の走行モードとなる。 以上、本発明の一実施例について述べたが、車速、積載
条件等によりトルク配分を可変にしたり、又は自動的に
行うこともできる。 【弁明の効果1 以上述べてきたように、本発明によれば、4輪駆動時の
前後輪のトルク配分が変化され、例えば舗装路では後輪
の駆動トルクが大きくなるように配分されて「R車に近
くなるので、軽快な操縦性を得ることができる。また、
雪道では逆に前輪の駆動トルクが大きくなるようにトル
ク配分されて「F車に近くなるので、車両の安定性を確
保することができる。 油圧回路では給排油するソレノイド弁がデユーティ信号
により動作して、直接各油圧クラッチのクラッチトルク
を設定する構成であるから、構造が簡単である。 クラッチ油圧を変化するのに対してクラッチ接続時間を
変化する方式であるから、エンジン出力が変化しても前
後輪のトルク配分を常に設定通りに保つことができる。
[Function 1] Based on the above configuration, the duty signal from the control unit determines the torque transmitted to the front wheels by the hydraulic clutch for front wheel engagement/disconnection, and the torque transmitted to the rear wheels by the hydraulic clutch for rear wheel engagement/disconnection. It becomes possible to arbitrarily set torque distribution. As a result, on paved roads, it is possible to increase the torque transmitted to the rear wheels to obtain maneuverability similar to that of an R car, and conversely, on snowy roads, it is possible to increase the torque transmitted to the front wheels to ensure stability. [Embodiment] Hereinafter, an embodiment of the present invention will be explained in detail based on the drawings.In Fig. 1, a transmission system of a four-wheel drive vehicle according to the present invention will be explained. The clutch 2 and the transmission 4 are placed in the longitudinal direction of the vehicle body, and the front differential device 1G is assembled and installed inside the transmission case at the bottom between the clutch 2 and the transmission 4, resulting in a transaxle type. The transmission 4 is of a constant mesh type, and the input shaft 3
The output shaft 5 is arranged parallel to the
.. 5 is provided with four sets of transmission gears 6 to 9 that mesh with each other, for example, first to fourth speeds, and a synchronization mechanism 10 between gears 6 and 7 and a synchronization mechanism between gears 8 and 9. By selectively operating the mechanism 11, each forward gear stage from first speed to fourth speed is obtained. Further, the reverse gear is obtained by meshing the sleeve-side gear 13 of the synchronization mechanism 10 with the reverse gear gear 12 provided on the input shaft 3 via an idler gear (not shown). The output shaft 5 is a hollow shaft, into which a front drive shaft 14 is inserted, and a drive pinion 15 at the front end of the front drive shaft 14 meshes with a crown gear 17 of a front differential device 16. Transmission is configured to the front wheels. In addition, a transfer device 1 disposed at the rear of the transmission 4
At 8, a transfer drive gear 19 integrated with the output shaft 5 is connected to the front drive shaft 14 via a front wheel disconnection hydraulic clutch 20. The driven gear 21, which is always in mesh with the transfer drive gear 19, is connected to the rear drive shaft 22 via the rear wheel contact hydraulic clutch 20-.
The rear drive shaft 22 is further connected to a propeller shaft 23.
Power is transmitted to the rear wheels via the rear differential @24. As the hydraulic pressure/circuit of the hydraulic clutch 20, 20', the oil passage 2G on the discharge side of the oil pump 25 is connected to a solenoid valve 30,
It communicates with the front wheel disconnection hydraulic clutch 20 via an oil passage 27. The solenoid valve 30 has a valve body 31, a spool 32, and a coil 33. A plunge t34 on the side of the coil 33 is connected to one of the spools 32, and a spring 35 is biased when the plunger t34 is used. Then, by energizing the coil 33, the plunger 3
4 moves the spool 32 against the spring 35,
The inlet boat 31a of the oil passage 26 is connected to the outlet boat 3 of the oil passage 27.
1b, and when the coil 33 is de-energized, the Boolean 3
2 to 1 m, and connect the exit boat 31b to the drain port 31c.
It is configured so that it communicates with the In addition, drain boat 31c
communicates with the oil reservoir side via an oil passage 28. Further, regarding the hydraulic clutch 20' for rear wheel engagement, in the same manner as described above, an oil passage 26' branching from the oil passage 2 on the discharge side of the oil pump 25 is connected to the solenoid valves 30' and 2.
7'. As an electric control system, a manual operation section 40 is provided, and the voltage level of a potentiometer 41 can be arbitrarily changed by this operation section 40. The voltage A of the potentiometer 41 and the triangular wave voltage B of the triangular wave generating circuit 42 are input to a comparator 43, and compared as shown in FIG. 2 (2), a duty signal shown in Φ) is output.
This signal is input to the solenoid valve 30 via the driving transistor 44. Thus, the voltage A
The lower the level, the longer the ON time of the duty signal becomes, and the longer the engagement time of the clutch 20 due to refueling of the solenoid valve 30 becomes longer. Also, regarding the hydraulic clutch 20', in the same manner as described above, a manual operation section 40', a potentiometer 41',
A square wave generating circuit 42' and a comparator 43'. A transistor 44' is provided, by means of which the engagement time of the clutch 20' can be changed individually. Next, the operation of the four-wheel drive vehicle configured as described above will be explained. First, the potentiometer 41 is activated by the manual operation section 40.
When the level of voltage A is set, a duty signal is output based on this and triangular wave voltage B, and this signal causes the solenoid valve 30 to repeat oil supply by energizing and draining oil by de-energizing, so that the hydraulic clutch 20 is turned on and off at a constant cycle. I will do it. Therefore, the power from output 4 @ 5 for shifting is intermittently applied to the front drive shaft 1 only when the hydraulic clutch 20 is connected.
4. The power is transmitted to the front wheels via the front differential device 16, and the longer the clutch 20 is engaged, the more power is transmitted to the front wheels and the driving torque becomes larger. On the other hand, when the level of the voltage A' of the potentiometer 41' is set using another manual operation section 40', a corresponding duty signal is output and the solenoid valve 30'
By operating the hydraulic clutch 20', the hydraulic clutch 20' similarly engages and engages. Therefore, the power from the transmission 4 is intermittently transferred to the transfer gear 19 only when the hydraulic clutch 20' is engaged.
.. 21. The power is also transmitted to the hydraulic clutch 20' and the rear wheels after the rear drive shaft 22, resulting in four-wheel drive driving. Here, in the case of a paved road surface condition, for example, if the duty ratio by the manual operation part 40 is set to 43% and the duty ratio by the manual operation part 40' is set to 100%, the torque distribution between the front and rear wheels is 0.43%. :100=3
It becomes a driving mode similar to that of an FR car. On the other hand, in the case of a snowy road, the duty ratio can be determined in the same way, and the torque distribution between the front and rear wheels can be set to 6 = 4, for example, to create a driving mode similar to that of the F car. By setting the duty ratio of one of the hydraulic clutches 20 and 20' to 100% and the duty ratio of the other to 0%, only one of the hydraulic clutches is always engaged and the "F" or "F"
ll two-wheel drive driving mode. Although one embodiment of the present invention has been described above, torque distribution can be made variable depending on vehicle speed, loading conditions, etc., or can be done automatically. [Effect of explanation 1] As described above, according to the present invention, the torque distribution between the front and rear wheels during four-wheel drive is changed, and for example, on a paved road, the drive torque is distributed to the rear wheels to become larger. Since it is closer to the R car, you can get nimble maneuverability.Also,
On snowy roads, on the other hand, the front wheel drive torque is distributed so that it is closer to that of an F vehicle, ensuring vehicle stability.In the hydraulic circuit, the solenoid valve that supplies and drains oil is activated by the duty signal The structure is simple because it operates and directly sets the clutch torque of each hydraulic clutch.In contrast to changing the clutch oil pressure, the clutch engagement time is changed, so the engine output does not change. The torque distribution between the front and rear wheels can always be maintained as set.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の4輪駆動車の実施例を示づ゛構成図、
第2図(a)、(b)は信号波形図である。 4・・・変速機 20・・・前輪接断用油圧クラッチ 20′ ・・・模輪接話用油圧クラッチ30、30’ 
・・・ソレノイド 45・・・制御ユニット 特許出願人    冨士重工業株式会社代理人 弁理士
  小 福 信 浮 量  弁理士  村 井   進 第2図
FIG. 1 shows an embodiment of a four-wheel drive vehicle according to the present invention;
FIGS. 2(a) and 2(b) are signal waveform diagrams. 4...Transmission 20...Hydraulic clutch for front wheel engagement/disconnection 20'...Hydraulic clutch for model wheel engagement 30, 30'
... Solenoid 45 ... Control unit patent applicant Fuji Heavy Industries Co., Ltd. agent Patent attorney Nobuko Kofuku Ukasa Patent attorney Susumu Murai Figure 2

Claims (1)

【特許請求の範囲】 変速機出力側を前輪接断用油圧クラッチを介して前輪側
に、後輪接断用油圧クラッチを介して後輪側にそれぞれ
伝動構成し、 制御ユニットからのデューティ信号により上記両油圧ク
ラッチの接続時間を各別に制御し、路面状態を含む走行
条件により前後輪のトルク配分を可変にする4輪駆動車
[Scope of Claims] The output side of the transmission is configured to be transmitted to the front wheels via a front wheel disconnection/disconnection hydraulic clutch, and to the rear wheels via a rear wheel disconnection/disconnection hydraulic clutch, and based on a duty signal from a control unit. A four-wheel drive vehicle that controls the engagement time of both hydraulic clutches separately, and varies torque distribution between the front and rear wheels depending on driving conditions including road surface conditions.
JP60176698A 1985-08-09 1985-08-09 4-wheel drive vehicle Expired - Lifetime JPH0639210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176698A JPH0639210B2 (en) 1985-08-09 1985-08-09 4-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176698A JPH0639210B2 (en) 1985-08-09 1985-08-09 4-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS6237221A true JPS6237221A (en) 1987-02-18
JPH0639210B2 JPH0639210B2 (en) 1994-05-25

Family

ID=16018174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176698A Expired - Lifetime JPH0639210B2 (en) 1985-08-09 1985-08-09 4-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH0639210B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155027A (en) * 1984-12-26 1986-07-14 Mazda Motor Corp Four wheel-drive vehicle
JPS61155030A (en) * 1984-12-26 1986-07-14 Mazda Motor Corp Four wheel-drive vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155027A (en) * 1984-12-26 1986-07-14 Mazda Motor Corp Four wheel-drive vehicle
JPS61155030A (en) * 1984-12-26 1986-07-14 Mazda Motor Corp Four wheel-drive vehicle

Also Published As

Publication number Publication date
JPH0639210B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
JP3384167B2 (en) Transfer hydraulic control system for four-wheel drive vehicles
JP2732268B2 (en) Switching device for four-wheel drive vehicle with continuously variable transmission
US7125358B2 (en) Distributor transmission having at least three shafts
US5685389A (en) Drive of a cross-country vehicle
JPH02182541A (en) Controlling method for four-wheel drive device
JPS63203422A (en) Four-wheel-drive
JPS60135327A (en) Four-wheel driven vehicle
JPS6280355A (en) Power transmission device for 4w-drive car
JPS6237221A (en) Four-wheel-drive vehicle
JPH0563335B2 (en)
JP3715001B2 (en) Power transmission device for four-wheel drive vehicle
JPS61115723A (en) Power distribution controller for multiwheel-driving vehicle
JP3582156B2 (en) Four-wheel drive vehicles
JPS61146636A (en) Driving force distribution controller for 4wd car
JPH0228488B2 (en) 4RINKUDOSHANOKIRIKAESOCHI
KR20140068467A (en) Transfer case of 4wd vehicle
JP2662996B2 (en) Switching device for four-wheel drive vehicles with continuously variable transmission
JPS61188232A (en) Four-wheel drive car
JPS62218231A (en) Four-wheel drive running gear
JPH0647344B2 (en) Automatic transmission for four-wheel drive vehicles
JPS6167631A (en) Differential gear restricting apparatus for car
JP2586456B2 (en) Control method for vehicle power transmission device
JPS61218434A (en) Four-wheel driven car
JPS62143726A (en) 4-wheel drive device
JPS6280354A (en) Power transmission device for 4w-drive car