JPS6236811A - Semiconductor manufacture device - Google Patents

Semiconductor manufacture device

Info

Publication number
JPS6236811A
JPS6236811A JP16670285A JP16670285A JPS6236811A JP S6236811 A JPS6236811 A JP S6236811A JP 16670285 A JP16670285 A JP 16670285A JP 16670285 A JP16670285 A JP 16670285A JP S6236811 A JPS6236811 A JP S6236811A
Authority
JP
Japan
Prior art keywords
process tube
temperature
wafer
heating means
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16670285A
Other languages
Japanese (ja)
Inventor
Takayuki Nose
能勢 隆幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16670285A priority Critical patent/JPS6236811A/en
Publication of JPS6236811A publication Critical patent/JPS6236811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To allow highly accurate temperature control with favorable heat- response by a method wherein the radiant light, which has a wavelength that corresponds to the temperature that is produced within a process tube when a wafer placed in the process tube is heated with a heating means, is detected with an optical fiber so as to measure the temperature. CONSTITUTION:A wafer within a process tube is heated with a heating means. The radiant light is detected with an optical fiber 12 and transmitted to a detector 14 through an optical fiber 13, and the light-receiving section in the detector 14 converts the radiant light into current and amplifies it. Further, the current is linearized to feed it as the temperature within the process tube 1. Thus, the heating means is controlled so that the temperature will be a set temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、400℃以上の高温熱処理によって半導体装
置を製造する半導体製造装置に関し、詳しくは熱処理温
度を設定温度に制御する半導体製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor manufacturing apparatus that manufactures semiconductor devices by high-temperature heat treatment at 400° C. or higher, and more particularly to a semiconductor manufacturing apparatus that controls the heat treatment temperature to a set temperature.

〔従来の技術〕[Conventional technology]

第3図は酸化又は拡散等の高温熱処理によって半導体装
置を製造する従来の半導体製造装置の概略図である。第
3図において、(1)は熱処理すべきウェハ(2)を収
容し、ガスが送り込まれるプロセスチューブ、(3)は
ウェハ(2)が載せられた石英ボード、(4)は石英ボ
ード(3)を出し入れする押込み棒、(5)はウェハ(
2)を加熱する複数の抵抗加熱ヒータ、(6)はプロセ
スチューブ(1)と抵抗加熱ヒータ(5)との間に設け
られた均熱帯、(7)は熱電対である。
FIG. 3 is a schematic diagram of a conventional semiconductor manufacturing apparatus for manufacturing semiconductor devices by high-temperature heat treatment such as oxidation or diffusion. In Figure 3, (1) is a process tube that accommodates the wafer (2) to be heat-treated and into which gas is fed, (3) is a quartz board on which the wafer (2) is placed, and (4) is a quartz board (3). ), the push rod (5) is for inserting and removing the wafer (
2) a plurality of resistance heaters, (6) a soaking zone provided between the process tube (1) and the resistance heater (5), and (7) a thermocouple.

ところで、ウェハ(2)の高温熱処理を行って均一な半
導体装置を製造するためには、プロセスチュ−ブ(1)
内の温度分布を±1℃の範囲内に制御する必要がある。
By the way, in order to perform high-temperature heat treatment on the wafer (2) and manufacture uniform semiconductor devices, the process tube (1) is
It is necessary to control the temperature distribution within the range of ±1°C.

第4図は、かかる温度分布の制御のために定期的に行わ
れるプロセスチューブ(1)内の温度測定を示す説明図
である。なお、第4図において第3図と同様の機能を果
す部分については同一の符号を付し、その説明は省略す
る。プロセスチューブ+11内の温度分布を±1℃範囲
内に制御するには、定期的に保護管(8)によって保護
された複数の熱電対(9)をプロセスチューブ(1)内
に挿入し、温度プロファイラ(10)によってプロセス
チューブ(1)内の温度分布を測定し、さらに制御手段
によって温度分布が±1℃の範囲(こなるように抵抗加
熱ヒーター(5)を制御する。然して、ウェハ(2)の
熱処理中はプロセスチューブ(1)内の温度分布が±1
℃軛囲内に収まるように抵抗加熱ヒーター(5)を制御
したときに熱電対(7)が検出した温度となるように抵
抗加熱ヒーター(5)に流れる電流を制御する。
FIG. 4 is an explanatory diagram showing temperature measurements inside the process tube (1) that are periodically performed to control such temperature distribution. Note that in FIG. 4, parts that perform the same functions as those in FIG. 3 are denoted by the same reference numerals, and the explanation thereof will be omitted. In order to control the temperature distribution within the process tube +11 within a range of ±1°C, a plurality of thermocouples (9) protected by a protection tube (8) are periodically inserted into the process tube (1), and the temperature The profiler (10) measures the temperature distribution inside the process tube (1), and the control means controls the resistance heater (5) so that the temperature distribution is within a range of ±1°C. ) during the heat treatment, the temperature distribution inside the process tube (1) is ±1
The current flowing through the resistance heater (5) is controlled so that the temperature detected by the thermocouple (7) is reached when the resistance heater (5) is controlled to stay within the temperature range.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半導体製造装置はプロセスチューブ(1)の外に
ある電熱対(7)が検出する温度によってプロセスチュ
ーブill内の温度制御を行なっていたので熱伝導性が
悪く、リアルタイムにプロセスチューブ(1)内の温度
制御ができないという問題があった。
Conventional semiconductor manufacturing equipment controls the temperature inside the process tube (ill) based on the temperature detected by an electric thermocouple (7) located outside the process tube (1), which has poor thermal conductivity. There was a problem that the internal temperature could not be controlled.

又、ウェハ(2)の挿入口側のプロセスチューブ(1)
内の温度は第2図の曲線Aで示すようにプロセスチュー
ブ(1)内にウェハ(2)を入れtこ直後はウェハ(2
)を熱処理すべき設定温度より約30℃以上低下し、そ
れから徐々に上昇するが、約30分経過してもなお設定
温度よりも約5℃低く、ウェハ(2)の温度が不均一に
なってしまうという問題があった。
Also, the process tube (1) on the wafer (2) insertion port side
As shown by curve A in Fig. 2, the temperature inside the wafer (2) increases immediately after inserting the wafer (2) into the process tube (1).
) is lower than the set temperature for heat treatment by about 30°C or more, and then gradually rises, but even after about 30 minutes, it is still about 5°C lower than the set temperature, and the temperature of the wafer (2) is uneven. There was a problem with this.

本発明は上記問題点を解決するためになされたもので、
プロセスチューブ内の温度を正確に制御できる半導体製
造装置を提供することを目的とする。
The present invention has been made to solve the above problems,
An object of the present invention is to provide a semiconductor manufacturing apparatus that can accurately control the temperature inside a process tube.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、高温熱処理すべきウェハを収容する
プロセスチューブと、プロセスチューブ内のウェハを加
熱する加熱手段と、プロセスチューブ内に設けられ、ウ
ェハの加熱により発生する輻射光を検出する光ファイバ
と、検出した輻射光の波長に基づいてプロセスチューブ
内の温度を検出し、検出した温度によってプロセスチュ
ーブ内の温度を設定温度に制御する制御手段とから半導
体製造装置を構成する。
Therefore, in the present invention, a process tube containing a wafer to be subjected to high-temperature heat treatment, a heating means for heating the wafer in the process tube, and an optical fiber provided in the process tube to detect radiation light generated by heating the wafer are provided. A semiconductor manufacturing apparatus includes a control means for detecting the temperature inside the process tube based on the wavelength of the detected radiation light and controlling the temperature inside the process tube to a set temperature based on the detected temperature.

〔作 用〕[For production]

上記構成の半導体製造装置は、加熱手段によってプロセ
スチューブ内のウェハを加熱する。このとき、ウェハの
加熱によって発生した輻射光を光ファイバによって検出
し、制御手段が輻射光の波長からプロセスチューブ内の
温度を検出し、プロセスチューブ内の温度が設定温度と
なるように加熱手段を制御する。
The semiconductor manufacturing apparatus configured as described above heats the wafer within the process tube by the heating means. At this time, the radiant light generated by heating the wafer is detected by an optical fiber, the control means detects the temperature inside the process tube from the wavelength of the radiant light, and the heating means is adjusted so that the temperature inside the process tube becomes the set temperature. Control.

〔実施例〕〔Example〕

以下、本発明の一実施例を添付図面を参照して詳細に説
明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る半導体製造装置の概略図である。FIG. 1 is a schematic diagram of a semiconductor manufacturing apparatus according to the present invention.

なお、第1図において第3図と同様の機能を果す部分に
ついては同一の符号を付し、その説明は省略する。(1
2)はサファイアにより形成され、ウェハ(2)の熱処
理によって発生する輻射光を検出する複数(3本)の光
ファイバ、(13)は石英により形成され、光ファイバ
(12)が検出した輻射光を伝送する光ファイバ、(1
4)は輻射光を電fi(W号に変換する検知器である。
Note that in FIG. 1, parts that perform the same functions as those in FIG. 3 are denoted by the same reference numerals, and the explanation thereof will be omitted. (1
2) is a plurality of (3) optical fibers made of sapphire and detects the radiant light generated by the heat treatment of the wafer (2), and (13) is made of quartz and detects the radiant light detected by the optical fiber (12). An optical fiber that transmits (1
4) is a detector that converts radiated light into electric fi (W).

次に本発明に係る半導体製造装置の全体の動作について
説明する。プロセスチューブ(1)内のウェハ(2)が
抵抗加熱し−タ(5)によって加熱されると、輻射光が
発生する。この輻射光は光ファイバ(12)によって検
出され光ファイバ(13)を介して検知器(14)に伝
送される。検知器(14)は受光部が輻射光を電流に変
換し、増幅し、さらにこの電流をリニアライズしてプロ
セスチューブ(1)内の温度として出力する。
Next, the overall operation of the semiconductor manufacturing apparatus according to the present invention will be explained. When the wafer (2) in the process tube (1) is heated by the resistance heating heater (5), radiant light is generated. This radiation light is detected by an optical fiber (12) and transmitted to a detector (14) via an optical fiber (13). The detector (14) has a light receiving section that converts the radiated light into a current, amplifies it, linearizes this current, and outputs it as the temperature inside the process tube (1).

なお、輻射光はプロセスチューブ(1)内の温度によっ
て波長分布が異なることはブランクの放射則として周知
のことである。従って、輻射光の波長を検出することに
よりプロセスチューブ(1)内の温度を知ることができ
る。又、輻射光の波長の検出は検出すべき波長に応じて
2枚の色フィルタと2個のフォトダイオードを組み合わ
せた回路、青側と赤外側にピークを持つ2つのフォトダ
イオードを一体化しtこカラーセンサ又は赤、緑、青、
の各カラーフィルタとフォトダイオードで構成されたア
モルファス集積型カラーセンサなどで行なう。
Note that it is well known as Blank's radiation law that the wavelength distribution of radiant light varies depending on the temperature inside the process tube (1). Therefore, the temperature inside the process tube (1) can be determined by detecting the wavelength of the radiant light. In addition, the wavelength of the radiant light can be detected using a circuit that combines two color filters and two photodiodes depending on the wavelength to be detected, or by integrating two photodiodes with peaks on the blue side and the infrared side. Color sensor or red, green, blue,
This is done using an amorphous integrated color sensor made up of color filters and photodiodes.

図示しない制御手段は以上のようにして検出されtコプ
ロセスチューブ(1)内の温度を設定温度と比較してプ
ロセスチューブ(1)内の渇、度が設定温度になるよう
に抵抗加熱ヒータ(5)に流れる電流を増減する。 以
−七のようにして制御されるプロセスチューブ(1)内
の温度は第2図に示した曲線Bの如く時間とともに変化
する。即ち、プロセスチューブ(ll内の温度はプロセ
スチューブ(11内にウェハ(2) te入れる乙とに
よって一時的に低下するが、約15分で設定温度になる
。 なお、本実施例では抵抗加熱ヒータ(5)によって
ウェハ(2)を加熱しtこが他の加熱手段、例えば高周
波加熱装置によって加熱してもよい。この場合、輻射光
を検出する光ファイバ(12)は熱電対と異なり高周波
加熱によって発生する電磁界の影響を受けないので、プ
ロセスチューブ(1)内の温度は正確に検出されること
になる。
The control means (not shown) detects the temperature in the co-process tube (1) as described above and compares it with the set temperature, and controls the resistance heater ( 5) Increase or decrease the current flowing through. The temperature inside the process tube (1), which is controlled as described above, changes over time as shown by curve B shown in FIG. That is, the temperature inside the process tube (11) will temporarily drop due to the insertion of the wafer (2) into the process tube (11), but will reach the set temperature in about 15 minutes. (5), the wafer (2) may be heated by other heating means, such as a high-frequency heating device.In this case, the optical fiber (12) for detecting radiation light is heated by high-frequency heating, unlike a thermocouple. Since the temperature inside the process tube (1) is not affected by the electromagnetic field generated by the process tube (1), the temperature inside the process tube (1) can be detected accurately.

す。vinegar.

〔発明の効果〕〔Effect of the invention〕

以上説明しtこように本発明によれば、プロセスチュー
ブ内に置かれたウェハを加熱手段によって加熱したとき
に発生するプロセスチューブ内の温度に対応する波長の
輻射光を、プロセスチューブ内に設けた光ファイバによ
り検出して、プロセスチューブ内の温度を測定するよう
にしたので、熱応答性が良くかつ精度の高い温度制御が
できるという効果がある。
As explained above, according to the present invention, radiation light having a wavelength corresponding to the temperature inside the process tube generated when a wafer placed inside the process tube is heated by the heating means is provided inside the process tube. Since the temperature inside the process tube is measured by detecting the temperature using an optical fiber, the temperature within the process tube can be effectively controlled with good thermal response and high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体製造装置の概略図、第2図
は第1図及び第3図に示したプロセスチューブ内の潤度
変化の説明図、第3図は従来の半導体製造装置の概略図
、第4図は従来の半導体製造装置の温度測定の説明図で
ある。 各図中、1はプロセスチューブ、2はウェハ、3は石英
ボード、4は押込み棒、5は抵抗加熱ヒータ、6は均熱
帯、12.13は光ファイバ、14は検知器である。
FIG. 1 is a schematic diagram of a semiconductor manufacturing apparatus according to the present invention, FIG. 2 is an explanatory diagram of changes in moisture content in the process tube shown in FIGS. 1 and 3, and FIG. 3 is a diagram of a conventional semiconductor manufacturing apparatus. The schematic diagram, FIG. 4, is an explanatory diagram of temperature measurement in a conventional semiconductor manufacturing apparatus. In each figure, 1 is a process tube, 2 is a wafer, 3 is a quartz board, 4 is a push rod, 5 is a resistance heater, 6 is a soaking zone, 12, 13 is an optical fiber, and 14 is a detector.

Claims (4)

【特許請求の範囲】[Claims] (1)高温熱処理すべきウェハを収容するプロセスチュ
ーブと、該プロセスチューブに周設され、前記ウェハを
加熱する加熱手段と前部プロセスチューブ内に設けられ
、前記ウェハの加熱により発生する輻射光を検出する光
ファイバと、該検出した輻射光の波長に基づいて前記プ
ロセスチューブ内の温度を検出し、該検出した温度によ
って該プロセスチューブ内の温度を設定温度に制御する
制御手段とを備えたことを特徴とする半導体製造装置。
(1) A process tube that accommodates a wafer to be subjected to high-temperature heat treatment, a heating means provided around the process tube to heat the wafer, and a heating means provided in the front process tube to heat the wafer by heating the wafer. A detection optical fiber and a control means for detecting the temperature inside the process tube based on the wavelength of the detected radiation light and controlling the temperature inside the process tube to a set temperature based on the detected temperature. A semiconductor manufacturing device characterized by:
(2)プロセスチューブは、均熱帯を介して前記加熱手
段が周設されている特許請求の範囲第1項記載の半導体
製造装置。
(2) The semiconductor manufacturing apparatus according to claim 1, wherein the process tube is provided with the heating means surrounding it via a soaking zone.
(3)加熱手段は、抵抗加熱ヒーターである特許請求の
範囲第1項記載の半導体製造装置。
(3) The semiconductor manufacturing apparatus according to claim 1, wherein the heating means is a resistance heater.
(4)光ファイバは、少なくとも前記プロセスチューブ
内にある部分がサファイアより形成されている特許請求
の範囲第1項記載の半導体製造装置。
(4) The semiconductor manufacturing apparatus according to claim 1, wherein the optical fiber is made of sapphire at least at a portion located inside the process tube.
JP16670285A 1985-07-30 1985-07-30 Semiconductor manufacture device Pending JPS6236811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16670285A JPS6236811A (en) 1985-07-30 1985-07-30 Semiconductor manufacture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16670285A JPS6236811A (en) 1985-07-30 1985-07-30 Semiconductor manufacture device

Publications (1)

Publication Number Publication Date
JPS6236811A true JPS6236811A (en) 1987-02-17

Family

ID=15836169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16670285A Pending JPS6236811A (en) 1985-07-30 1985-07-30 Semiconductor manufacture device

Country Status (1)

Country Link
JP (1) JPS6236811A (en)

Similar Documents

Publication Publication Date Title
KR100717550B1 (en) Apparatus and method of thermally processing substrates
US5180226A (en) Method and apparatus for precise temperature measurement
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
CN101669016A (en) Heat treatment apparatus
CN110207830A (en) A kind of the imaging sensor caliberating device and scaling method in nonblackbody radiation source
KR20160043831A (en) Method and apparatus of temperature measurement without contingence for non-gray body
JPS61130834A (en) Temperature measurement for light heater
US4361428A (en) Process and apparatus for regulating the temperature of a glass sheet in a multi-cell furnace
JPS6236811A (en) Semiconductor manufacture device
JPH118204A (en) High speed lamp-heating processor
US6130414A (en) Systems and methods for controlling semiconductor processing tools using measured current flow to the tool
US5641419A (en) Method and apparatus for optical temperature control
JP2638311B2 (en) Heating temperature measuring device in microwave high electric field
US4754117A (en) Annealing method by irradiation of light beams
JPH02298829A (en) Heat treatment apparatus
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
KR100363077B1 (en) Temperature check apparatus of semiconductor fabrication equipment
KR20010067027A (en) Temperature Controller for Rapid Thermal Process Apparatus
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JP2758793B2 (en) Lamp annealer
JPS6160364B2 (en)
TWI612259B (en) Heating apparatus and heating method
CN105185481B (en) Production of Enamel Wires monitors thermostat with line temperature
JPH02132824A (en) Semiconductor manufacturing device
JPS6279641A (en) Temperature measurement for semiconductor wafer