JPH06129911A - Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace - Google Patents

Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace

Info

Publication number
JPH06129911A
JPH06129911A JP4304960A JP30496092A JPH06129911A JP H06129911 A JPH06129911 A JP H06129911A JP 4304960 A JP4304960 A JP 4304960A JP 30496092 A JP30496092 A JP 30496092A JP H06129911 A JPH06129911 A JP H06129911A
Authority
JP
Japan
Prior art keywords
temperature
melt
radiation
radiation thermometer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4304960A
Other languages
Japanese (ja)
Inventor
Keiichi Takanashi
啓一 高梨
Kazuo Hiramoto
一男 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4304960A priority Critical patent/JPH06129911A/en
Publication of JPH06129911A publication Critical patent/JPH06129911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure temperature on the surface of a molten liquid inside a crystal pulling furnace with high accuracy, continuously and with the good following property of a change in the temperature by removing a beam of scattered light by using a radiation thermometer. CONSTITUTION:A molten liquid 2 inside a crucible 1 is heated by a heater 3, and a single crystal 1 is grown. A beam of thermal radiation light from a measuring point A on the molten liquid 2 and a beam of radiation light (scattered light) which is reflected at the measuring point A and which comes from a radiation source (a measuring point B) are incident on a radiation thermometer 6. A beam of thermal radiation light from the measuring point B is directly incident also on a two-color radiation thermometer 7. Output signals from the radiation thermometer 6 and the two-color radiation thermometer 7 are input to an operation part 8, and a temperature at the measuring point A on the molten liquid 2 is computed and output. An output signal from the operation part 8 is input to an electric-power supply and control part 9. The electric-power supply and control part 9 controls the electric power of the heater 3 according to an input signal, and it maintains the temperature of the molten liquid 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶引上炉における結
晶原料の融液の温度を維持するための、結晶引上炉内融
液表面温度測定方法及びその実施に使用する結晶引上炉
内融液表面温度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a melt surface temperature in a crystal pulling furnace for maintaining a temperature of a melt of a crystal raw material in the crystal pulling furnace, and a crystal pulling furnace used for carrying out the method. The present invention relates to an internal melt surface temperature measuring device.

【0002】[0002]

【従来の技術】単結晶の製造に際し、その品質を良好に
保つために、単結晶原料の融液を結晶引上げに適した温
度に保持する必要がある。単結晶原料の融液、例えばゲ
ルマニウム又はシリコン等の融液の温度を測定するため
に熱電対を用いる場合は、融液が高温であるために熱電
対の寿命が短く、また融液中に不純物が混入して単結晶
の品質に悪影響を及ぼす。これらのことを解決するため
に、放射温度計が用いられる。
2. Description of the Related Art In the production of a single crystal, in order to keep its quality in good condition, it is necessary to keep the melt of the single crystal raw material at a temperature suitable for pulling the crystal. When a thermocouple is used to measure the temperature of a melt of a single crystal raw material, such as germanium or silicon, the life of the thermocouple is short because the melt is hot, and impurities in the melt are also present. Will adversely affect the quality of the single crystal. A radiation thermometer is used to solve these problems.

【0003】放射温度計は、測定対象から放射される熱
放射光の輝度がその測定対象の温度と放射率とによって
決定される現象を利用して測定対象の温度を測定するも
のであり、この放射温度計を融液の温度測定に利用する
場合は、融液から離隔して測定できるためその寿命は長
く、融液中へ不純物が混入することもない。このような
放射温度計を、融液を保持してある坩堝の外側の融液表
面近傍に配して測定を行う方法を以下に説明する。
A radiation thermometer measures the temperature of an object to be measured by utilizing a phenomenon in which the brightness of thermal radiation emitted from the object to be measured is determined by the temperature of the object and the emissivity. When the radiation thermometer is used to measure the temperature of the melt, it can be measured separately from the melt, so that its life is long and impurities are not mixed into the melt. A method of arranging such a radiation thermometer in the vicinity of the surface of the melt outside the crucible holding the melt for measurement will be described below.

【0004】図4は、放射温度計を用いた従来の融液測
定装置の構成を示すブロック図である。図中11は坩堝で
あり、該坩堝11内に単結晶原料の融液12が収容されてい
る。坩堝11の外周側にはヒータ13が、その外周側には保
温筒15が配設されており、その周囲を図示しない炉にて
覆われている。前記ヒータ13により融液12が加熱され、
単結晶14が上方に引き上げられつつ成長する。放射温度
計16は、保温筒15外側で融液12の表面近傍に配設されて
おり、放射温度計16に入射される熱放射光の輝度の測定
を行い、この結果に対応する信号を温度変換部18に与え
る。温度変換部18では入力された信号を、測定温度に変
換して電力供給制御部19へ入力する。電力供給制御部19
では、温度変換部18からの出力信号により、ヒータ13へ
の出力を制御し融液12の温度を所定温度に維持するよう
になっている。
FIG. 4 is a block diagram showing the structure of a conventional melt measuring apparatus using a radiation thermometer. In the figure, 11 is a crucible, and the melt 12 of the single crystal raw material is housed in the crucible 11. A heater 13 is provided on the outer peripheral side of the crucible 11 and a heat insulating cylinder 15 is provided on the outer peripheral side thereof, and the periphery thereof is covered with a furnace (not shown). The melt 12 is heated by the heater 13,
The single crystal 14 grows while being pulled upward. The radiation thermometer 16 is arranged near the surface of the melt 12 on the outside of the heat insulating cylinder 15, measures the brightness of the thermal radiation light incident on the radiation thermometer 16, and outputs the signal corresponding to this result as the temperature. It is given to the conversion unit 18. The temperature converter 18 converts the input signal into a measured temperature and inputs it to the power supply controller 19. Power supply control unit 19
Then, an output signal from the temperature conversion unit 18 controls the output to the heater 13 to maintain the temperature of the melt 12 at a predetermined temperature.

【0005】しかしながら、単結晶引上炉の大型化によ
り、保温筒15外部にて測定した温度と融液表面温度との
間に誤差が生じ、上述した方法では正確な融液表面温度
を測定することができない。また、大型の引上炉は高温
部での熱容量が極めて大きく、保温筒15外部にて測定し
た温度と融液表面温度との間に時間的ずれが生じるた
め、ヒータ13により加熱された融液12の対流による温度
の経時的変動を、正確に追従し測定することができな
い。
However, due to the enlargement of the single crystal pulling furnace, an error occurs between the temperature measured outside the heat-retaining cylinder 15 and the melt surface temperature, and the above-mentioned method measures the accurate melt surface temperature. I can't. Further, since the large pulling furnace has a very large heat capacity in the high temperature part, and a time lag occurs between the temperature measured outside the heat retaining cylinder 15 and the melt surface temperature, the melt heated by the heater 13 It is not possible to accurately track and measure the temporal change in temperature due to 12 convections.

【0006】このような欠点を解決するためには、放射
温度計16を坩堝13内の融液表面近傍に配置することが必
要であり、放射温度計16を融液12の上方に、融液12と非
接触に配置し測定することにより、前期誤差を減少し融
液12の表面温度変化を正確に測定することができる。
In order to solve such a defect, it is necessary to dispose the radiation thermometer 16 in the vicinity of the surface of the melt in the crucible 13. By arranging and measuring in a manner not in contact with 12, it is possible to reduce the error in the previous period and accurately measure the surface temperature change of the melt 12.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、融液表
面ではその周囲の高温物質,例えば坩堝壁又はヒータ等
からの熱放射光が鏡面反射している。このため、融液表
面近傍での放射温度計による融液温度測定では、この反
射光(迷光)が放射温度計に入射され、融液表面からの
熱放射光に加えて測定されるために、融液表面温度との
誤差が生じ、測定精度が低下するという問題があった。
However, on the surface of the melt, high temperature substances around it, for example, heat radiation light from the crucible wall or heater is specularly reflected. Therefore, in the melt temperature measurement by the radiation thermometer in the vicinity of the melt surface, this reflected light (stray light) is incident on the radiation thermometer, in order to be measured in addition to the heat radiation light from the melt surface, There is a problem that an error with the melt surface temperature occurs and the measurement accuracy decreases.

【0008】この解決のために、融液表面温度の測定精
度を向上することを目的とした単結晶成長炉用の温度測
定装置が提案されている(特開昭58−168927号公報)。
この装置では、坩堝の外周側にヒータが配置され、該坩
堝内に単結晶原料である融液が収容されている。融液の
上方には偏光フィルタ及び光学的検知器がその光軸を同
じくして、融液表面からの熱放射光がこの順に入射する
べく配設されている。前記ヒータにより融液が加熱さ
れ、融液からの熱放射光が、偏光フィルタを通過し、次
いで光学的検知器に入射される。該光学的検知器では融
液からの熱放射光の熱放射スペクトラムを検出し、その
温度を測定する。その結果に基き、ヒータの加熱力を調
整して融液の表面温度を制御する。
To solve this problem, a temperature measuring device for a single crystal growth furnace has been proposed for the purpose of improving the accuracy of measuring the melt surface temperature (Japanese Patent Laid-Open No. 168927/58).
In this apparatus, a heater is arranged on the outer peripheral side of the crucible, and a melt which is a single crystal raw material is contained in the crucible. A polarization filter and an optical detector are arranged above the melt so that their optical axes are the same, and heat radiation light from the surface of the melt is incident in this order. The heater heats the melt and the thermal radiation from the melt passes through the polarizing filter and then is incident on the optical detector. The optical detector detects the thermal radiation spectrum of the thermal radiation from the melt and measures its temperature. Based on the result, the heating power of the heater is adjusted to control the surface temperature of the melt.

【0009】このとき、前記光学的検知器は、融液の融
点における最大分光放射率に対応する波長よりも短波長
成分のみを検出できるものを用いる。これにより、通常
の放射温度計を用いて測定した場合と比較して、信号雑
音比が大幅に改善される。また、熱放射光が前記偏光フ
ィルタを通過することにより、融液表面で反射し入射さ
れる前記迷光を除去することができる。
At this time, the optical detector is one that can detect only a wavelength component shorter than the wavelength corresponding to the maximum spectral emissivity at the melting point of the melt. As a result, the signal-to-noise ratio is greatly improved as compared with the case where the measurement is performed using a normal radiation thermometer. Further, by passing the heat radiation light through the polarization filter, it is possible to remove the stray light reflected and incident on the surface of the melt.

【0010】この装置により、融液表面温度の測定精度
は向上されるが、融液表面で反射し光学的検知器に入射
される迷光を、完全に除去できていないことが、その測
定結果から推測できる。
Although this apparatus improves the accuracy of measuring the surface temperature of the melt, the stray light reflected by the surface of the melt and incident on the optical detector cannot be completely removed. I can guess.

【0011】また、単結晶引上炉の真上に放射温度計を
配置し、温度を測定する方法もある。この方法では、放
射温度計を融液表面から大きく離れた位置に配設し、こ
の位置から鉛直方向にある融液表面の温度を測定するの
で、融液表面にて鏡面反射し放射温度計に入射する迷光
の放射源を引上炉上方の低温部分に限定することができ
る。これにより、迷光による誤差を小さくして、測定精
度を向上することができる。しかしながら、この方法で
は放射温度計の融液表面からの離隔距離が大きく、その
測定視野が大きくなるために、所望の融液表面位置を測
定すべき放射温度計の配設位置の決定が困難であると言
う問題があった。
There is also a method of disposing a radiation thermometer directly above the single crystal pulling furnace and measuring the temperature. In this method, the radiation thermometer is arranged at a position greatly apart from the melt surface, and since the temperature of the melt surface in the vertical direction is measured from this position, the radiation thermometer is mirror-reflected on the melt surface. The source of incident stray light can be limited to the low temperature part above the pulling furnace. Thereby, the error due to stray light can be reduced and the measurement accuracy can be improved. However, in this method, the distance from the melt surface of the radiation thermometer is large, and since the measurement field of view becomes large, it is difficult to determine the placement position of the radiation thermometer to measure the desired melt surface position. There was a problem to say.

【0012】本発明は、かかる事情に鑑みてなされたも
のであり、融液表面からの熱放射光を入射する放射温度
計、及び迷光の放射源の温度を測定する温度測定器を用
いることにより、融液表面の温度を温度変化の追従性良
く連続的に測定でき、そして迷光を除去して高精度に測
定し得る温度測定方法及びその実施に使用する装置を提
供することを目的とし、さらに、レーザ光を用いて前記
放射温度計及び前記温度測定器の配設位置を決定できる
温度測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is achieved by using a radiation thermometer for injecting thermal radiation from the melt surface and a temperature measuring device for measuring the temperature of a radiation source of stray light. , A temperature measurement method capable of continuously measuring the temperature of the melt surface with good followability of temperature change, and capable of highly accurately measuring by removing stray light, and an apparatus used for carrying out the method, An object of the present invention is to provide a temperature measuring device capable of determining the positions where the radiation thermometer and the temperature measuring device are arranged using laser light.

【0013】[0013]

【課題を解決するための手段】第1発明に係る結晶引上
炉内融液表面温度測定方法は、放射温度計で結晶引上炉
内の融液の表面温度を測定する温度測定方法において、
前記融液の表面の一点からの熱放射光の輝度を前記放射
温度計にて検出する過程と、前記一点にて反射し、前記
放射温度計に入射する熱放射光の放射源の温度を測定す
る過程と、前記輝度及び前記温度から前記融液の表面温
度を算出する過程とを有することを特徴とする。
A method for measuring a surface temperature of a melt in a crystal pulling furnace according to a first invention is a method for measuring a surface temperature of a melt in a crystal pulling furnace with a radiation thermometer.
A process of detecting the brightness of thermal radiation from one point on the surface of the melt with the radiation thermometer, and measuring the temperature of the radiation source of the thermal radiation that is reflected at the one point and is incident on the radiation thermometer. And a step of calculating the surface temperature of the melt from the brightness and the temperature.

【0014】第2発明に係る結晶引上炉内融液表面温度
測定装置は、放射温度計で結晶引上炉内の融液の表面温
度を測定する温度測定装置において、前記融液の表面の
一点からの熱放射光の輝度を検出する放射温度計と、前
記一点にて反射し、前記放射温度計に入射する熱放射光
の放射源の温度を測定する温度測定器と、前記輝度及び
前記温度から前記融液の表面温度を算出する演算部とを
具備することを特徴とする。
The melt surface temperature measuring apparatus in the crystal pulling furnace according to the second aspect of the present invention is a temperature measuring apparatus for measuring the surface temperature of the melt in the crystal pulling furnace with a radiation thermometer. A radiation thermometer that detects the brightness of the thermal radiation from one point, a temperature measuring device that measures the temperature of the radiation source of the thermal radiation that is reflected at the one point and is incident on the radiation thermometer, the brightness and the And a calculator for calculating the surface temperature of the melt from the temperature.

【0015】第3発明に係る結晶引上炉内融液表面温度
測定装置は、放射温度計で結晶引上炉内の融液の表面温
度を測定する温度測定装置において、前記融液の表面の
一点からの熱放射光の輝度を検出する放射温度計と、前
記一点にて反射し、前記放射温度計に入射する熱放射光
の放射源の温度を測定する温度測定器と、前記輝度及び
前記温度から前記融液の表面温度を算出する演算部と、
前記放射温度計と光軸を同じくしてレーザ光を放射させ
るレーザ装置とを具備することを特徴とする。
A melt surface temperature measuring apparatus in a crystal pulling furnace according to a third aspect of the present invention is a temperature measuring apparatus for measuring a surface temperature of a melt in a crystal pulling furnace with a radiation thermometer. A radiation thermometer that detects the brightness of the thermal radiation from one point, a temperature measuring device that measures the temperature of the radiation source of the thermal radiation that is reflected at the one point and is incident on the radiation thermometer, the brightness and the An operation unit for calculating the surface temperature of the melt from the temperature,
It is characterized by comprising a laser device that emits laser light with the same optical axis as the radiation thermometer.

【0016】[0016]

【作用】第1及び第2発明の結晶引上炉内融液表面温度
測定方法及びその装置では、融液の表面上の一点からの
熱放射光を放射温度計に入射させ、その輝度を検出して
いる。この入射光には、前記一点が放射する熱放射光だ
けでなく、前記一点で反射する熱放射光とが含まれてい
る。熱放射光輝度は放射源温度での黒体放射光輝度と放
射源の放射率との積で算出されるので、この放射源の温
度を温度測定器で測定し、演算部にて前記輝度から前記
一点で反射する熱放射光の輝度を差引くことにより、融
液の表面上の一点が放射する熱放射光の輝度のみが算出
される。
In the method and apparatus for measuring the surface temperature of the melt in the crystal pulling furnace of the first and second inventions, the thermal radiation light from one point on the surface of the melt is made incident on the radiation thermometer, and the brightness thereof is detected. is doing. The incident light includes not only thermal radiation light emitted from the one point but also thermal radiation light reflected from the one point. The thermal radiance is calculated by the product of the blackbody radiance at the radiant temperature and the emissivity of the radiant.Therefore, measure the temperature of this radiant with a thermometer and calculate By subtracting the brightness of the heat radiation light reflected at the one point, only the brightness of the heat radiation light emitted by one point on the surface of the melt is calculated.

【0017】また、第3発明の結晶引上炉内融液温度測
定装置では、前記放射温度計と同一の光軸でレーザ光を
放射させるレーザ装置を備えて、レーザ光を放射する。
このレーザ光は、融液表面の一点を照射し、そしてここ
で反射して他の一点を照射するので、これらの輝点、即
ち前記一点及び該一点で反射して照射される点が検出さ
れる。放射温度計は、この輝点を目視してその測定視野
を前記一点に合わせた位置に配設されて、検出すべき熱
放射光を正確に入射させることができる。また、一点で
反射して照射される点が検出されるので、温度測定器の
測定すべき点を正確に決定できる。
The melt temperature measuring apparatus in the crystal pulling furnace according to the third aspect of the invention is provided with a laser device for emitting laser light on the same optical axis as the radiation thermometer, and emits laser light.
This laser beam irradiates one point on the surface of the melt, and is reflected here to irradiate another point, so that these bright points, that is, the one point and the point reflected and irradiated at the one point are detected. It The radiation thermometer is arranged at a position where the measurement field of view is aligned with the one point by visually observing the bright spot, and the thermal radiation light to be detected can be accurately incident. Moreover, since the point reflected and irradiated at one point is detected, the point to be measured by the temperature measuring device can be accurately determined.

【0018】[0018]

【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1は、本発明に係る単結晶引上
炉内融液表面温度測定装置の構成を示すブロック図であ
る。図中1は上下方向に移動可能な坩堝であり、該坩堝
1内に単結晶原料である融液2が収容されている。坩堝
1の外周側にはヒータ3が配設され、その周囲が図示し
ない引上炉で覆われている。前記ヒータ3により融液2
が加熱され、単結晶4が上方に引き上げられながら成長
する。図2は本装置の坩堝1近傍の部分平面図である。
温度測定補助板5は、図示しない引上炉の上部から坩堝
1内へ、融液2表面から適長離隔して取り付けられてい
る。この温度測定補助板5は融液2中への不純物の混入
がなく、その放射率が既知であり、放射率の角度依存性
が少ない材質のものが望ましく、本実施例では黒鉛を用
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the configuration of a melt surface temperature measuring device in a single crystal pulling furnace according to the present invention. In the figure, reference numeral 1 denotes a crucible movable in the vertical direction, and a melt 2 which is a single crystal raw material is contained in the crucible 1. A heater 3 is arranged on the outer peripheral side of the crucible 1, and the periphery thereof is covered with a pulling furnace (not shown). The melt 2 by the heater 3
Are heated and the single crystal 4 grows while being pulled upward. FIG. 2 is a partial plan view of the vicinity of the crucible 1 of this device.
The temperature measurement auxiliary plate 5 is attached to the inside of the crucible 1 from the upper portion of a pulling furnace (not shown) with a proper distance from the surface of the melt 2. The temperature measurement auxiliary plate 5 is preferably made of a material that has no known impurities in the melt 2 and has a known emissivity and a small angular dependence of the emissivity. In this embodiment, graphite is used.

【0019】そして、前記放射温度計6及び前記温度測
定器である2色放射温度計7が、引上炉の外側に配設さ
れる。放射温度計6は、前記融液2表面の一点である測
定点Aからの熱放射光が、引上炉に備えられた図示しな
い石英窓を通して入射する光軸に合わせた位置に配設さ
れる。そして、2色放射温度計7は、前記石英窓を通し
て測定点Bを測定視野とする位置に配設される。測定点
Bは温度測定補助板5上の点であり、前記測定点Aで反
射し前記放射温度計6に入射される熱放射光の放射源で
ある。この放射源は融液2表面に写し込まれた極めて狭
い範囲に限定することができ、これによりこの範囲内の
温度は一定であるとみなすことができる。
The radiation thermometer 6 and the two-color radiation thermometer 7 which is the temperature measuring device are arranged outside the pulling furnace. The radiation thermometer 6 is arranged at a position aligned with the optical axis through which thermal radiation light from a measurement point A, which is one point on the surface of the melt 2, is incident through a quartz window (not shown) provided in the pulling furnace. . The two-color radiation thermometer 7 is arranged at a position where the measurement point B is the measurement field of view through the quartz window. The measurement point B is a point on the temperature measurement auxiliary plate 5, and is a radiation source of thermal radiation light reflected at the measurement point A and incident on the radiation thermometer 6. This radiation source can be limited to a very narrow range imprinted on the surface of the melt 2, so that the temperature in this range can be regarded as constant.

【0020】また、単結晶4の成長に伴い坩堝1を上昇
させるようになっている。これは、融液2が減少するに
従い、融液2表面と、放射温度計6,2色放射温度計7
及び温度測定補助板5との相対位置を夫々変化させない
ために行われる。これにより、融液2が減少しても、測
定点A及び測定点Bからの熱放射光は、ずれることなく
放射温度計6及び2色放射温度計7に入射される。
Further, as the single crystal 4 grows, the crucible 1 is raised. This is because as the melt 2 decreases, the melt 2 surface, the radiation thermometer 6, and the two-color radiation thermometer 7
And the relative position with respect to the temperature measurement auxiliary plate 5 are not changed. As a result, even if the melt 2 decreases, the heat radiation light from the measurement points A and B is incident on the radiation thermometer 6 and the two-color radiation thermometer 7 without shifting.

【0021】図中、実線矢符及び破線矢符に示すよう
に、放射温度計6には測定点Aからの熱放射光、及び測
定点Bから測定点Aにて反射する迷光が入射され、その
出力信号が演算部8に入力される。そして、2色放射温
度計7には測定点Bからの熱放射光が入射され、その出
力信号が演算部8に入力される。演算部8は、これらの
入力された信号に基づいて前記測定点Aの温度を算出す
るものであり、演算部8からの出力信号は電力供給制御
部9に入力される。電力供給制御部9は、演算部8から
の出力信号により、ヒータ3の電力を制御し融液2の温
度を所定温度に維持するような信号をヒータ3に出力す
るようになっている。
As shown by solid and broken line arrows in the figure, thermal radiation light from the measurement point A and stray light reflected at the measurement point A from the measurement point B are incident on the radiation thermometer 6. The output signal is input to the arithmetic unit 8. Then, the thermal radiation light from the measurement point B is incident on the two-color radiation thermometer 7, and the output signal thereof is input to the calculation unit 8. The calculation unit 8 calculates the temperature of the measurement point A based on these input signals, and the output signal from the calculation unit 8 is input to the power supply control unit 9. The power supply controller 9 controls the power of the heater 3 in response to the output signal from the calculator 8 and outputs a signal to the heater 3 to maintain the temperature of the melt 2 at a predetermined temperature.

【0022】ヒータ3により坩堝1内の融液2を加熱
し、単結晶4を成長させるに際して、上述の如く構成さ
れた装置を用いて、融液2の温度を測定する場合は、融
液2の測定点Aからの熱放射光と、測定点Aにて反射す
る放射光(迷光)とが放射温度計6に入射される。この
迷光の放射源は、放射温度計6の視野内にて、融液2の
測定点Aに写し込まれる温度測定補助板5の測定点Bで
あり、測定点Bからの熱放射光は、直接2色放射温度計
7にも入射する。そして、放射温度計6及び2色放射温
度計7からの出力信号が、演算部8に入力される。
When heating the melt 2 in the crucible 1 with the heater 3 to grow the single crystal 4, the melt 2 is used when the temperature of the melt 2 is measured by using the apparatus configured as described above. The heat radiation light from the measurement point A and the radiation light (stray light) reflected at the measurement point A are incident on the radiation thermometer 6. The radiation source of this stray light is the measurement point B of the temperature measurement auxiliary plate 5 which is imaged at the measurement point A of the melt 2 in the field of view of the radiation thermometer 6, and the heat radiation light from the measurement point B is It also directly enters the two-color radiation thermometer 7. Then, the output signals from the radiation thermometer 6 and the two-color radiation thermometer 7 are input to the calculation unit 8.

【0023】演算部8には、放射温度計で測定される輝
度Lについての以下に示す(2)式が設定されている。
融液2表面の放射率をεS とすると、融液2表面の反射
率は1−εS と表され、測定点Aからの放射光の輝度L
は、(1)式で表される。
The following equation (2) for the luminance L measured by the radiation thermometer is set in the calculation section 8.
When the emissivity of the surface of the melt 2 is ε S , the reflectance of the surface of the melt 2 is expressed as 1-ε S, and the luminance L of the radiated light from the measurement point A is L.
Is expressed by equation (1).

【0024】 L=τW (εS b (TS )+(1−εS )εF b (TF )) …(1) 但し、 L:放射温度計6に入射する放射光輝度 εS :融液2表面の放射率 TS :融液2の測定点Aの温度 εF :温度測定補助板5の放射率 TF :温度測定補助板5の測定点Bの温度 τW :石英窓の透過率 Lb (T):温度Tでの黒体放射光輝度L = τ WS L b (T S ) + (1−ε S ) ε F L b (T F )) (1) where L is the radiant light intensity incident on the radiation thermometer 6. ε S : Emissivity of the surface of the melt 2 T S : Temperature of the measurement point A of the melt 2 ε F : Emissivity of the temperature measurement auxiliary plate 5 T F : Temperature of the measurement point B of the temperature measurement auxiliary plate 5 τ W : Quartz window transmittance L b (T): Blackbody radiance at temperature T

【0025】Lb (TS )は測定点Aからの熱放射光の
みの輝度であり、(1)式より導かれた以下に示す
(2)式が、演算部8に設定されている。 Lb (TS )=(L−τW (1−εS )εF ・Lb ( TF ))/τW εS …(2)
L b (T s ) is the brightness of only the heat radiation light from the measurement point A, and the following equation (2) derived from equation (1) is set in the computing section 8. L b (T S ) = (L−τ W (1-ε S ) ε F · L b (T F )) / τ W ε S (2)

【0026】そして、演算部8に融液2表面の放射率ε
S ,温度測定補助板5の放射率εF,及び石英窓の透過
率τW が予め設定されている。演算部8は、2色放射温
度計7で測定された測定点Bの温度より、測定点Bから
の熱放射光の輝度Lb ( TF) を、予め与えられている
換算式又はテーブル等により換算し、(2)式より、測
定点Aの温度がTS が算出され、出力される。演算部8
からの出力信号は電力供給制御部9に入力される。電力
供給制御部9では、入力信号に応じてヒータ3の電力を
制御し、融液2の温度を維持する。
Then, the emissivity ε of the surface of the melt 2 is applied to the calculation unit 8.
S , the emissivity ε F of the temperature measurement auxiliary plate 5, and the transmittance τ W of the quartz window are preset. The calculation unit 8 calculates the brightness L b (T F ) of the heat radiation light from the measurement point B from the temperature of the measurement point B measured by the two-color radiation thermometer 7 by using a given conversion formula or a table. converted by, from equation (2), the temperature of the measurement point a T S is calculated and output. Arithmetic unit 8
The output signal from is input to the power supply control unit 9. The power supply controller 9 controls the power of the heater 3 according to the input signal to maintain the temperature of the melt 2.

【0027】このような本実施例における装置及び方法
にて、放射温度計を用いて、迷光を除去し温度変化の追
従性良く、融液2の表面温度の測定を測定することがで
きる。なお、上述の実施例では、熱放射光の放射源を測
定補助板としたが、これに限るものではなく、例えば炉
内構造物を放射源としても良い。
With the apparatus and method of this embodiment, the radiation thermometer can be used to measure stray light and measure the surface temperature of the melt 2 with good followability of temperature changes. In addition, in the above-mentioned embodiment, the radiation source of the thermal radiation light is the measurement auxiliary plate, but the radiation source is not limited to this, and for example, the reactor internal structure may be used as the radiation source.

【0028】次に、融液2の表面の一点である測定点
A、及び前記一点で反射する熱放射光の放射源である測
定点Bの位置を検出し、前記放射温度計及び前記温度測
定器を、さらに正確な位置に配設して融液表面の温度を
測定する本発明の第2実施例である温度測定装置につい
て説明する。
Next, the positions of the measurement point A, which is one point on the surface of the melt 2, and the measurement point B, which is the radiation source of the thermal radiation light reflected at the one point, are detected, and the radiation thermometer and the temperature measurement are performed. A temperature measuring device, which is a second embodiment of the present invention, in which a vessel is arranged at a more accurate position to measure the temperature of the melt surface will be described.

【0029】図3は、本発明に係る単結晶引上炉内融液
表面温度測定装置の構成を示すブロック図であり、図
中、レーザ装置10は放射温度計6に接続されている。レ
ーザ装置10は、放射温度計6の光軸と同軸に、He−Neの
レーザ光を測定点Aに照射することができるものであ
り、レーザ光源と接続された光ファイバを通じてレーザ
光を放射温度計6の図示しないファインダへ入射するよ
うになっている。これ以外は上述した図1に示す装置及
び測定方法と同様であり、対応する部分に同符号を付し
て、その説明を省略する。
FIG. 3 is a block diagram showing the structure of the melt surface temperature measuring apparatus in the single crystal pulling furnace according to the present invention. In the figure, the laser apparatus 10 is connected to the radiation thermometer 6. The laser device 10 is capable of irradiating the measurement point A with He—Ne laser light coaxially with the optical axis of the radiation thermometer 6, and the laser light is emitted through an optical fiber connected to the laser light source. The light is incident on a finder (not shown) of a total of 6. Other than this, the apparatus and the measuring method shown in FIG. 1 are the same as those described above, and the corresponding parts are designated by the same reference numerals and the description thereof is omitted.

【0030】レーザ装置10により放射温度計6からレー
ザ光を放射する。このレーザ光の輝点が測定点Aを照射
する位置に放射温度計6を配設する。また、このレーザ
光は測定点Aにて反射し、測定点Bを照射する。2色放
射温度計7のファインダから測定点Bを照射しているレ
ーザ光の輝点を目視することにより、2色放射温度計7
を測定点Bからの熱放射光を入射できる位置に配設す
る。このようにして、放射温度計6及び2色放射温度計
7の正確な配設位置を決定できる。
Laser light is emitted from the radiation thermometer 6 by the laser device 10. The radiation thermometer 6 is arranged at a position where the bright spot of the laser light irradiates the measurement point A. Further, this laser light is reflected at the measurement point A and irradiates the measurement point B. By visually observing the bright spot of the laser beam irradiating the measurement point B from the viewfinder of the two-color radiation thermometer 7, the two-color radiation thermometer 7
Is arranged at a position where the heat radiation light from the measurement point B can enter. In this way, the accurate arrangement positions of the radiation thermometer 6 and the two-color radiation thermometer 7 can be determined.

【0031】なお、第1,第2実施例では、温度測定器
に2色放射温度計7を用いているが、これに限るもので
はなく、迷光の放射源の温度を測定できるものであれば
良く、例えば熱電対を温度測定補助板5表面に配設して
も良い。
In the first and second embodiments, the two-color radiation thermometer 7 is used as the temperature measuring device. However, the temperature measuring device is not limited to this, as long as it can measure the temperature of the radiation source of stray light. For example, a thermocouple may be arranged on the surface of the temperature measurement auxiliary plate 5.

【0032】また、第1,第2実施例では、レーザ光と
してHe−Neレーザ光を用いているが、これに限るもので
はなく、熱放射光と容易に分離可能なレーザ光であれ
ば、例えばArレーザ光でも良い。
Further, in the first and second embodiments, the He-Ne laser light is used as the laser light, but the laser light is not limited to this, and any laser light that can be easily separated from the thermal radiation light can be used. For example, Ar laser light may be used.

【0033】[0033]

【発明の効果】以上のように、本発明の結晶引上炉内融
液表面温度測定方法及びその装置においては、放射温度
計に入射された熱放射光から、迷光による影響を除去す
ることにより、融液表面の温度を高精度に測定でき、ま
た温度変化に追従性良く連続的に測定できる。また、迷
光の放射源として坩堝側壁を利用することもできるが、
温度測定補助板を放射源として配設することにより、放
射温度計と石英窓と融液表面との位置関係を都合良く合
わせることができる。さらに、レーザ光を用いて放射温
度計及び温度測定器の位置を正確に決定することによ
り、さらに高精度に融液表面の温度を測定することがで
きる等、本発明は優れた効果を奏するものである。
As described above, in the method and apparatus for measuring the surface temperature of the melt in the crystal pulling furnace of the present invention, the effect of stray light is removed from the thermal radiation light incident on the radiation thermometer. The temperature of the melt surface can be measured with high accuracy and can be continuously measured with good followability to temperature changes. You can also use the crucible side wall as a source of stray light,
By disposing the temperature measurement auxiliary plate as the radiation source, the positional relationship among the radiation thermometer, the quartz window and the melt surface can be conveniently matched. Further, by accurately determining the positions of the radiation thermometer and the temperature measuring device using the laser beam, the temperature of the melt surface can be measured with higher accuracy, and the present invention has excellent effects. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶引上炉内融液表面温度測定
装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a melt surface temperature measuring device in a single crystal pulling furnace according to the present invention.

【図2】本発明装置の坩堝近傍の部分平面図である。FIG. 2 is a partial plan view of the vicinity of the crucible of the device of the present invention.

【図3】本発明に係る単結晶引上炉内融液表面温度測定
装置の構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of a melt surface temperature measuring device in a single crystal pulling furnace according to the present invention.

【図4】従来の融液測定装置の構成を示すブロック図で
ある。
FIG. 4 is a block diagram showing a configuration of a conventional melt measuring device.

【符号の説明】[Explanation of symbols]

1 坩堝 2 融液 3 ヒータ 4 単結晶 5 温度測定補助板 6 放射温度計 7 2色放射温度計 8 演算部 9 電力供給制御部 10 レーザ装置 1 crucible 2 melt 3 heater 4 single crystal 5 temperature measurement auxiliary plate 6 radiation thermometer 7 two-color radiation thermometer 8 computing unit 9 power supply control unit 10 laser device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 放射温度計で結晶引上炉内の融液の表面
温度を測定する温度測定方法において、前記融液の表面
の一点からの熱放射光の輝度を前記放射温度計にて検出
する過程と、前記一点にて反射し、前記放射温度計に入
射する熱放射光の放射源の温度を測定する過程と、前記
輝度及び前記温度から前記融液の表面温度を算出する過
程とを有することを特徴とする温度測定方法。
1. A temperature measuring method for measuring the surface temperature of a melt in a crystal pulling furnace with a radiation thermometer, wherein the brightness of thermal radiation from one point on the surface of the melt is detected with the radiation thermometer. And a step of measuring the temperature of the radiation source of the thermal radiation that is reflected at the one point and is incident on the radiation thermometer, and a step of calculating the surface temperature of the melt from the brightness and the temperature. A method for measuring temperature, comprising:
【請求項2】 放射温度計で結晶引上炉内の融液の表面
温度を測定する温度測定装置において、前記融液の表面
の一点からの熱放射光の輝度を検出する放射温度計と、
前記一点にて反射し、前記放射温度計に入射する熱放射
光の放射源の温度を測定する温度測定器と、前記輝度及
び前記温度から前記融液の表面温度を算出する演算部と
を具備することを特徴とする温度測定装置。
2. A temperature measuring device for measuring the surface temperature of a melt in a crystal pulling furnace with a radiation thermometer, a radiation thermometer for detecting the brightness of thermal radiation from one point on the surface of the melt,
A temperature measuring device that measures the temperature of a radiation source of thermal radiation that reflects at the one point and enters the radiation thermometer, and a computing unit that calculates the surface temperature of the melt from the brightness and the temperature. A temperature measuring device characterized by:
【請求項3】 前記放射温度計と光軸を同じくしてレー
ザ光を放射させるレーザ装置を具備することを特徴とす
る請求項2記載の温度測定装置。
3. The temperature measuring device according to claim 2, further comprising a laser device that emits laser light with the same optical axis as the radiation thermometer.
JP4304960A 1992-10-16 1992-10-16 Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace Pending JPH06129911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4304960A JPH06129911A (en) 1992-10-16 1992-10-16 Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4304960A JPH06129911A (en) 1992-10-16 1992-10-16 Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace

Publications (1)

Publication Number Publication Date
JPH06129911A true JPH06129911A (en) 1994-05-13

Family

ID=17939387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4304960A Pending JPH06129911A (en) 1992-10-16 1992-10-16 Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace

Country Status (1)

Country Link
JP (1) JPH06129911A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
KR100605689B1 (en) * 1999-12-27 2006-07-31 주식회사 포스코 Method for measuring naked eye size of molten steel in ladle
JP2007248148A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Blast furnace tapping temperature measuring system, blast furnace tapping temperature measuring method, and computer program
JP2007256219A (en) * 2006-03-27 2007-10-04 Nissan Motor Co Ltd Temperature detector
JP2016204179A (en) * 2015-04-17 2016-12-08 株式会社Sumco Method for measuring temperature of seed crystal and method for manufacturing single crystal
KR20180126542A (en) 2016-05-25 2018-11-27 가부시키가이샤 사무코 Method and apparatus for manufacturing silicon single crystal
KR20200111775A (en) 2018-02-28 2020-09-29 가부시키가이샤 사무코 Convection pattern estimation method of silicon melt, oxygen concentration estimation method of silicon single crystal, silicon single crystal manufacturing method, and silicon single crystal pulling device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100605689B1 (en) * 1999-12-27 2006-07-31 주식회사 포스코 Method for measuring naked eye size of molten steel in ladle
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
JP2007248148A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Blast furnace tapping temperature measuring system, blast furnace tapping temperature measuring method, and computer program
JP4669420B2 (en) * 2006-03-14 2011-04-13 新日本製鐵株式会社 Blast furnace tapping temperature measuring system, blast furnace tapping temperature measuring method, and computer program
JP2007256219A (en) * 2006-03-27 2007-10-04 Nissan Motor Co Ltd Temperature detector
JP2016204179A (en) * 2015-04-17 2016-12-08 株式会社Sumco Method for measuring temperature of seed crystal and method for manufacturing single crystal
KR20180126542A (en) 2016-05-25 2018-11-27 가부시키가이샤 사무코 Method and apparatus for manufacturing silicon single crystal
DE112017002662T5 (en) 2016-05-25 2019-03-14 Sumco Corporation Method and apparatus for producing silicon single crystal
US10858753B2 (en) 2016-05-25 2020-12-08 Sumco Corporation Method and apparatus for manufacturing silicon single crystal
KR20200111775A (en) 2018-02-28 2020-09-29 가부시키가이샤 사무코 Convection pattern estimation method of silicon melt, oxygen concentration estimation method of silicon single crystal, silicon single crystal manufacturing method, and silicon single crystal pulling device
US11885038B2 (en) 2018-02-28 2024-01-30 Sumco Corporation Method of estimating convection pattern of silicon melt, method of estimating oxygen concentration of silicon single crystal, method of manufacturing silicon single crystal, and raising device of silicon single crystal

Similar Documents

Publication Publication Date Title
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US4890245A (en) Method for measuring temperature of semiconductor substrate and apparatus therefor
US20040182538A1 (en) Apparatus and method of carrying out a melting and casting operation
EP0536382A1 (en) Non-contact optical techniques for measuring surface conditions
IE921487A1 (en) Method and device for calibrating an optical pyrometer and corresponding calibration wafers
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
US6786634B2 (en) Temperature measuring method and apparatus
Ignatiev et al. Surface temperature measurements during pulsed laser action on metallic and ceramic materials
JPH11190662A (en) Method of measuring surface temperature of molten liquid in single crystal pull-up furnace and device for the method
JP3600873B2 (en) Substrate temperature measurement unit
JPH07243911A (en) Temperature measuring device for molten liquid surface and measuring method therefor
JPH0561574B2 (en)
JPH05507356A (en) Object temperature measurement method and device and heating method
JPS6379339A (en) Method and apparatus for measuring temperature of semiconductor substrate
JPS63182528A (en) Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JPH09126889A (en) Method and instrument for measuring temperature of semiconductor substrate
JPS58168927A (en) Measuring apparatus of temperature of melt for single crystal rearing furnace
JPH05346351A (en) Device and method for measuring radiation temperature
JPH07318426A (en) Temperature measuring device by raman scattering and method therefor
JPS61175534A (en) Emissivity measuring apparatus
JPH0682044B2 (en) Oxide film measuring device and continuous heating burner controller for thin steel sheet
JP3010803B2 (en) Temperature control method of concentrating heating furnace
JPS61286727A (en) Method and apparatus for calibrating radiation thermometer by luminance standard temperature