JPS6236551A - Oxygen concentration detector - Google Patents
Oxygen concentration detectorInfo
- Publication number
- JPS6236551A JPS6236551A JP60176254A JP17625485A JPS6236551A JP S6236551 A JPS6236551 A JP S6236551A JP 60176254 A JP60176254 A JP 60176254A JP 17625485 A JP17625485 A JP 17625485A JP S6236551 A JPS6236551 A JP S6236551A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- pump element
- members
- electrode
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
炎丘光1
本発明はエンジン排気ガス等の気体中の酸素濃度を検出
する酸素′a度検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen degree detection device for detecting the oxygen concentration in gas such as engine exhaust gas.
九五五皿
内燃エンジンの排気ガス浄化、燃費改善等を目的として
、排気ガス中の酸素濃度を検出し、この検出結果に応じ
てエンジンへの供給混合気の空燃比を目標空燃比にフィ
ードバック制御する空燃比制御装置がある。In order to purify the exhaust gas of internal combustion engines and improve fuel efficiency, the oxygen concentration in the exhaust gas is detected, and the air-fuel ratio of the air-fuel mixture supplied to the engine is feedback-controlled to the target air-fuel ratio according to the detection results. There is an air-fuel ratio control device that does this.
このような空燃比制御装置に用いられる酸素濃度検出装
置として被測定気体中の酸素濃度に比例した出力を発生
するものがある。例えば、酸素イオン導電性固体電解質
部材に1対の電極部材を設けて固体電解質部材の一方の
電極面が気体滞留室の一部をなしてその気体滞留室が被
測定気体と導入孔を介して連通ずるようにした限界電流
方式の酸素濃度検出装置が特開昭52−72286号公
報に開示されている。この酸素濃度検出装置においては
、酸素イオン導電性固体電解質部材と1対の電極部材と
が酸素ポンプ素子として作用して間隙室側電極が負極に
なるように電極間に電流を供給すると、負極面側にて気
体R留空内気体中の酸素ガスがイオン化して固体電解質
部材内を正極面側に移動し正極面から酸素ガスとして放
出される。Some oxygen concentration detection devices used in such air-fuel ratio control devices generate an output proportional to the oxygen concentration in the gas to be measured. For example, if a pair of electrode members is provided on an oxygen ion conductive solid electrolyte member, one electrode surface of the solid electrolyte member forms part of a gas retention chamber, and the gas retention chamber is connected to the gas to be measured through the introduction hole. A limiting current type oxygen concentration detection device in which communication is shifted is disclosed in Japanese Patent Laid-Open No. 72286/1986. In this oxygen concentration detection device, when the oxygen ion conductive solid electrolyte member and the pair of electrode members act as an oxygen pump element and a current is supplied between the electrodes so that the electrode on the gap chamber side becomes the negative electrode, the negative electrode surface On the side, oxygen gas in the gas R is ionized and moves within the solid electrolyte member toward the positive electrode surface, where it is released as oxygen gas from the positive electrode surface.
このときの電極間に流れ得る限界電流値は印加電圧に拘
らずほぼ一定となりかつ被測定気体中の酸素濃度に比例
するのでその限界電流値を検出すれば被測定気体中の酸
素濃度を測定することができる。しかしながら、かかる
酸素&1度検出装置を用いて空燃比を制御する場合に排
気ガス中の酸素濃度からは混合気の空燃比が理論空燃比
よりリーンの範囲でしか酸素濃度に比例した出力が得ら
れないので目標空燃比をリッチ領域に設定した空燃比制
御は不可能であった。また空燃比がリーン及びリッチ領
域にて排気ガス中の酸素濃度に比例した出力が得られる
酸素濃度検出装置としては2つの酸素イオン導電性固体
電解質部材に1対の電極部材を各々設けて2つの固体電
解質部材の一方の電極向合々が気体滞留室の一部をなし
てその気体滞留室が被測定気体と導入孔を介して連通し
一方の固体電解質部材の他方の電極面が大気室に面する
ようにした装置が特開昭59−192955号に開示さ
れている。この酸素濃度検出装置においては一方の酸素
イオン導電性固体電解質部材と1対の電極部材とが酸素
濃度検出電池素子として作用し他方の酸素イオン導電性
固体電解質材と1対の電極部材とが酸素ポンプ索子とし
て作用するようになっている。酸素濃度検出電池素子の
電極間の発生電圧が基準電圧以上のとき酸素ポンプ素子
内を酸素イオンが気体滞留室側電極に向って移動するよ
うに電流を供給し、酸素i度検出電池素子の電極間の発
生電圧が基準電圧以下のとぎ酸素ポンプ素子内を酸素イ
オンが気体滞留室側とは反対側の電極に向って移動する
ように電流を供給することによりリーン及びリッチ領域
の空燃比において電流値は酸素濃度に比例するのである
。しかしながら、かかる酸素濃度検出装置においては大
気室を設けて大気を導入する必要があり、また構成が相
当複雑になると共にコスト高になるという問題点があっ
た。The limiting current value that can flow between the electrodes at this time is almost constant regardless of the applied voltage and is proportional to the oxygen concentration in the gas being measured, so if the limiting current value is detected, the oxygen concentration in the gas being measured can be measured. be able to. However, when controlling the air-fuel ratio using such an oxygen & degree detection device, an output proportional to the oxygen concentration can only be obtained from the oxygen concentration in the exhaust gas within a range where the air-fuel ratio of the mixture is leaner than the stoichiometric air-fuel ratio. Therefore, it was impossible to control the air-fuel ratio by setting the target air-fuel ratio in the rich range. In addition, as an oxygen concentration detection device that can obtain an output proportional to the oxygen concentration in exhaust gas when the air-fuel ratio is in the lean and rich regions, two oxygen ion conductive solid electrolyte members are each provided with a pair of electrode members. One electrode surface of the solid electrolyte member forms a part of a gas retention chamber, and the gas retention chamber communicates with the gas to be measured through an introduction hole, and the other electrode surface of one solid electrolyte member is connected to an atmospheric chamber. A device designed to face each other is disclosed in Japanese Patent Laid-Open No. 59-192955. In this oxygen concentration detection device, one oxygen ion conductive solid electrolyte member and a pair of electrode members act as an oxygen concentration detection battery element, and the other oxygen ion conductive solid electrolyte material and a pair of electrode members act as an oxygen concentration detection battery element. It is adapted to act as a pump cord. When the voltage generated between the electrodes of the oxygen concentration detection battery element is equal to or higher than the reference voltage, a current is supplied so that oxygen ions move within the oxygen pump element toward the electrode on the gas retention chamber side, and the electrode of the oxygen concentration detection battery element By supplying current so that oxygen ions move within the oxygen pump element toward the electrode on the opposite side from the gas retention chamber side, the current is reduced at air-fuel ratios in the lean and rich regions. The value is proportional to the oxygen concentration. However, in such an oxygen concentration detection device, it is necessary to provide an atmospheric chamber to introduce the atmosphere, and there are also problems in that the configuration is considerably complicated and the cost is high.
l旦夏且I
そこで、本発明の目的は簡単な構成で空燃比がリーン及
びリッチ領域であっても高精度で酸素濃度に比例した出
力を得ることができる酸素濃度検出装置を提供すること
である。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen concentration detection device that has a simple configuration and can obtain an output proportional to the oxygen concentration with high accuracy even when the air-fuel ratio is in the lean or rich region. be.
本発明の酸素濃度検出装置は酸素イオン導電性固体電解
質部材と、該酸素イオン導電性固体電解質部材に設けら
れた2対のN極部材とを含み、2対の電極部材各々の一
方を含む前記酸素イオン導電性固体電解質部材の一部が
被測定気体導入孔に連通した気体滞留室を形成し、酸素
イオン導電性固体電解質部材と2対の電極部材とが2つ
の酸素ポンプ素子として作用することを特徴としている
。。The oxygen concentration detection device of the present invention includes an oxygen ion conductive solid electrolyte member and two pairs of N electrode members provided on the oxygen ion conductive solid electrolyte member, and the oxygen concentration detection device includes an oxygen ion conductive solid electrolyte member and two pairs of N electrode members provided on the oxygen ion conductive solid electrolyte member. A part of the oxygen ion conductive solid electrolyte member forms a gas retention chamber communicating with the gas introduction hole to be measured, and the oxygen ion conductive solid electrolyte member and the two pairs of electrode members act as two oxygen pump elements. It is characterized by .
支−五−1 以下、本発明の実施例を図面を参照しつつ説明する。Support-5-1 Embodiments of the present invention will be described below with reference to the drawings.
第1図に示した本発明の一実施例たる酸素濃度検出装置
においては、1対の平板状の酸素イオン導電性固体電解
質部材1,2が設けられている。In the oxygen concentration detection device shown in FIG. 1, which is an embodiment of the present invention, a pair of flat oxygen ion conductive solid electrolyte members 1 and 2 are provided.
酸素イオン導電性固体電解質部材1.2間には平行に保
つためにスペーサ3が設けられ、また図示しない部材に
よって気体滞留室として間隙室4が形成されている。酸
素イオン導電性固体電解質部材1,2の一端間には間隙
室4内に被測定気体の排気ガスを導入する導入孔5がオ
゛リフイス6によって形成されている。導入孔5は内燃
エンジンの排気管(図示せず)内において排気ガスが間
隙室4内に流入し易いように位置される。酸素イオン導
電性固体電解質部材1には2対の電極部材7a。A spacer 3 is provided between the oxygen ion conductive solid electrolyte members 1 and 2 to keep them parallel to each other, and a gap chamber 4 is formed as a gas retention chamber by a member not shown. An introduction hole 5 is formed by an orifice 6 between one end of the oxygen ion conductive solid electrolyte members 1 and 2 for introducing exhaust gas of the gas to be measured into the gap chamber 4 . The introduction hole 5 is located in an exhaust pipe (not shown) of the internal combustion engine so that exhaust gas can easily flow into the gap chamber 4 . The oxygen ion conductive solid electrolyte member 1 includes two pairs of electrode members 7a.
7b、8a、8bが固着されている。電極部材7a、8
aは間隙室4内に位置している。酸素イオン導電性固体
電解質部材1及び電極部材7a、7bが駆動酸素ポンプ
索子9として、また酸素イオン導電性固体電解質部材1
及び電極部材8a、8bが酸素検出ポンプ素子10とし
て作用するようになっている。酸素イオン導電性固体電
解質部材2の間隙室4とは反対側の面にはヒータ素子1
1が設けられている。7b, 8a, and 8b are fixed. Electrode members 7a, 8
a is located within the interstitial chamber 4. The oxygen ion conductive solid electrolyte member 1 and the electrode members 7a, 7b serve as the driving oxygen pump cord 9, and the oxygen ion conductive solid electrolyte member 1
The electrode members 8a and 8b act as an oxygen detection pump element 10. A heater element 1 is provided on the surface of the oxygen ion conductive solid electrolyte member 2 opposite to the gap chamber 4.
1 is provided.
駆動酸素ポンプ素子9及び酸素検出ポンプ素子10には
電流供給回路12から電流が供給される。Current is supplied to the drive oxygen pump element 9 and the oxygen detection pump element 10 from a current supply circuit 12 .
第2図に示すように電流供給回路12はオペアンプ13
.抵抗14ないし18.ツェナーダイオード19及び誤
差増幅器20からなる。オペアンプ13の出力端は抵抗
14を介して電極部U7a。As shown in FIG. 2, the current supply circuit 12 includes an operational amplifier 13.
.. Resistors 14 to 18. It consists of a Zener diode 19 and an error amplifier 20. The output end of the operational amplifier 13 is connected to the electrode portion U7a via the resistor 14.
8aに接続されると共にオペアンプ13の反転入力端に
接続されている。またこの接続ラインにはツェナーダイ
オード19のカソードが接続され、ツェナーダイオード
19のアノードには電圧VCCが抵抗18を介して供給
される。オペアンプ13の非反転入力端には抵抗15.
16による電圧VCCの分圧電圧VCC/2が供給され
る。電極部材8bには電圧VCCが抵抗17を介して供
給される。8 a and also connected to the inverting input terminal of the operational amplifier 13 . Further, the cathode of a Zener diode 19 is connected to this connection line, and the voltage VCC is supplied to the anode of the Zener diode 19 via a resistor 18. A resistor 15 is connected to the non-inverting input terminal of the operational amplifier 13.
A divided voltage VCC/2 of the voltage VCC by 16 is supplied. Voltage VCC is supplied to electrode member 8b via resistor 17.
誤差増幅器20の一方の入力端は電極部材8bが接続さ
れ、他方の入力端は抵抗18とツェナーダイオード19
との接続ラインに接続されている。One input terminal of the error amplifier 20 is connected to the electrode member 8b, and the other input terminal is connected to the resistor 18 and the Zener diode 19.
Connected to the connection line.
誤差増幅器20の出力端は電極部材7bに接続されてい
る。The output end of the error amplifier 20 is connected to the electrode member 7b.
かかる構成の本発明による酸素濃度検出装置においては
、ヒータ素子11には電流が図示しないヒータ電流供給
回路から供給されてヒータ素子11が発熱して駆動酸素
ポンプ素子9及び酸素検出ポンプ素子10を排気ガスよ
り高い適温に加熱する。In the oxygen concentration detection device according to the present invention having such a configuration, current is supplied to the heater element 11 from a heater current supply circuit (not shown), and the heater element 11 generates heat to exhaust the driving oxygen pump element 9 and the oxygen detection pump element 10. Heat to an appropriate temperature higher than gas.
駆動酸素ポンプ素子9及び酸素検出ポンプ素子10の一
方の電極(N極部材7a、8a)にはオペアンプ13に
よって電圧VCC/2が印加される。A voltage VCC/2 is applied by an operational amplifier 13 to one electrode (N-pole member 7a, 8a) of the driving oxygen pump element 9 and the oxygen detection pump element 10.
オペアンプ13の出力電圧VOutは電圧V CC/
2に抵抗14の端子電圧を加算した電圧であり、抵抗1
4には駆動酸素ポンプ素子9の電極間を流れる電流to
と酸素検出ポンプ素子10の電極間を流れる電流tsと
の和電流が流れる。よって、抵抗14の抵抗値をRsと
すると、出力電圧VoltはVCC/2+(to+4s
)Rsとなる。The output voltage VOut of the operational amplifier 13 is the voltage V CC/
2 plus the terminal voltage of resistor 14, and resistor 1
4 represents a current to flowing between the electrodes of the driving oxygen pump element 9.
and the current ts flowing between the electrodes of the oxygen detection pump element 10. Therefore, if the resistance value of the resistor 14 is Rs, the output voltage Volt is VCC/2+(to+4s
) becomes Rs.
一方、酸素検出ポンプ素子10の電極間電圧をvs、抵
抗17の抵抗値をRrとすると、酸素検出ポンプ素子1
0の電極間を流れる電Hisは(VCC/ 2− Vs
) / Rrとなる。電流tsは酸素検出ポンプ素子
1oの他方の電極(電極部材8b)から一方の電極に向
って流れるので間隙室4内の酸素がイオン化して酸素検
出ポンプ素子10内を移動して他方の電極から酸素ガス
として放出され、間隙室4内の酸素が汲み出される。酸
素検出ポンプ素子10の電極間電圧Vsとツェナーダイ
オード19のツェナー電圧vzとの差電圧に比例した電
圧V+ (0−Vcc)が誤差増幅器20から出力さ
れ、駆動酸素ポンプ素子9の電極間にはVCC/2−V
+が印加され、駆動M索ポンプ素子9の電極間を電流t
oが流れる。エンジンへの供給混合気の空燃比が理論空
燃比のときには酸素検出ポンプ素子10によって汲み出
された酸素量と同−母が駆動酸素ポンプ素子9によって
外部から間隙室4内に汲み込まれる。このとき、駆動酸
素ポンプ素子9には電流toが一方の電極から他方の電
極(電極部材7b)に向って流れ、電流tDと電流is
とは大きさが同一で方向が反対になるように設定される
のでjo+cs−0となり電圧Vsが所定の基準電圧(
例えば、0.5V)に制御される。On the other hand, if the interelectrode voltage of the oxygen detection pump element 10 is vs, and the resistance value of the resistor 17 is Rr, then the oxygen detection pump element 1
The electric current His flowing between the electrodes at 0 is (VCC/2-Vs
) / Rr. Since the current ts flows from the other electrode (electrode member 8b) of the oxygen detection pump element 1o to one electrode, the oxygen in the interstitial chamber 4 is ionized and moves within the oxygen detection pump element 10, and from the other electrode. It is released as oxygen gas and the oxygen in the interstitial chamber 4 is pumped out. A voltage V+ (0-Vcc) proportional to the difference voltage between the interelectrode voltage Vs of the oxygen detection pump element 10 and the Zener voltage vz of the Zener diode 19 is output from the error amplifier 20, and VCC/2-V
+ is applied, and a current t flows between the electrodes of the drive M-pump element 9.
o flows. When the air-fuel ratio of the air-fuel mixture supplied to the engine is the stoichiometric air-fuel ratio, the same amount of oxygen pumped out by the oxygen detection pump element 10 is pumped into the gap chamber 4 from the outside by the driving oxygen pump element 9. At this time, a current to flows from one electrode to the other electrode (electrode member 7b) in the driving oxygen pump element 9, and a current tD and a current is
Since it is set so that the magnitude is the same and the direction is opposite, it becomes jo + cs - 0, and the voltage Vs is set to the predetermined reference voltage (
For example, it is controlled to 0.5V).
次に、リーン領域の空燃比のときには間隙室4に導入孔
5から流れ込むa県□□□が増加するので酸素検出ポン
プ素子10は酸素汲み出し量を増やそうと作動する。酸
素検出ポンプ素子10の電極間の電流tsの増加により
電圧Vsが低下して誤差増幅器20の出力電圧■1が上
界する。電圧■1の上昇により駆動酸素ポンプ素子9の
電極電圧Vcc/ 2− V +が低下し、電流ioが
減少するので駆動酸素ポンプ素子9による間隙室4内へ
の酸素の汲み込み量は減少する。更に空燃比がリーンと
なると電流toの流れる方向が反転して駆動酸素ポンプ
素子9の他方の電極から一方の電極に向って流れ、駆動
酸素ポンプ素子9は間隙室4内の空気を外部に汲み出す
。よって、酸素検出ポンプ素子10による酸素汲み出し
量は増加せずに一定に保たれるので酸素検出ポンプ素子
10の内部抵抗が一定になる。すなわち、電流tsは空
燃比が理論空燃比のときの値に維持されるのでto+t
s〉0となり、to+tsは酸素濃度に比例するのであ
る。Next, when the air-fuel ratio is in the lean region, the amount of air flowing into the gap chamber 4 from the introduction hole 5 increases, so the oxygen detection pump element 10 operates to increase the amount of oxygen pumped out. As the current ts between the electrodes of the oxygen detection pump element 10 increases, the voltage Vs decreases, and the output voltage 1 of the error amplifier 20 reaches its upper limit. As the voltage (1) increases, the electrode voltage Vcc/2-V+ of the driving oxygen pump element 9 decreases, and the current io decreases, so the amount of oxygen pumped into the interstitial chamber 4 by the driving oxygen pump element 9 decreases. . Furthermore, when the air-fuel ratio becomes lean, the flow direction of the current to is reversed and flows from the other electrode to the one electrode of the driving oxygen pump element 9, and the driving oxygen pump element 9 pumps the air in the interstitial chamber 4 to the outside. put out. Therefore, the amount of oxygen pumped out by the oxygen detection pump element 10 does not increase and is kept constant, so that the internal resistance of the oxygen detection pump element 10 becomes constant. That is, since the current ts is maintained at the value when the air-fuel ratio is the stoichiometric air-fuel ratio, to+t
s>0, and to+ts is proportional to the oxygen concentration.
次いで、リッチ領域の空燃比のときには間隙室4に導入
孔5から流れ込む一酸化炭素量が増加するので間隙室4
内の酸素と反応して二酸化炭素となり、間隙室4内の酸
素を消費する。この消費された酸素量に応じて酸素検出
ポンプ素子10の電極間の電流isの減少し電圧Vsが
上界して誤差増幅器20の出力電圧■1が低下する。電
圧V1の低下により駆動酸素ポンプ素子9の電極電圧V
cc/2−V+が上昇し、電流tOが増加するので駆動
酸素ポンプ素子9による間隙室4内への酸素の汲み込み
量は理論空燃比時よりも増加する。よって、間隙室4内
の酸素量が理論空燃比のときに等しい皇になり酸素検出
ポンプ素子10による酸素汲み出し量が減少せずに一定
に保たれるように制御されるので酸素検出ポンプ素子1
0の内部抵抗が一定になる。すなわち、電流tsは空燃
比が理論空燃比のときの値に維持されるのでto+ts
<Oとなり、co+jsは酸素濃度に比例するのである
。Next, when the air-fuel ratio is in the rich region, the amount of carbon monoxide flowing into the gap chamber 4 from the introduction hole 5 increases, so that the gap chamber 4
It reacts with oxygen in the interstitial chamber 4 to become carbon dioxide, consuming the oxygen in the interstitial chamber 4. In accordance with the amount of oxygen consumed, the current is between the electrodes of the oxygen detection pump element 10 decreases, the voltage Vs reaches an upper limit, and the output voltage 1 of the error amplifier 20 decreases. Due to the decrease in voltage V1, the electrode voltage V of the driving oxygen pump element 9
Since cc/2-V+ rises and the current tO increases, the amount of oxygen pumped into the interstitial chamber 4 by the driving oxygen pump element 9 increases compared to when the stoichiometric air-fuel ratio is present. Therefore, the amount of oxygen in the gap chamber 4 is equal to the stoichiometric air-fuel ratio, and the amount of oxygen pumped by the oxygen detection pump element 10 is controlled so as to be kept constant without decreasing.
The internal resistance of 0 becomes constant. That is, since the current ts is maintained at the value when the air-fuel ratio is the stoichiometric air-fuel ratio, to+ts
<O, and co+js is proportional to the oxygen concentration.
かかる本発明による酸素濃度検出装置においては、MM
検出ポンプ素子10による酸素汲み出し量が常に一定に
なるように駆動酸素ポンプ素子9が酸素を外部に汲み出
し又は外部から汲み込んで間隙室4内の酸素濃度を常に
一定するフィードバック制御が行なわれている。故に、
酸素検出ポンプ素子10の電極間電圧Vs及び電流is
は一定に制御されるのでリーン及びリッチ領域において
to+tsが第3図に示すように酸素m度(14゜7は
理論空燃比)に比例するのである。この酸素濃度検出出
力は上記したオペアンプ13の出力電圧youtから電
圧として得ることができる。In the oxygen concentration detection device according to the present invention, MM
Feedback control is performed so that the driving oxygen pump element 9 pumps oxygen to or from the outside so that the amount of oxygen pumped by the detection pump element 10 is always constant, and the oxygen concentration in the interstitial chamber 4 is always kept constant. . Therefore,
Interelectrode voltage Vs and current is of oxygen detection pump element 10
is controlled to be constant, so in lean and rich regions, to+ts is proportional to m degrees of oxygen (14°7 is the stoichiometric air-fuel ratio) as shown in FIG. This oxygen concentration detection output can be obtained as a voltage from the output voltage yout of the operational amplifier 13 described above.
なお、酸素イオン導電性固体電解質部材は一般に等方向
性であるので駆動酸素ポンプ素子9と酸素検出ポンプ素
子10との間で電流が相互に若干リークしてしまう。し
かしながら、この各リーク電流は電流toSisに等し
くかつ互いに符号が反対であるので酸素S度検出電流t
o+tsに悪影響を及ぼすことはない。Note that since the oxygen ion conductive solid electrolyte member is generally isotropic, current may leak to some extent between the driving oxygen pump element 9 and the oxygen detection pump element 10. However, since each of these leakage currents is equal to the current toSis and has opposite signs, the oxygen S degree detection current t
There is no adverse effect on o+ts.
11匹匁浬
以上の如く、本発明の酸素濃度検出装置においては、酸
素イオン導電性固体電解質部材に2対の電極部材が設け
られ、2対の電極部材各々の一方を含む前記酸素イオン
導電性固体電解質部材の一部が被測定気体導入孔に連通
した気体滞留室を形成している。酸素イオン導電性固体
電解質部材と2対の電極部材とが2つの酸素ポンプ素子
として作用し、一方の酸素ポンプ素子が酸素を外部から
汲み込み又は外部に汲み出して他方の酸素ポンプ素子が
常に一定量の酸素を気体滞留室から外部に汲み出すよう
に制御されるので各酸素ポンプ素子の電極間に流れる電
流値の加算値を検出することによりリーン及びリッチ領
域の空燃比においても排気ガス中の酸素濃度に比例した
出力を高精度で得ることができる。また本発明の酸素濃
度検出装置は構成が簡単であるので小型となり、また低
コストである。As described above, in the oxygen concentration detection device of the present invention, the oxygen ion conductive solid electrolyte member is provided with two pairs of electrode members, and the oxygen ion conductive solid electrolyte member including one of each of the two pairs of electrode members is provided with the oxygen ion conductive solid electrolyte member. A part of the solid electrolyte member forms a gas retention chamber that communicates with the gas introduction hole to be measured. The oxygen ion conductive solid electrolyte member and the two pairs of electrode members act as two oxygen pump elements, one oxygen pump element pumps oxygen from the outside or pumps it out, and the other oxygen pump element always pumps a constant amount of oxygen. The oxygen in the exhaust gas is controlled to be pumped out from the gas retention chamber to the outside by detecting the sum of the current values flowing between the electrodes of each oxygen pump element. Output proportional to concentration can be obtained with high precision. Further, the oxygen concentration detection device of the present invention has a simple configuration, so it is small in size and low in cost.
第1図は本発明の実施例を示す構成図、第2図は電流供
給回路を示す回路図、第3図は第1図の装置の出力特性
を示す図である。
主要部分の符号の説明
1.2・・・・・・酸素イオン導電性固体電解質部材4
・・・・・・I2!1隙室
5・・・・・・導入孔
7a、7b、8a、8b−・−・−・電極部材9・・・
・・・駆動酸素ポンプ素子
10・・・・・・酸素検出ポンプ素子
12・・・・・・電流供給回路
第1図FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing a current supply circuit, and FIG. 3 is a diagram showing output characteristics of the device shown in FIG. 1. Explanation of symbols of main parts 1.2...Oxygen ion conductive solid electrolyte member 4
...I2!1 gap chamber 5...Introduction holes 7a, 7b, 8a, 8b--Electrode member 9...
... Drive oxygen pump element 10 ... Oxygen detection pump element 12 ... Current supply circuit Figure 1
Claims (1)
性固体電解質部材に設けられた2対の電極部材とを含み
、前記2対の電極部材各々の一方を含む前記酸素イオン
導電性固体電解質部材の一部が被測定気体導入孔に連通
した気体滞留室を形成し、前記酸素イオン導電性固体電
解質部材と2対の電極部材とが2つの酸素ポンプ素子と
して作用することを特徴とする酸素濃度検出装置。The oxygen ion conductive solid electrolyte member includes an oxygen ion conductive solid electrolyte member and two pairs of electrode members provided on the oxygen ion conductive solid electrolyte member, and includes one of each of the two pairs of electrode members. Oxygen concentration detection characterized in that a gas retention chamber is formed, a part of which communicates with the gas introduction hole to be measured, and the oxygen ion conductive solid electrolyte member and two pairs of electrode members act as two oxygen pump elements. Device.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60176254A JPH0737957B2 (en) | 1985-08-10 | 1985-08-10 | Oxygen concentration detector |
US06/894,232 US4769124A (en) | 1985-08-10 | 1986-08-07 | Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction |
DE19863627227 DE3627227A1 (en) | 1985-08-10 | 1986-08-11 | OXYGEN CONCENTRATION DETECTOR ARRANGEMENT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60176254A JPH0737957B2 (en) | 1985-08-10 | 1985-08-10 | Oxygen concentration detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6236551A true JPS6236551A (en) | 1987-02-17 |
JPH0737957B2 JPH0737957B2 (en) | 1995-04-26 |
Family
ID=16010345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60176254A Expired - Fee Related JPH0737957B2 (en) | 1985-08-10 | 1985-08-10 | Oxygen concentration detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0737957B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0346408A (en) * | 1989-07-14 | 1991-02-27 | Jeco Co Ltd | Clock |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6078340A (en) * | 1983-10-05 | 1985-05-04 | Hitachi Ltd | Air-fuel ratio detector |
-
1985
- 1985-08-10 JP JP60176254A patent/JPH0737957B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6078340A (en) * | 1983-10-05 | 1985-05-04 | Hitachi Ltd | Air-fuel ratio detector |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0346408A (en) * | 1989-07-14 | 1991-02-27 | Jeco Co Ltd | Clock |
Also Published As
Publication number | Publication date |
---|---|
JPH0737957B2 (en) | 1995-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910006224B1 (en) | Air fuel ratio detector | |
US4769124A (en) | Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction | |
JPH0548420B2 (en) | ||
JPH0260142B2 (en) | ||
EP0136144A2 (en) | Engine air/fuel ratio sensing device | |
CA1241372A (en) | Air-to-fuel ratio sensor for an automobile | |
JPS60128352A (en) | Air fuel ratio detector | |
KR920004816B1 (en) | Air to fuel ratio sensor for an automobile | |
JPH10153576A (en) | Air-fuel ratio sensor | |
US5234569A (en) | Air/fuel ratio sensor for an internal combustion engine | |
JPS6236551A (en) | Oxygen concentration detector | |
JPS61138155A (en) | Air-fuel ratio detector | |
US4877511A (en) | Oxygen concentration-sensing device | |
JPS6236552A (en) | Oxygen concentration detector | |
JPH07104324B2 (en) | Air-fuel ratio detector | |
EP0126590A2 (en) | Air-to-fuel ratio sensor for engine | |
US4891122A (en) | Air fuel ratio detecting device | |
JPH01155262A (en) | Temperature controlling device of oxygen concentration sensor | |
JPS6236553A (en) | Oxygen concentration detector | |
JPH0750070B2 (en) | Oxygen concentration detector | |
JPS60138263A (en) | Exhaust gas recirculation mechanism for engine | |
JPH0672863B2 (en) | Oxygen concentration detector | |
JPH0668482B2 (en) | Air-fuel ratio sensor | |
JPS62175658A (en) | Method of discriminating activity of oxygen concentration sensor | |
JPS61161445A (en) | Air/furl ratio detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |