JPS60138263A - Exhaust gas recirculation mechanism for engine - Google Patents
Exhaust gas recirculation mechanism for engineInfo
- Publication number
- JPS60138263A JPS60138263A JP58246873A JP24687383A JPS60138263A JP S60138263 A JPS60138263 A JP S60138263A JP 58246873 A JP58246873 A JP 58246873A JP 24687383 A JP24687383 A JP 24687383A JP S60138263 A JPS60138263 A JP S60138263A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- engine
- gas recirculation
- concentration
- intake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/417—Systems using cells, i.e. more than one cell and probes with solid electrolytes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0052—Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/144—Sensor in intake manifold
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
- F02D41/1476—Biasing of the sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4065—Circuit arrangements specially adapted therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
【発明の詳細な説明】
し発明の技術分野〕
この発明は1例えば、内燃機関の排気ガス再循環制御装
置に関するものであり、特に再循環ガスが混入された上
記機関の吸入空気中の酸素濃度を検知する酸素センサを
備え、この酸素センサの出力信号により上記再循環ガス
の混入率(排気ガス再循環率)Ff!正確(?−フィー
ドバック制御する機関の排気ガス再循環制御装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an exhaust gas recirculation control device for, for example, an internal combustion engine, and in particular to a method for controlling oxygen concentration in intake air of the engine mixed with recirculation gas. The output signal of this oxygen sensor determines the mixing rate of the recirculated gas (exhaust gas recirculation rate) Ff! It relates to an exhaust gas recirculation control system for an engine with accurate (?-feedback control).
内燃機関の排気ガス中の有害成分である窒素酸化物を減
少させるために排気ガスの一部を機関の吸気側に導入す
るいわゆる排気ガスの再循環が行なわれることは衆知の
通りである。そして、上記再循環される排気ガス流量は
上記窒素酸化物の減少率以外に、上記機関の性能、燃費
等に影響を与えるので、上記排気ガス流量は上記機関の
運転状態に応じて精度よく制御されることが望まれる。It is well known that exhaust gas recirculation, in which a portion of the exhaust gas is introduced into the intake side of the engine, is carried out to reduce nitrogen oxides, which are harmful components in the exhaust gas of an internal combustion engine. The flow rate of the recirculated exhaust gas affects the performance, fuel efficiency, etc. of the engine in addition to the reduction rate of nitrogen oxides, so the flow rate of the exhaust gas is controlled with precision according to the operating condition of the engine. It is hoped that this will be done.
ところが、上記排気ガス流量を制御する排気ガス再循環
制御弁は長時間使用すると上記排気ガス中に含まれてい
るカーボン等の液状物質が多量付着し、上記制御弁の開
閉度に対応した初期の上記排気ガス流量が変化し精度よ
い制御ができない欠点がある。However, when the exhaust gas recirculation control valve that controls the exhaust gas flow rate is used for a long period of time, a large amount of liquid substances such as carbon contained in the exhaust gas adheres to the exhaust gas recirculation control valve, which controls the flow rate of the exhaust gas. There is a drawback that the exhaust gas flow rate changes and accurate control cannot be performed.
この発明は従来装置が持っている上記欠点をなくすため
になされたもので、再循環排気ガスが混入された機関の
吸入空気中の酸素濃度を検知する酸素センサの出力信号
により上記再循環される排気ガス量をフィードバック制
御し、上記機関の運転状態に応じて精度よく制御するこ
とができる機関の排気ガス再循環制御装置を提供するこ
とを目的としている。This invention was made to eliminate the above-mentioned drawbacks of conventional devices, and the above-mentioned recirculated exhaust gas is detected by the output signal of an oxygen sensor that detects the oxygen concentration in the intake air of the engine into which the recirculated exhaust gas is mixed. It is an object of the present invention to provide an exhaust gas recirculation control device for an engine that can feedback-control the amount of exhaust gas and accurately control it according to the operating state of the engine.
以下に、この発明の一実施例について第1図乃至第5図
に従って説明する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
第1図はこの発明の一実施例による機関の排気ガス再循
環制御装置の構成図である。図中、(1)は内燃機関(
機関) 、 +21は機関(υの吸気管、(3)はスロ
ットル弁、(4)は上記吸気管(2)円の圧力を検知す
る圧力検出器、(5)は上記吸気管(2)円を流れる上
記機関(1)の吸入空気中の酸素濃度を検知する酸素セ
ンサ、(6)は上記吸気管(2)円に燃料を供給する燃
料噴射弁である。この燃料噴射弁(6)より噴射された
燃料が上記酸素センサ(5)の酸素濃度検知性能に悪影
響を与えないように4上記酸素センサ(5)は上記燃料
噴射弁(6)より上流側に配設されている。(7)は上
記機関(1)の排気管、(8)は電磁力にまり開閉度が
制御される排気ガ入再循環制御弁であって、排気管(7
)と吸気管(2)とを連通ずるパイプ(9)の間に配設
され、排気管(7)から吸気管(2)に再循環される排
気ガス量が所望量となるように制御される。OQは酸素
濃度検知装置、0υは機関(1)の回転数検出器、(2
)は機関の運転状態に応じて制御弁(8)の開閉度を制
御する手段およびその開閉度を補正する補正手段が含ま
れた電子制御装置であって1回転数検出器側、圧力検出
器(4j、および酸素濃度検知装置00からの電気信号
を入力し、これらの入力信号に対応して排気ガス再循環
制御弁(8)を駆動することにより1上記再循環される
排気ガス量を所望値に制御する。この電子制御袋@(2
)は、酸素濃度検知装置Qf)の基準電圧(VR) (
後述)を上記各入力情報に応じて変更する機能も備えて
いる。FIG. 1 is a block diagram of an exhaust gas recirculation control device for an engine according to an embodiment of the present invention. In the figure, (1) is an internal combustion engine (
engine), +21 is the intake pipe of the engine (υ), (3) is the throttle valve, (4) is the pressure detector that detects the pressure of the above intake pipe (2) circle, (5) is the above intake pipe (2) circle (6) is a fuel injection valve that supplies fuel to the intake pipe (2). The oxygen sensor (5) is disposed upstream of the fuel injection valve (6) so that the injected fuel does not adversely affect the oxygen concentration detection performance of the oxygen sensor (5). (7) ) is the exhaust pipe of the engine (1), and (8) is an exhaust gas recirculation control valve whose opening/closing degree is controlled by electromagnetic force;
) and the intake pipe (2), and is arranged so that the amount of exhaust gas recirculated from the exhaust pipe (7) to the intake pipe (2) is controlled to a desired amount. Ru. OQ is the oxygen concentration detector, 0υ is the engine (1) rotation speed detector, (2
) is an electronic control device that includes a means for controlling the opening/closing degree of the control valve (8) according to the operating state of the engine and a correction means for correcting the opening/closing degree. (1) By inputting the electric signals from the 4j and the oxygen concentration detection device 00 and driving the exhaust gas recirculation control valve (8) in response to these input signals, the amount of exhaust gas to be recirculated is determined as desired. This electronically controlled bag @(2
) is the reference voltage (VR) of the oxygen concentration detector Qf) (
(described later) in accordance with each of the above input information.
第2図は酸素センサ(5)および酸素濃度検知性能叫の
詳細構成図であり、第8図は第2図のI−1線に沿った
断面図である。第2図および第8図において、σつは厚
さが約0.5mmの平板状のイオン伝導性固体電解質(
固体電解質)であって、安定化ジルコニアにより構成さ
れている。041およびαυは白金電極であって、それ
ぞれ固体電解質σ4の両側面に配設されている。賂〜Q
f91ζよって固体電解質酸素ポンプQf9 (酸素ポ
ンプ)が構成されている。σηは固体電解質Q3と同様
の平板状のイオン伝導性固体電解質(固体電解質)、(
7)および四は白金電極であって、それぞれ固体電解質
αηの両側面に配設されている。αη〜四により固体電
解質酸素濃淡電池(イ)(酸素濃淡電池)を構成し−C
いる。3漫は支持台であって、酸素ポンプσ呻と酸素濃
淡電池(7)が0.1mm程度の微小間隙(d)を介し
て対向配置されている。四〜?υにより酸素センサ(5
)が構成されている。酸素濃度検知袋M頭は、抵抗(R
1) 、コンデンサ(C)、演算増幅器(2)、 NP
N形トランジスタ(TR) 。FIG. 2 is a detailed configuration diagram of the oxygen sensor (5) and oxygen concentration detection performance, and FIG. 8 is a sectional view taken along line I-1 in FIG. 2. In Figures 2 and 8, σ is a flat ion-conducting solid electrolyte with a thickness of approximately 0.5 mm (
(solid electrolyte) and is composed of stabilized zirconia. 041 and αυ are platinum electrodes, which are respectively disposed on both sides of the solid electrolyte σ4. Bribe~Q
A solid electrolyte oxygen pump Qf9 (oxygen pump) is constituted by f91ζ. ση is a flat ion conductive solid electrolyte (solid electrolyte) similar to solid electrolyte Q3, (
7) and 4 are platinum electrodes, which are respectively arranged on both sides of the solid electrolyte αη. A solid electrolyte oxygen concentration battery (A) (oxygen concentration battery) is constructed by αη~4, and −C
There is. The third column is a support stand, on which an oxygen pump σ and an oxygen concentration battery (7) are placed facing each other with a minute gap (d) of about 0.1 mm in between. four~? Oxygen sensor (5
) is configured. The head of the oxygen concentration detection bag M has a resistance (R
1) , capacitor (C), operational amplifier (2), NP
N-type transistor (TR).
抵抗(Ro) 、および直流電源(8)より構成されて
いる。It consists of a resistor (Ro) and a DC power supply (8).
演算増幅器(2)は非反転入力端子に基準電圧(VR)
。The operational amplifier (2) has a reference voltage (VR) at its non-inverting input terminal.
.
反転入力端子に酸素濃淡電池(7)のxi(ト)αり間
に発生する起電力(e)を抵抗(R1)を介して入力し
、基準電圧(VR)と反転入力端子の入力点(i)の電
圧(Vi)の差に比例した電気信号を出力し、この出力
によりトランジスタ(TR)を駆動して酸素ポンプOQ
の電極側σ9に流すポンプ電流(IP)を制御する。」
二記基準市圧(VR)は機関(1)の運転状態に応じて
電子制御装置Q2により所定値に変更される。抵抗(R
o)は排気ガスが混入された機関(υの吸入空気中の酸
素濃度に比例したポンプ電流(I P)に対応した出力
電圧を得るためのものである。この抵抗(RO)は直流
電源[F])と対応して、ポンプ電流(IP)が過大に
ならないように所望の抵抗値に設定しである。第4図は
再循環された排気ガスが混入された吸入空気中の酸素濃
度と上記排気ガスの混入率(排気ガス再循環率)の関係
を示した特性図である。第4図より酸素濃度は排気ガス
再循環率に比例して変化するのがわかる。第5図はポン
プ電流(I p)と排気ガス再循環率の関係を示した特
性図である。この特性図は基準電圧(VR)を50mV
、 100mV 、および800mVにそれぞれ保ち
1機関(1)の排気ガス再循環率を変化させたときのポ
ンプ電流(IP)の変化を示したものである。この特性
図より、ポンプ電流(I P)は排気ガス再循環率に反
比例すること、および、ポンプ電流を一定とした場合(
例えば、Ip=50mV)は、基準電圧(VR)は排気
ガス再循環率に正比例することがわかる。The electromotive force (e) generated between xi (g) and α of the oxygen concentration battery (7) is input to the inverting input terminal via the resistor (R1), and the reference voltage (VR) and the input point of the inverting input terminal ( i) outputs an electric signal proportional to the difference in voltage (Vi), and this output drives the transistor (TR) to operate the oxygen pump OQ.
The pump current (IP) flowing through the electrode side σ9 is controlled. ”
The second standard city pressure (VR) is changed to a predetermined value by the electronic control device Q2 according to the operating state of the engine (1). Resistance (R
o) is for obtaining an output voltage corresponding to the pump current (IP) proportional to the oxygen concentration in the intake air of the engine (υ) mixed with exhaust gas. F]), the resistance value is set to a desired value so that the pump current (IP) does not become excessive. FIG. 4 is a characteristic diagram showing the relationship between the oxygen concentration in intake air mixed with recirculated exhaust gas and the mixing rate of the exhaust gas (exhaust gas recirculation rate). It can be seen from FIG. 4 that the oxygen concentration changes in proportion to the exhaust gas recirculation rate. FIG. 5 is a characteristic diagram showing the relationship between pump current (Ip) and exhaust gas recirculation rate. In this characteristic diagram, the reference voltage (VR) is 50mV.
, 100 mV, and 800 mV, respectively, and the change in pump current (IP) when changing the exhaust gas recirculation rate of one engine (1). This characteristic diagram shows that the pump current (IP) is inversely proportional to the exhaust gas recirculation rate, and that when the pump current is constant (
For example, Ip=50 mV), it can be seen that the reference voltage (VR) is directly proportional to the exhaust gas recirculation rate.
なお、第5図テハ基準電圧(VR)が50mV 、 1
00mVオよび800mVの場合しか示していないが1
実際の装置では1例えば+ 60mV 、 70mV
、 ・。In addition, the reference voltage (VR) in Fig. 5 is 50 mV, 1
Although only the cases of 00 mV and 800 mV are shown, 1
In actual equipment, for example +60mV, 70mV
, ・.
100mV 、 −200mV −、290mV −、
のように基準電圧(VR)を変えている。また、酸素ポ
ンプQQは過大なポンプm流(I p)が流れると破壊
するので、直流電源CB)と抵抗(Ro)によりポンプ
電流(Ip)は60mA以下となるように制限している
。100mV, -200mV-, 290mV-,
The reference voltage (VR) is changed as follows. Further, since the oxygen pump QQ will be destroyed if an excessive pump current (Ip) flows, the pump current (Ip) is limited to 60 mA or less by a DC power supply CB) and a resistor (Ro).
次に動作説明を行なう。機関(υが始動されると。Next, the operation will be explained. When the engine (υ) is started.
機関(1)に吸入される吸入空気は大気中からエアクリ
ーナ(図不せス)、スロットル弁+31 を通って吸気
管(2]円に導入される。−万、成子制御装置@は圧力
検出器(4)および回転数検出器01)からの電気信号
に基すいて機関(1)の運転状態をめ、この運転状態に
応じた排気ガス再循環率を演算する。そして、この演算
した排気ガス再循環率に応じた電気信号を出力して排気
ガス再循環制御弁(8)を駆動する。排気ガス再循環制
御弁(8)の駆動によって再循環される排気ガスはパイ
プ(9)を通って吸気管(2)内に導入されて、吸入空
気に混入する。このようにして排気ガスが混入した吸入
空気は吸気管(2)を通って機関tlJピコに導入され
るが、このとき1酸素センサ(5)によって吸入空気中
の酸素濃度が検出される。つまり、吸入空気の一部は酸
素センサ(5)の酸素ポンプCI(9と酸素濃淡電池c
Qオの間の微小間隙(間隙)円に取り入れられる。吸入
空気が上記間隙内に取り入れられると、酸素ポンプ01
の作用により前記間隙内の酸素は上記間隙外にポンプ電
流(IP)に応じて汲み出される。すると、と記間隙内
外の酸素濃度に差が生じ1酸素濃淡軍池Mlこ酸素濃度
の差に比例し1こ起電力(e)が発生する。この起電力
(e)は抵抗(R1)を介して演算増幅器FA)の反転
入力端子に入力される。演算増幅器(8)は基準車圧(
VR)と反転入力端子の入力点(i)における直圧(V
i)との差に応じtコ直気信号を出力する。これにより
。The intake air taken into the engine (1) is introduced from the atmosphere into the intake pipe (2) through the air cleaner (not shown) and the throttle valve +31. The operating state of the engine (1) is determined based on the electrical signals from the engine (4) and the rotation speed detector 01), and the exhaust gas recirculation rate corresponding to this operating state is calculated. Then, an electric signal corresponding to the calculated exhaust gas recirculation rate is outputted to drive the exhaust gas recirculation control valve (8). Exhaust gas recirculated by actuation of the exhaust gas recirculation control valve (8) is introduced into the intake pipe (2) through the pipe (9) and mixed with the intake air. The intake air mixed with exhaust gas in this way is introduced into the engine tlJ pico through the intake pipe (2), and at this time, the oxygen concentration in the intake air is detected by the 1 oxygen sensor (5). In other words, part of the intake air is supplied to the oxygen sensor (5) by the oxygen pump CI (9) and the oxygen concentration battery c.
It is taken into the minute gap (gap) circle between Q and O. When intake air is taken into the gap, the oxygen pump 01
Oxygen in the gap is pumped out of the gap in accordance with the pump current (IP). Then, there is a difference in oxygen concentration inside and outside the gap, and an electromotive force (e) is generated in proportion to the difference in oxygen concentration. This electromotive force (e) is input to the inverting input terminal of the operational amplifier FA) via the resistor (R1). The operational amplifier (8) uses the reference vehicle pressure (
VR) and the direct voltage (V
i) A direct air signal is output according to the difference between the two. Due to this.
演算増幅器(4)からの電気信号に比例したポンプ電流
(IP)が抵抗(Ro)を介して酸素ポンプOQに流れ
ることになる。ここで、今、圧力検出器(4)の出力信
号と回転数検出器Oυの出力信号により定められ1こ機
関(1ンの運転状態において所望の排気ガス再循環率が
5%である場合1例えば、基準電圧(VR)を50mV
に設定しているとする。この場合、ポンプ電流(Ip)
が50mAとなるように排気ガス再循環制御弁(8)の
開閉度を補正すれば良いことになる。ここで、抵抗(R
o)を流れているポンプ電流(IP)が50mAより大
きければ、第5図に示すvR= 50 mVの場合の直
線より現在実行中の排気ガス再循環率は5%より小さい
ということがわかる。したがって、電子制御装置(2)
は排気ガス再循環制御弁(8)をさらに若干開くことに
なる。これによって、再循環される排気ガス量が増加し
、吸入空気中の排気ガス量が増加するから、吸入空気中
の酸素濃度は低下する。このように、吸入空気中の酸素
濃度が低下し、これによって、抵抗(Ro)を流れるポ
ンプ電流(I P)が低■して50mAになったとする
と、現在実行中の排気ガス再循環率が所望の排気ガス再
循環率5%になったということがわかる。次に、所望の
排気ガス再循環率が1例えば、40%である場合は、基
準電圧(VR)も800mVに設定して、ポンプm流(
Ip)が50mAlこなるようtζ排気ガス再鏑環制御
弁(8)の開閉度を補正すれば良いのである。A pump current (IP) proportional to the electrical signal from the operational amplifier (4) will flow to the oxygen pump OQ via the resistor (Ro). Here, if the desired exhaust gas recirculation rate is 5% in the operating state of the engine (1) determined by the output signal of the pressure detector (4) and the output signal of the rotation speed detector (Oυ), then For example, set the reference voltage (VR) to 50mV
Suppose that it is set to . In this case, the pump current (Ip)
It is sufficient to correct the degree of opening and closing of the exhaust gas recirculation control valve (8) so that the current is 50 mA. Here, resistance (R
If the pump current (IP) flowing through o) is greater than 50 mA, it can be seen from the straight line in the case of vR=50 mV shown in FIG. 5 that the currently running exhaust gas recirculation rate is less than 5%. Therefore, electronic control device (2)
This will cause the exhaust gas recirculation control valve (8) to open slightly further. As a result, the amount of exhaust gas that is recirculated increases, and the amount of exhaust gas in the intake air increases, so that the oxygen concentration in the intake air decreases. In this way, if the oxygen concentration in the intake air decreases and the pump current (I P) flowing through the resistor (Ro) decreases to 50 mA, then the currently running exhaust gas recirculation rate becomes It can be seen that the desired exhaust gas recirculation rate of 5% has been achieved. Then, if the desired exhaust gas recirculation rate is 1, for example 40%, then the reference voltage (VR) is also set to 800 mV and the pump m flow (
It is sufficient to correct the degree of opening and closing of the exhaust gas recirculation control valve (8) so that Ip) becomes 50 mAl.
なお2以上の実施例では、基準電圧(VR)を可変とし
7ポンプ電流(IP)が一定となるように排気ガス再循
環制御弁(8)の開閉度をフィードバック制御したが、
第5図に示す特性図より明らかなように。In the above embodiments, the reference voltage (VR) is made variable and the opening/closing degree of the exhaust gas recirculation control valve (8) is feedback-controlled so that the pump current (IP) is constant.
As is clear from the characteristic diagram shown in FIG.
基準電圧(VR)を一定にして、ポンプ車流(I P)
の変化を検出することにより、排気ガス再循環率が所望
の排気ガス再循環率となるように排気ガス再循環制御弁
(8)の開閉度をフィードバック制御することも可能で
ある。Keeping the reference voltage (VR) constant, the pump car flow (IP)
By detecting the change in the exhaust gas recirculation rate, it is also possible to feedback-control the opening/closing degree of the exhaust gas recirculation control valve (8) so that the exhaust gas recirculation rate becomes a desired exhaust gas recirculation rate.
(発明の効果〕
以北のよう【こ、この発明では、排気ガスが混入された
機関の吸入空気中の酸素濃度を俣知する酸素センサを備
え、この酸素センサの出力信号が所望値となるように排
気ガス再循環制御弁の開閉度をフィードバック制御する
ようfこしたので、上記排気ガス再循環制御弁が劣化し
ても精度良く排気ガスを再循環させることができる機関
の排気ガス再循環制御装置を提供できる。(Effects of the Invention) As described above, this invention is equipped with an oxygen sensor that detects the oxygen concentration in the intake air of the engine mixed with exhaust gas, and the output signal of this oxygen sensor becomes a desired value. As described above, the degree of opening and closing of the exhaust gas recirculation control valve is feedback-controlled, so even if the exhaust gas recirculation control valve deteriorates, the exhaust gas can be recirculated with high precision. A control device can be provided.
第1図はこの発明の一実施例による機関の排気ガス再循
環制御装置の構成図6第2図は酸素センサならびに酸素
濃度検知電子装置の詳細構成図、第3図は第2図の■−
■線に沿った断面図、第4図は酸素濃度と排気ガス再循
環率との関係を示す特性図、第5図はポンプ電流と排気
ガス再循環率との関係を示す特性図である。
図中、(1戸・・機関、(2)・・・吸気管、(5)・
・・酸素センサ、(7)・・・排気管、(8)・・・排
気ガス再循環制御弁、(12・・・補正手段である。
なお1図中、同一符号は同一部分を示す。
代理人 大岩増雄
第2図
/2
第4−図
1) L ty゛ズPrmqL4−(OIO>第5図
A
排気ηパスf+捧環李(%)Fig. 1 is a block diagram of an engine exhaust gas recirculation control device according to an embodiment of the present invention; Fig. 2 is a detailed block diagram of an oxygen sensor and an oxygen concentration detection electronic device; and Fig. 3 is a block diagram of the
FIG. 4 is a characteristic diagram showing the relationship between oxygen concentration and exhaust gas recirculation rate, and FIG. 5 is a characteristic diagram showing the relationship between pump current and exhaust gas recirculation rate. In the diagram, (1 house...engine, (2)...intake pipe, (5)...
. . . Oxygen sensor, (7) . . . Exhaust pipe, (8) . . . Exhaust gas recirculation control valve, (12) . Agent Masuo Oiwa Fig.2/2 Fig.4-1)
Claims (1)
される排気ガス量を制御する排気ガス再循環制御弁と、
前記排気ガスが混入された吸入空気中の酸素濃度を検知
する酸素センサと、この酸素センサの出力信号が所望値
となるように前記排気ガス再循環制御弁の開閉度を補正
する補正手段とを備えて成る機関の排気ガス再循環制御
装置。an exhaust gas recirculation control valve that controls an amount of exhaust gas recirculated into the intake air of the engine according to the operating state of the engine;
an oxygen sensor that detects the oxygen concentration in the intake air mixed with the exhaust gas; and a correction means that corrects the opening/closing degree of the exhaust gas recirculation control valve so that the output signal of the oxygen sensor becomes a desired value. An engine exhaust gas recirculation control device comprising:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58246873A JPS60138263A (en) | 1983-12-27 | 1983-12-27 | Exhaust gas recirculation mechanism for engine |
US06/685,157 US4614175A (en) | 1983-12-27 | 1984-12-21 | Engine exhaust gas recirculation control system |
KR1019840008365A KR870001890B1 (en) | 1983-12-27 | 1984-12-26 | Exhaust gas e.g.r.control apparatus |
EP84309117A EP0147233B1 (en) | 1983-12-27 | 1984-12-27 | Engine exhaust gas recirculation control system |
DE8484309117T DE3477412D1 (en) | 1983-12-27 | 1984-12-27 | Engine exhaust gas recirculation control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58246873A JPS60138263A (en) | 1983-12-27 | 1983-12-27 | Exhaust gas recirculation mechanism for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60138263A true JPS60138263A (en) | 1985-07-22 |
Family
ID=17155000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58246873A Pending JPS60138263A (en) | 1983-12-27 | 1983-12-27 | Exhaust gas recirculation mechanism for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60138263A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6390055U (en) * | 1986-12-02 | 1988-06-11 | ||
JPS63140857A (en) * | 1986-12-02 | 1988-06-13 | Toyota Motor Corp | Exhaust gas recirculation rate detector |
US5298147A (en) * | 1991-05-27 | 1994-03-29 | Nippondenso Co., Ltd. | Oxygen concentration sensor |
US5338431A (en) * | 1990-08-20 | 1994-08-16 | Nippon Soken, Inc. | Oxygen concentration detecting apparatus |
US6000385A (en) * | 1996-11-14 | 1999-12-14 | Toyota Jidosha Kabushiki Kaisha | Combustion engine with EGR apparatus |
WO2001050004A3 (en) * | 1999-12-30 | 2002-05-10 | Bosch Gmbh Robert | Apparatus and method for controlling exhaust valve recirculation |
-
1983
- 1983-12-27 JP JP58246873A patent/JPS60138263A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6390055U (en) * | 1986-12-02 | 1988-06-11 | ||
JPS63140857A (en) * | 1986-12-02 | 1988-06-13 | Toyota Motor Corp | Exhaust gas recirculation rate detector |
JPH0450453Y2 (en) * | 1986-12-02 | 1992-11-27 | ||
US5338431A (en) * | 1990-08-20 | 1994-08-16 | Nippon Soken, Inc. | Oxygen concentration detecting apparatus |
US5298147A (en) * | 1991-05-27 | 1994-03-29 | Nippondenso Co., Ltd. | Oxygen concentration sensor |
US6000385A (en) * | 1996-11-14 | 1999-12-14 | Toyota Jidosha Kabushiki Kaisha | Combustion engine with EGR apparatus |
WO2001050004A3 (en) * | 1999-12-30 | 2002-05-10 | Bosch Gmbh Robert | Apparatus and method for controlling exhaust valve recirculation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR870001890B1 (en) | Exhaust gas e.g.r.control apparatus | |
US6442998B2 (en) | Gas concentration measuring apparatus compensating for error component of output signal | |
KR880000160B1 (en) | Control apparatus of air-fuel ratio for engine | |
US4804454A (en) | Oxygen concentration sensing apparatus | |
US20090145778A1 (en) | System, Apparatus, And Method For Measuring An Ion Concentration Of A Measured Fluid | |
US7981265B2 (en) | Gas concentration measuring apparatus designed to enhance measurement accuracy in desired range | |
WO2008154366A2 (en) | System, apparatus, and method for measuring an ion concentration of a measured fluid | |
JPS61195349A (en) | Device for detecting air fuel ratio for internal-combustion engine | |
JPS60138263A (en) | Exhaust gas recirculation mechanism for engine | |
JPS5979847A (en) | Control apparatus of oxygen concentration sensor | |
US4762604A (en) | Oxygen concentration sensing apparatus | |
JPS606036A (en) | Air-fuel ratio controller of engine | |
EP0126590A2 (en) | Air-to-fuel ratio sensor for engine | |
JP3110848B2 (en) | Air-fuel ratio detector | |
JP2505152B2 (en) | Engine air-fuel ratio detector | |
JPS61161445A (en) | Air/furl ratio detector | |
JPS61272438A (en) | Air-fuel ratio detector for engine | |
JPS6039548A (en) | Air-fuel ratio sensor of engine | |
JPH0750070B2 (en) | Oxygen concentration detector | |
JPH0260143B2 (en) | ||
JPS6027750A (en) | Air-fuel ratio controlling apparatus for engine | |
JPS6276449A (en) | Method for controlling oxygen concentration sensor | |
JPH04204371A (en) | Driving circuit for air-fuel ratio sensor | |
JPH04298660A (en) | Air-fuel ratio detecting device for internal combustion engine | |
JPH0643982B2 (en) | Internal combustion engine controller |