JP3110848B2 - Air-fuel ratio detector - Google Patents

Air-fuel ratio detector

Info

Publication number
JP3110848B2
JP3110848B2 JP04057938A JP5793892A JP3110848B2 JP 3110848 B2 JP3110848 B2 JP 3110848B2 JP 04057938 A JP04057938 A JP 04057938A JP 5793892 A JP5793892 A JP 5793892A JP 3110848 B2 JP3110848 B2 JP 3110848B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
pump cell
cell
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04057938A
Other languages
Japanese (ja)
Other versions
JPH05256817A (en
Inventor
基祐 西脇
諄 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP04057938A priority Critical patent/JP3110848B2/en
Publication of JPH05256817A publication Critical patent/JPH05256817A/en
Application granted granted Critical
Publication of JP3110848B2 publication Critical patent/JP3110848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素ポンプセルとセン
シングセルとを絶縁層を介して構成した空燃比検出装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio detecting device in which an oxygen pump cell and a sensing cell are formed via an insulating layer.

【0002】[0002]

【従来の技術】従来から、内燃機関等の空燃比を測定す
るため、酸素イオン伝導性の固体電解質を利用した酸素
センサからなる空燃比センサが知られている。これは、
固体電解質の一方を被測定ガスと接触させ、他方を酸素
濃度既知の基準ガスと接触させ、酸素濃度の差に基づい
て固体電解質を通る酸素イオンに応じて発生する電流か
ら酸素濃度を測定する構成となっている。その改良型と
して、例えばジルコニア等からなる固体電解質板の両面
に電極を設けてなる酸素ポンプセルと、同様の構成のセ
ンシングセルとを一体に構成してなる空燃比検出装置が
知られている。
2. Description of the Related Art Conventionally, an air-fuel ratio sensor comprising an oxygen sensor using an oxygen ion-conductive solid electrolyte has been known for measuring the air-fuel ratio of an internal combustion engine or the like. this is,
A configuration in which one of the solid electrolytes is brought into contact with a gas to be measured, the other is brought into contact with a reference gas having a known oxygen concentration, and the oxygen concentration is measured from a current generated according to oxygen ions passing through the solid electrolyte based on the difference in the oxygen concentration. It has become. As an improved type thereof, there is known an air-fuel ratio detecting device in which an oxygen pump cell having electrodes provided on both surfaces of a solid electrolyte plate made of, for example, zirconia and a sensing cell having a similar configuration are integrally formed.

【0003】さらに近年、上述した構成の空燃比検出装
置におけるリーク電流を防止して安定した測定が達成で
きるように、酸素ポンプセルとセンシングセルがセンサ
素子内部で十分絶縁されている空燃比検出装置が、例え
ば特開平1ー262458号公報において知られてい
る。図5は上述した空燃比検出装置の縦断面の一例を示
す図である。図5において、酸素ポンプセル31とセン
シングセル41とは、絶縁層51を介して一体に構成さ
れ、さらにセンシングセル41側に加熱用のヒータ52
をも一体に設けている。
In recent years, an air-fuel ratio detecting device having an oxygen pump cell and a sensing cell sufficiently insulated inside a sensor element has been developed in order to prevent leakage current and achieve stable measurement in the air-fuel ratio detecting device having the above configuration. This is known, for example, from JP-A-1-262458. FIG. 5 is a diagram showing an example of a longitudinal section of the above-described air-fuel ratio detection device. In FIG. 5, the oxygen pump cell 31 and the sensing cell 41 are integrally formed with an insulating layer 51 interposed therebetween, and a heating heater 52 is provided on the sensing cell 41 side.
Is also provided integrally.

【0004】この酸素ポンプセル31は、ギャップ53
に対応する位置に貫通孔32を有する固体電解質板33
とその固体電解質板33の両表面の貫通孔32のまわり
に設けた電極34ー1、34ー2とから構成されてい
る。そして、電極34ー1を正極、電極34ー2を負極
として、直流からなる酸素ポンプ電流Ipを供給してい
る。また、このセンシングセル41は、固体電解質板4
2とその固体電解質板42のギャップ53に面して設け
た測定電極43ー1と、他方の面である基準ガスが供給
される空間54に面して設けた基準電極43ー2とから
構成されている。そして、測定電極43ー1を負極と
し、基準電極43ー2を正極として、両電極間の電圧を
測定している。
The oxygen pump cell 31 has a gap 53
Solid electrolyte plate 33 having through hole 32 at a position corresponding to
And electrodes 34-1 and 34-2 provided around the through holes 32 on both surfaces of the solid electrolyte plate 33. Then, an oxygen pump current Ip composed of a direct current is supplied using the electrode 34-1 as a positive electrode and the electrode 34-2 as a negative electrode. Further, the sensing cell 41 includes the solid electrolyte plate 4
2 and a measurement electrode 43-1 provided facing the gap 53 of the solid electrolyte plate 42, and a reference electrode 43-2 provided facing the other surface, the space 54 to which the reference gas is supplied. Have been. Then, the voltage between the two electrodes is measured using the measurement electrode 43-1 as a negative electrode and the reference electrode 42-2 as a positive electrode.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
1ー262458号公報に開示された構造の空燃比検出
装置では、酸素ポンプセル31とセンシングセル41と
の間は完全に絶縁層51により絶縁されているため、ギ
ャップ53に面した酸素ポンプセル31の電極34ー2
とセンシングセル41の測定電極44ー1との酸素濃度
差が生じ易く、伝達遅れが生じ易くなるため、過渡応答
時において、酸素ポンプ電流Ipのオーバーシュートや
ハンチングが発生して安定した測定ができないととも
に、酸素ポンプセル31の電極34ー1、34ー2と接
する固体電解質板32が酸化され黒化しやすく、耐久性
の点でも問題があった。
However, in the air-fuel ratio detecting device having the structure disclosed in Japanese Patent Application Laid-Open No. 1-262458, the oxygen pump cell 31 and the sensing cell 41 are completely insulated by the insulating layer 51. Therefore, the electrode 34-2 of the oxygen pump cell 31 facing the gap 53
And the measurement electrode 44-1 of the sensing cell 41 are likely to have a difference in oxygen concentration, and transmission delay is likely to occur. Therefore, during transient response, overshoot or hunting of the oxygen pump current Ip occurs, and stable measurement cannot be performed. At the same time, the solid electrolyte plate 32 in contact with the electrodes 34-1 and 34-2 of the oxygen pump cell 31 is easily oxidized and blackened, and there is a problem in durability.

【0006】一方、本出願人は特開平3ー167467
号公報において、酸素ポンプセルとセンシングセルとが
センサ素子内部で絶縁されていないタイプの空燃比検出
装置に関する技術ではあるが、問題となる出力精度や経
時的安定性を向上させるため、酸素ポンプセルよりセン
シングセルへの電流リーク量を制御する技術を開示して
いる。しかしながら、本願発明で対象とする酸素ポンプ
セルとセンシングセルとがセンサ素子内部で絶縁されて
いるタイプの空燃比検出装置では、元来酸素ポンプセル
よりセンシングセルへのリーク電流は全く発生しないた
め、そのままこの技術を応用できない問題があった。
On the other hand, the applicant of the present invention has disclosed Japanese Patent Laid-Open No. 3-167467.
In the publication, the oxygen pump cell and the sensing cell are related to an air-fuel ratio detection device in which the sensor cell is not insulated inside the sensor element. However, in order to improve output accuracy and stability over time, which are problematic, A technique for controlling the amount of current leak to a cell is disclosed. However, in the air-fuel ratio detection device of the type in which the oxygen pump cell and the sensing cell which are the objects of the present invention are insulated inside the sensor element, no leak current from the oxygen pump cell to the sensing cell is generated at all. There was a problem that technology could not be applied.

【0007】本発明の目的は上述した課題を解消して、
高い出力精度と経時的安定性を得ることができる空燃比
検出装置を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide an air-fuel ratio detection device capable of obtaining high output accuracy and stability over time.

【0008】[0008]

【課題を解決するための手段】本発明の空燃比検出装置
は、固体電解質板の両面に電極を設けてなる酸素ポンプ
セルとセンシングセルとを、絶縁層を介して一体化して
なる空燃比検出装置において、前記酸素ポンプセルとセ
ンシングセルとを外部回路を介して接続し、前記酸素ポ
ンプセルのポンプセル電流の一部を前記センシングセル
へ流すよう構成したことを特徴とするものである。
An air-fuel ratio detecting device according to the present invention comprises an oxygen pump cell having electrodes provided on both surfaces of a solid electrolyte plate and a sensing cell integrated via an insulating layer. , Wherein the oxygen pump cell and the sensing cell are connected via an external circuit, and a part of the pump cell current of the oxygen pump cell flows to the sensing cell.

【0009】[0009]

【作用】上述した構成において、酸素ポンプセルのポン
プセル電流Ipの一部ipをセンシングセルへ流すため
の外部回路を設けたため、この電流ipによりセンシン
グセルの測定電極側を補助ポンピングさせることが可能
となり、応答波形のオーバーシュートやハンチングをな
くすことができるとともに、ポンプセル電流Ipの変化
を小さくでき、その結果高い出力精度と経時的安定性を
有する空燃比検出装置を得ることができる。
In the above-described configuration, an external circuit for flowing a part ip of the pump cell current Ip of the oxygen pump cell to the sensing cell is provided, so that the current ip enables auxiliary pumping of the measurement electrode side of the sensing cell. Overshoot and hunting of the response waveform can be eliminated, and the change in the pump cell current Ip can be reduced. As a result, an air-fuel ratio detection device having high output accuracy and stability over time can be obtained.

【0010】[0010]

【実施例】図1は本発明の空燃比検出装置の縦断面の一
例を示す図である。図1において、酸素ポンプセル1と
センシングセル11とは、絶縁層21を介して一体に構
成され、さらにセンシングセル11側に加熱用のヒータ
22をも一体に設けている。酸素ポンプセル1は、組み
立てた時に生じるギャップ23に対応する位置に貫通孔
2を有する固体電解質板3と、その固体電解質板3の両
表面の貫通孔2のまわりに設けた中空円板形状の電極4
ー1、4ー2とから構成されている。そして、電極4ー
1を正極、電極4ー2を負極として、直流からなる酸素
ポンプ電流Ipを両電極4ー1、4ー2間に供給してい
る。また、センシングセル11は、ジルコニア等からな
る固体電解質板12とその固体電解質板12のギャップ
23に面して設けた中空円板形状の測定電極13ー1
と、固体電解質板12の他方の面である基準ガスが供給
される空間24に面して設けた基準電極13ー2とから
構成されている。そして、測定電極13ー1を負極と
し、基準電極13ー2を正極として、両電極間の電圧を
測定している。
FIG. 1 is a diagram showing an example of a longitudinal section of an air-fuel ratio detecting device according to the present invention. In FIG. 1, the oxygen pump cell 1 and the sensing cell 11 are integrally formed with an insulating layer 21 interposed therebetween, and a heater 22 for heating is integrally provided on the sensing cell 11 side. The oxygen pump cell 1 includes a solid electrolyte plate 3 having a through hole 2 at a position corresponding to a gap 23 generated when assembled, and a hollow disk-shaped electrode provided around the through holes 2 on both surfaces of the solid electrolyte plate 3. 4
-1, 4-2. Then, the electrode 4-1 is used as a positive electrode and the electrode 4-2 is used as a negative electrode, and an oxygen pump current Ip of direct current is supplied between the electrodes 4-1 and 4-2. The sensing cell 11 includes a solid electrolyte plate 12 made of zirconia or the like and a hollow disk-shaped measurement electrode 13-1 provided facing a gap 23 of the solid electrolyte plate 12.
And a reference electrode 13-2 provided facing the space 24 to which the reference gas is supplied, which is the other surface of the solid electrolyte plate 12. The voltage between the two electrodes is measured using the measurement electrode 13-1 as a negative electrode and the reference electrode 13-2 as a positive electrode.

【0011】上述した構成は従来の空燃比検出装置と何
等変わるところはなく、本発明で重要なのは、酸素ポン
プセル1を構成する固体電解質板3の外側に設けた電極
4ー1と、センシングセル11の固体電解質板12の空
間24に面する側に設けた基準電極13ー2との間を外
部回路25を介して接続した点である。このように構成
することにより、ポンプセル電流Ipの一部を外部回路
25を介して電流ipとしてセンシングセル11側に流
すことが可能となり、測定電極13ー1で補助ポンピン
グさせることができる。なお、この外部回路25を通過
する電流ipは、ポンプセル電流Ipの0.1〜1%程
度であると好ましい。これは、ipがIpの0.1%未
満であると電流をリークさせる意味がない場合があると
ともに、1%を越えるとIpの経時変化が大きくなる問
題があるためである。
The above-described configuration is no different from the conventional air-fuel ratio detecting device. What is important in the present invention is that the electrode 4-1 provided outside the solid electrolyte plate 3 constituting the oxygen pump cell 1 and the sensing cell 11 The point is that the solid electrolyte plate 12 is connected via an external circuit 25 to a reference electrode 13-2 provided on the side facing the space 24 of the solid electrolyte plate 12. With such a configuration, a part of the pump cell current Ip can flow to the sensing cell 11 side as the current ip via the external circuit 25, and the auxiliary pumping can be performed by the measurement electrode 13-1. The current ip passing through the external circuit 25 is preferably about 0.1 to 1% of the pump cell current Ip. This is because if ip is less than 0.1% of Ip, there is a case where there is no point in leaking current, and if it exceeds 1%, there is a problem that Ip changes with time.

【0012】図2は本発明で使用する外部回路25の一
例の構成を示す図である。図2に示すように、酸素ポン
プセル1とセンシングセル11との間に、差動増幅器2
6、ダイオード27ー1、27ー2および抵抗28を接
続することにより、図1に示す電流ipが逆流しないよ
う構成している。すなわち、リーンガス中では通常図1
に示すように電流ipは矢印の方向に電流が流れるが、
リッチガス中では電流ipは逆の流れとなり、センシン
グセル11の基準ガスを消費してしまうため、これを防
止するよう構成している。
FIG. 2 is a diagram showing a configuration of an example of the external circuit 25 used in the present invention. As shown in FIG. 2, a differential amplifier 2 is provided between the oxygen pump cell 1 and the sensing cell 11.
6. By connecting the diodes 27-1, 27-2 and the resistor 28, the current ip shown in FIG. 1 is configured not to flow backward. That is, in lean gas,
The current ip flows in the direction of the arrow as shown in FIG.
In the rich gas, the current ip flows in the opposite direction and consumes the reference gas of the sensing cell 11, so that it is configured to prevent this.

【0013】本発明の効果を調べるため、図2に示す外
部回路を有する図1に示す構造の空燃比検出装置を使用
して、リーク電流ipを変化させたときの応答波形のハ
ンチングとオーバーシュートを調べ、その結果を模式的
に図3に示した。図3において、波形のハンチングを調
べたセンサ1ではリーク電流ipが0すなわち従来例の
とき発生するハンチングが、ipを流すことにより解消
することがわかる。また、波形のオーバーシュートを調
べたセンサ2でも同様に、リーク電流ipが0すなわち
従来例のとき発生するオーバーシュートが、ipを流す
ことにより徐々に解消する様子がわかる。さらに、図4
はリーク電流ipを変化させたときのポンプセル電流I
pの変化率と経過時間との関係を示す。図3および図4
の結果から、リーク電流ipがポンプセル電流Ipの5
%であると、Ipの経時変化が大きくなるため、上述し
たように1%以下であると好ましいことがわかる。
In order to examine the effect of the present invention, hunting and overshoot of the response waveform when the leak current ip is changed by using the air-fuel ratio detection device having the external circuit shown in FIG. 2 and having the structure shown in FIG. And the results are schematically shown in FIG. In FIG. 3, it can be seen that the sensor 1 in which the hunting of the waveform is examined has the leak current ip of 0, that is, the hunting generated in the conventional example is eliminated by flowing the ip. Similarly, it can be seen from the sensor 2 that the waveform overshoot is examined that the leak current ip is 0, that is, the overshoot generated in the conventional example is gradually eliminated by flowing the ip. Further, FIG.
Is the pump cell current I when the leak current ip is changed
The relationship between the change rate of p and the elapsed time is shown. 3 and 4
From the result, it is found that the leak current ip is 5 times the pump cell current Ip.
%, The change with time of Ip becomes large, so that it is preferable to be 1% or less as described above.

【0014】[0014]

【発明の効果】以上の説明から明らかなように、本発明
によれば、酸素ポンプセルとセンシングセルとを絶縁層
を介して一体化した空燃比検出装置において、外部回路
を設けて酸素ポンプセルのポンプセル電流Ipの一部i
pをセンシングセルへ流すようにすることにより、応答
波形のオーバーシュートやハンチングをなくすことがで
きるとともに、ポンプセル電流Ipの変化を小さくで
き、その結果高い出力精度と経時的安定性を有する空燃
比検出装置を得ることができる。
As is apparent from the above description, according to the present invention, in an air-fuel ratio detecting device in which an oxygen pump cell and a sensing cell are integrated via an insulating layer, an external circuit is provided to provide a pump cell of the oxygen pump cell. Part i of current Ip
By flowing p to the sensing cell, overshoot and hunting of the response waveform can be eliminated, and the change in the pump cell current Ip can be reduced, resulting in air-fuel ratio detection having high output accuracy and stability over time. A device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の空燃比検出装置の縦断面の一例を示す
図である。
FIG. 1 is a diagram showing an example of a longitudinal section of an air-fuel ratio detection device of the present invention.

【図2】本発明の空燃比検出装置で使用する外部回路の
一例の構成を示す図である。
FIG. 2 is a diagram showing a configuration of an example of an external circuit used in the air-fuel ratio detection device of the present invention.

【図3】応答波形のハンチングとオーバーシュートの低
減効果を説明するための図である。
FIG. 3 is a diagram illustrating the effect of reducing hunting and overshoot of a response waveform.

【図4】ポンプセル電流の変化率と経過時間との関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between a change rate of a pump cell current and an elapsed time.

【図5】従来の空燃比検出装置の縦断面の一例を示す図
である。
FIG. 5 is a diagram showing an example of a longitudinal section of a conventional air-fuel ratio detection device.

【符号の説明】[Explanation of symbols]

1 酸素ポンプセル 3 固体電解質板 4ー1、4ー2 電極 11 センシングセル 12 固体電解質 13ー1 測定電極 13ー2 基準電極 21 絶縁層 25 外部回路 DESCRIPTION OF SYMBOLS 1 Oxygen pump cell 3 Solid electrolyte board 4-1 and 4-2 electrode 11 Sensing cell 12 Solid electrolyte 13-1 Measurement electrode 13-2 Reference electrode 21 Insulating layer 25 External circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/419 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/419

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体電解質板の両面に電極を設けてなる
酸素ポンプセルとセンシングセルとを、絶縁層を介して
一体化してなる空燃比検出装置において、前記酸素ポン
プセルとセンシングセルとを外部回路を介して接続し、
前記酸素ポンプセルのポンプセル電流の一部を前記セン
シングセルへ流すよう構成したことを特徴とする空燃比
検出装置。
1. An air-fuel ratio detection device in which an oxygen pump cell having electrodes provided on both sides of a solid electrolyte plate and a sensing cell are integrated via an insulating layer, wherein the oxygen pump cell and the sensing cell are connected to an external circuit. Connect through and
An air-fuel ratio detecting device, wherein a part of a pump cell current of the oxygen pump cell is caused to flow to the sensing cell.
【請求項2】 前記ポンプセル電流の一部をポンプセル
電流の0.1〜1%とする請求項1記載の空燃比検出装
置。
2. The air-fuel ratio detecting device according to claim 1, wherein a part of the pump cell current is 0.1 to 1% of the pump cell current.
JP04057938A 1992-03-16 1992-03-16 Air-fuel ratio detector Expired - Lifetime JP3110848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04057938A JP3110848B2 (en) 1992-03-16 1992-03-16 Air-fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04057938A JP3110848B2 (en) 1992-03-16 1992-03-16 Air-fuel ratio detector

Publications (2)

Publication Number Publication Date
JPH05256817A JPH05256817A (en) 1993-10-08
JP3110848B2 true JP3110848B2 (en) 2000-11-20

Family

ID=13069973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04057938A Expired - Lifetime JP3110848B2 (en) 1992-03-16 1992-03-16 Air-fuel ratio detector

Country Status (1)

Country Link
JP (1) JP3110848B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560316B2 (en) * 1998-11-25 2004-09-02 日本特殊陶業株式会社 Gas sensor, method of manufacturing the same, and gas sensor system
JP5736344B2 (en) * 2011-08-02 2015-06-17 日本特殊陶業株式会社 Gas sensor
JP6110262B2 (en) 2013-09-10 2017-04-05 日本特殊陶業株式会社 Sensor control device
JP6203650B2 (en) 2014-01-24 2017-09-27 日本特殊陶業株式会社 Gas sensor element and gas sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727049U (en) * 1971-04-05 1972-11-27
JPS5787271U (en) * 1980-11-19 1982-05-29
JPS5825964U (en) * 1981-08-14 1983-02-18 株式会社日立製作所 Compressor anti-seize device
JPS6288250U (en) * 1985-11-21 1987-06-05
JPH01141558A (en) * 1987-11-26 1989-06-02 Nissei Reiki Kk Ice maker
JP2512986B2 (en) * 1988-04-12 1996-07-03 三菱電機株式会社 Heat pump device

Also Published As

Publication number Publication date
JPH05256817A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US4769124A (en) Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
JP2000193635A (en) Air-fuel ratio detection device
EP0136144A2 (en) Engine air/fuel ratio sensing device
JP3110848B2 (en) Air-fuel ratio detector
JP2880273B2 (en) Oxygen concentration detector
JPH0447783B2 (en)
JP2509905B2 (en) Air-fuel ratio sensor
JP2837120B2 (en) Wide area air-fuel ratio sensor and driving method thereof
US5106481A (en) Linear air/fuel sensor
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JP2002257772A (en) Abnormality detecting method for air-fuel ratio sensor and protecting method for sensor control circuit
JP4563606B2 (en) Multilayer sensor element
JPS60138263A (en) Exhaust gas recirculation mechanism for engine
JP2678748B2 (en) Engine air-fuel ratio detector
JP3314567B2 (en) Air-fuel ratio detection device abnormality diagnosis device
JPH05240829A (en) Air-fuel ratio sensor
JP3113373B2 (en) Reference oxygen supply method for air-fuel ratio sensor
JP2000180409A (en) Method for beaking leak current in gas sensor
JPH053908B2 (en)
JP2002005882A (en) Apparatus for determining activity of air/fuel ratio sensor
JPS61296262A (en) Air/fuel ratio sensor
JPS60192250A (en) Oxygen sensor
JP4532001B2 (en) Gas sensor
JPS6135347A (en) Heater for oxygen sensor
JPH11201934A (en) Circuit for measuring oxygen concentration

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12