JP3113373B2 - Reference oxygen supply method for air-fuel ratio sensor - Google Patents

Reference oxygen supply method for air-fuel ratio sensor

Info

Publication number
JP3113373B2
JP3113373B2 JP04049785A JP4978592A JP3113373B2 JP 3113373 B2 JP3113373 B2 JP 3113373B2 JP 04049785 A JP04049785 A JP 04049785A JP 4978592 A JP4978592 A JP 4978592A JP 3113373 B2 JP3113373 B2 JP 3113373B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
reference oxygen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04049785A
Other languages
Japanese (ja)
Other versions
JPH05249077A (en
Inventor
基祐 西脇
諄 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP04049785A priority Critical patent/JP3113373B2/en
Publication of JPH05249077A publication Critical patent/JPH05249077A/en
Application granted granted Critical
Publication of JP3113373B2 publication Critical patent/JP3113373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸素ポンプと酸素濃淡
電池とからなる空燃比センサの基準酸素供給方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference oxygen supply method for an air-fuel ratio sensor comprising an oxygen pump and an oxygen concentration cell.

【0002】[0002]

【従来の技術】従来から、エンジン等の燃焼状態を制御
するため、ガソリン等と空気との混合気の空燃比を測定
する必要があり、この目的で空燃比センサが使用されて
いる。この空燃比センサの一例として、従来からジルコ
ニア等の固体電解質からなる板状体の両表面に一対の電
極を設けた素子を準備し、この素子を間隙を介して積層
し、一方の素子を基準酸素を供給するための酸素ポンプ
とし、他方の素子を酸素濃淡電池とした構成のものが、
例えば特開昭59−178354号公報において知られ
ている。
2. Description of the Related Art Conventionally, in order to control the combustion state of an engine or the like, it is necessary to measure the air-fuel ratio of a mixture of gasoline or the like and air. For this purpose, an air-fuel ratio sensor has been used. As an example of this air-fuel ratio sensor, an element is conventionally prepared in which a pair of electrodes are provided on both surfaces of a plate-shaped body made of a solid electrolyte such as zirconia, and this element is stacked with a gap therebetween, and one element is set as a reference. An oxygen pump for supplying oxygen, and the other element is configured as an oxygen concentration cell,
For example, it is known from JP-A-59-178354.

【0003】これら従来の空燃比センサにおいては、酸
素濃淡電池側を基準として酸素ポンプの出力から酸素濃
度を求める場合と、酸素ポンプ側を基準として酸素濃淡
電池の出力から酸素濃度を求める場合がある。そのう
ち、酸素濃淡電池側を基準とする場合は、従来酸素濃淡
電池を形成する素子の両表面に設けた電極間に供給する
基準酸素生成電流を例えば約30μA とし、立ち上げ時
より一定の電流値として、基準電極側に例えば100%
2 の基準参照エアを満たす必要があった。これは、従
来は電源を入れた直後の立ち上がり時出力が一定になる
までの精度はそれほど問題にならなかったためであり、
また30μA 程度の値であれば、素子に長時間供給し続
けても素子を形成する固体電解質の破壊などが生じない
レベルであるためである。
In these conventional air-fuel ratio sensors, there are a case where the oxygen concentration is obtained from the output of the oxygen pump based on the oxygen concentration cell side and a case where the oxygen concentration is obtained from the output of the oxygen concentration cell based on the oxygen pump side. . In the case where the oxygen concentration cell side is used as a reference, the reference oxygen generation current supplied between the electrodes provided on both surfaces of the element forming the conventional oxygen concentration cell is, for example, about 30 μA, and a constant current value from the time of startup is constant. For example, 100%
It had to meet the standard reference air O 2. This is because the accuracy until the output at the time of rising immediately after turning on the power became constant did not matter so much.
On the other hand, if the value is about 30 μA, the level is such that the solid electrolyte forming the element is not destroyed even if the supply to the element is continued for a long time.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の基準酸素供給方法では、30μA 程度の電流を
立ちあげ時より一定としているため、基準酸素濃度の安
定時間が30秒程度必要となり、立ち上がり時の精度が
悪くなるとともに、定常時においては、空燃比λ=1の
ストイキ点でのポンプセル電流値Ip が約−20〜30
μA とマイナス側へシフトしてしまい、望ましい値であ
るIp =0に近くならない問題があった。
However, in the above-described conventional reference oxygen supply method, the current of about 30 μA is constant from the start-up time, so that a stabilization time of the reference oxygen concentration is required for about 30 seconds. And the pump cell current value I p at the stoichiometric point of the air-fuel ratio λ = 1 becomes approximately −20 to 30 in the steady state.
There was a problem that the value shifted to the negative side of μA and did not approach the desirable value of I p = 0.

【0005】本発明の目的は上述した課題を解消して、
電源を入れることによる立ち上がり時から精度の良い測
定値を得ることができる空燃比センサの基準酸素供給方
法を提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a reference oxygen supply method for an air-fuel ratio sensor that can obtain a highly accurate measurement value from the time of startup when power is turned on.

【0006】[0006]

【課題を解決するための手段】本発明の空燃比センサの
基準酸素供給方法は、酸素ポンプと酸素濃淡電池とから
なる空燃比センサの基準酸素供給方法において、酸素濃
淡電池に供給する基準酸素生成電流を、立ち上がり直後
の最初の段階では大きな電流値として基準酸素を早く生
成させ、その後必要最小限度の小さな電流値とすること
を特徴とするものであり、さらに好ましい例として、空
燃比センサの温度を650℃以上にした後に、上記工程
を実施することを特徴とするものである。
A reference oxygen supply method for an air-fuel ratio sensor according to the present invention is a reference oxygen supply method for an air-fuel ratio sensor comprising an oxygen pump and an oxygen concentration cell. In the first stage immediately after the rise, the reference oxygen is quickly generated as a large current value, and thereafter, the required minimum current value is set to a small current value.A more preferable example is a temperature of the air-fuel ratio sensor. 650 ° C. or higher, and then performing the above step.

【0007】[0007]

【作用】上述した構成において、酸素濃淡電池に供給す
る基準酸素生成電流を、電源を入れた直後の立ち上がり
時には従来より大きい電流とし、立ち上がり時に基準酸
素を早く生成できるとともに、その後必要最小限度の従
来より小さい電流としているため、安定した後は素子へ
の負荷を低減でき、長寿命化を達成できる。また、素子
が低温のとき、本発明のように従来の基準酸素生成電流
より大きい電流を供給すると、素子の破壊や黒化を生じ
る場合があるため、素子をある程度の高温すなわち65
0℃程度の温度まで加熱した状態で電源を入れて上記工
程を実施すると好ましい。
In the above-described configuration, the reference oxygen generation current supplied to the oxygen concentration cell is set to be larger than the conventional current at the time of startup immediately after the power is turned on. Since the current is smaller, the load on the element can be reduced after stabilization, and a longer life can be achieved. Further, when the element is at a low temperature and a current larger than the conventional reference oxygen generation current is supplied as in the present invention, the element may be broken or blackened.
It is preferable to carry out the above process by turning on the power while heating to a temperature of about 0 ° C.

【0008】[0008]

【実施例】図1は、本発明の基準酸素供給方法を実施す
る空燃比センサの一例の構成を示す断面図である。図1
に示す例では、空燃比センサ1を酸素濃淡電池2、酸素
ポンプ3および保護カバー4を、保護カバー4と酸素濃
淡電池2との間に隙間5を、また酸素濃淡電池2と酸素
ポンプ3との間に隙間6をガス拡散層8により設けて、
一体に積層して構成している。酸素濃淡電池2は、ジル
コニア等の固体電解質からなる板状のセンシングセル1
1の両表面に一対の電極12−1、12−2を設けて構
成している。酸素ポンプ3は、同様に固体電解質からな
る板状のポンピングセル21の両表面に一対の電極22
−1、22−2を設けて構成している。また、本実施例
では、酸素ポンプ3の外側にヒータ7を設け、空燃比セ
ンサ1を例えば650℃程度の温度まで加熱できるよう
構成しているが、場合によってはヒータ7を設けなくて
も良い。
FIG. 1 is a sectional view showing the structure of an example of an air-fuel ratio sensor for implementing a reference oxygen supply method according to the present invention. FIG.
In the example shown in FIG. 1, the air-fuel ratio sensor 1 is connected to the oxygen concentration cell 2, the oxygen pump 3 and the protection cover 4, the gap 5 is provided between the protection cover 4 and the oxygen concentration cell 2, and the oxygen concentration cell 2 and the oxygen pump 3 are connected to each other. A gap 6 is provided by the gas diffusion layer 8 between
It is configured by being integrally laminated. The oxygen concentration cell 2 is a plate-shaped sensing cell 1 made of a solid electrolyte such as zirconia.
1 is provided with a pair of electrodes 12-1 and 12-2 on both surfaces. The oxygen pump 3 has a pair of electrodes 22 on both surfaces of a plate-like pumping cell 21 also made of a solid electrolyte.
-1, 22-2. In this embodiment, the heater 7 is provided outside the oxygen pump 3 so that the air-fuel ratio sensor 1 can be heated to a temperature of, for example, about 650 ° C. However, the heater 7 may not be provided in some cases. .

【0009】図1に示す構造の空燃比センサ1では、電
極12−1、12−2の間に図示のように電極を接続
し、所定の基準酸素生成電流を電極12−1、12−2
の間に流すことにより、隙間5内に100%O2 からな
る基準参照エアを生成させる一方、隙間6内に供給され
る被測定ガス中の酸素と隙間5中の基準参照エア中の酸
素とが平衡になろうとする際、ポンピングセル21を流
れるポンピング電流Ipを測定して酸素濃度を求めてい
る。この動作は従来の空燃比センサとなんら変わるとこ
ろはない。
In the air-fuel ratio sensor 1 having the structure shown in FIG. 1, an electrode is connected between the electrodes 12-1 and 12-2 as shown, and a predetermined reference oxygen generation current is applied to the electrodes 12-1 and 12-2.
To generate the reference air composed of 100% O 2 in the gap 5, while the oxygen in the gas to be measured supplied into the gap 6 and the oxygen in the reference air in the gap 5 are generated. Is about to be balanced, the pumping current Ip flowing through the pumping cell 21 is measured to determine the oxygen concentration. This operation is no different from the conventional air-fuel ratio sensor.

【0010】本発明で重要なのは、図1に示す空燃比セ
ンサにおいて、基準酸素生成電流を立ち上がった最初は
所定の短時間の間従来の30μA より大きい好ましくは
40〜60μA の電流とするとともに、所定の短時間経
過後は従来の30μA よりも小さい5〜15μA 好まし
くは10〜15μA に切り替える点である。そのための
回路の一例を図2および図3に示す。図2(a) に示す回
路では、センシングセル11と、電源13と、並列に接
続した抵抗14−1、14−2とを抵抗14−1の抵抗
値Rを大、抵抗14−2の抵抗値を小としてスイッチ1
5を介して接続し、スイッチ15を切り換えることによ
り、立ち上がり初期は大きい基準酸素生成電流Icp
し、その後は小さい基準酸素生成電流Icpとしている。
また、図3(a) に示す回路では、センシングセル11
と、電源13と、コンデンサ16と、並列に接続した抵
抗14−1、14−2とをスイッチ15を介して接続
し、スイッチ15を入れることにより、図3(b) に示す
ように、立ち上がり初期は大きいIcpでその後徐々に小
さいIcpとしている。
What is important in the present invention is that in the air-fuel ratio sensor shown in FIG. 1, the reference oxygen generation current is initially set to a current of more than 30 μA, preferably 40 to 60 μA, for a predetermined short period of time at the first time. After the elapse of a short time, the point is to switch to 5 to 15 μA, preferably 10 to 15 μA, which is smaller than the conventional 30 μA. An example of a circuit for that purpose is shown in FIGS. In the circuit shown in FIG. 2A, the sensing cell 11, the power supply 13, and the resistors 14-1 and 14-2 connected in parallel have the large resistance value R of the resistor 14-1 and the resistance of the resistor 14-2. Switch 1 with small value
5 and the switch 15 is switched to set the reference oxygen generation current Icp to a large value at the beginning of rising, and thereafter to the small reference oxygen generation current Icp .
Further, in the circuit shown in FIG.
The power supply 13, the capacitor 16, and the resistors 14-1 and 14-2 connected in parallel are connected via the switch 15, and when the switch 15 is turned on, as shown in FIG. Initially, it is large Icp and then gradually smaller Icp .

【0011】なお、図1に示す構造の空燃比センサ1
(被測定ガスが大気の場合、IP =5mAを出力するも
の)において、基準酸素生成電流Icpと基準酸素安定時
間すなわち隙間5が100%O2 で満たされるまでの時
間との関係を図4に示す。図4から、基準酸素生成電流
cpが50μA では約10秒で安定することがわかり、
この図からIcpの切り換え時期を決定することができ
る。また、一例としてリッチガス中における基準酸素生
成電流Icpと基準酸素による発生起電力との関係を図5
に示す。図5から、最低5μA 程度の基準酸素生成電流
cpでそれ以上のIcpのときと変わらない発生起電力を
得られることがわかり、切り換え後はのIcpは5μA よ
り大きければ十分であることがわかる。さらに、同一の
センサにおけるλ=1のストイキ点における基準酸素生
成電流Icpとポンプ電流Ip との関係を図6に示す。図
6から、基準酸素電流が5μA のときストイキ点のIp
は約−3μA 、つまりO2 出力=−0.01%であり、ゼロ
点調整を行わなくとも実用上問題のないことがわかる。
The air-fuel ratio sensor 1 having the structure shown in FIG.
FIG. 4 shows the relationship between the reference oxygen generation current Icp and the reference oxygen stabilization time, that is, the time until the gap 5 is filled with 100% O 2 , when the measured gas is air and I P = 5 mA is output. It is shown in FIG. From FIG. 4, it is found that the reference oxygen generation current Icp is stabilized in about 10 seconds at 50 μA,
From this figure, the switching timing of Icp can be determined. Further, FIG. 5 the relationship between the reference oxygen generating current I cp and the reference oxygen by generating electromotive force in the rich gas as an example
Shown in From Figure 5 it was found that the obtained occurrence electromotive force unchanged as in the more I cp Lowest 5μA about reference oxygen generating current I cp, I cp of after switching is sufficient larger than 5μA I understand. FIG. 6 shows the relationship between the reference oxygen generation current Icp and the pump current Ip at the stoichiometric point where λ = 1 in the same sensor. From FIG. 6, when the reference oxygen current is 5 μA, I p at the stoichiometric point
Is about −3 μA, that is, the O 2 output = −0.01%, and it can be seen that there is no practical problem even without performing the zero point adjustment.

【0012】さらに、本発明の上記生成電流切り換え工
程において、空燃比センサ1の温度が低温のとき、従来
の基準酸素生成電流よりも大きい電流を供給すると、空
燃比センサ1の破壊や黒化を生じることがある。そのた
め、ヒータ7によって空燃比センサ1をある程度の高温
すなわち650℃程度の温度まで加熱した状態で電源を
入れて上記工程を実施すると、空燃比センサ1の破壊や
黒化を防止することができるため好ましい。
Further, in the generation current switching step of the present invention, when the temperature of the air-fuel ratio sensor 1 is low and a current larger than the conventional reference oxygen generation current is supplied, the air-fuel ratio sensor 1 is broken or blackened. May occur. Therefore, when the power is turned on and the above-described process is performed while the air-fuel ratio sensor 1 is heated to a certain high temperature, that is, a temperature of about 650 ° C. by the heater 7, destruction and blackening of the air-fuel ratio sensor 1 can be prevented. preferable.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、本発明
によれば、酸素濃淡電池に供給する基準酸素生成電流
を、電源を入れた直後の立ち上がり時には従来より大き
い電流としているため、立ち上がり時に基準酸素を早く
生成できるとともに、その後必要最小限度の従来より小
さい電流としているため、安定した後は素子への負荷を
低減でき、長寿命化を達成できる。また、素子をある程
度の高温すなわち650℃程度の温度まで加熱した状態
で電源を入れて上記工程を実施すると、素子の破壊や黒
化を防止できるため好ましい。
As is clear from the above description, according to the present invention, the reference oxygen generation current supplied to the oxygen concentration cell is set to be larger than the conventional current at the rise immediately after the power is turned on. Since the reference oxygen can be generated quickly and the current is reduced to a necessary minimum current after that, the load on the element can be reduced after stabilization, and a longer life can be achieved. It is preferable that the power supply be turned on while the element is heated to a certain high temperature, that is, a temperature of about 650 ° C., and the above steps be performed, because destruction and blackening of the element can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基準酸素供給方法を実施する空燃比セ
ンサの一例の構造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of an example of an air-fuel ratio sensor for implementing a reference oxygen supply method of the present invention.

【図2】(a)は本発明の基準酸素供給方法を実施する
回路の一例を示す図であり、(b)はその動作を説明す
るためのグラフである。
FIG. 2A is a diagram showing an example of a circuit for implementing the reference oxygen supply method of the present invention, and FIG. 2B is a graph for explaining the operation.

【図3】(a)は本発明の基準酸素供給方法を実施する
回路の他の例を示す図であり、(b)はその動作を説明
するためのグラフである。
3A is a diagram showing another example of a circuit for implementing the reference oxygen supply method of the present invention, and FIG. 3B is a graph for explaining the operation.

【図4】基準酸素生成電流と基準酸素安定時間との関係
を示すグラフである。
FIG. 4 is a graph showing a relationship between a reference oxygen generation current and a reference oxygen stabilization time.

【図5】リッチガス中における基準酸素生成電流と基準
酸素による発生起電力との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a reference oxygen generation current in a rich gas and an electromotive force generated by the reference oxygen.

【図6】ストイキ点における基準酸素生成電流とポンプ
電流との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a reference oxygen generation current and a pump current at a stoichiometric point.

【符号の説明】[Explanation of symbols]

1 空燃比センサ 11 酸素濃淡電池 21 酸素ポンプ 1 air-fuel ratio sensor 11 oxygen concentration cell 21 oxygen pump

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/419 G01N 27/409 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/419 G01N 27/409

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸素ポンプと酸素濃淡電池とからなる空
燃比センサの基準酸素供給方法において、酸素濃淡電池
に供給する基準酸素生成電流を、立ち上がり直後の最初
の段階では大きな電流値として基準酸素を早く生成さ
せ、その後必要最小限度の小さな電流値とすることを特
徴とする空燃比センサの基準酸素供給方法。
1. A reference oxygen supply method for an air-fuel ratio sensor comprising an oxygen pump and an oxygen concentration cell, wherein the reference oxygen generation current supplied to the oxygen concentration cell is set to a large current value in the first stage immediately after the start-up. A reference oxygen supply method for an air-fuel ratio sensor, wherein the reference current is generated early, and then the current value is reduced to a minimum necessary value.
【請求項2】 前記最初の大きな電流値が40〜60μ
A であり、前記必要最小限度の小さな電流値が5〜15
μA である請求項1記載の空燃比センサの基準酸素供給
方法。
2. The method according to claim 1, wherein said first large current value is 40 to 60 μm.
A, and the required minimum current value is 5 to 15
2. The reference oxygen supply method for an air-fuel ratio sensor according to claim 1, wherein the reference oxygen supply is μA.
【請求項3】 空燃比センサの温度を650℃以上にし
た後、請求項1記載の工程を実施することを特徴とする
空燃比センサの基準酸素供給方法。
3. A reference oxygen supply method for an air-fuel ratio sensor, comprising: performing the process according to claim 1 after raising the temperature of the air-fuel ratio sensor to 650 ° C. or higher.
JP04049785A 1992-03-06 1992-03-06 Reference oxygen supply method for air-fuel ratio sensor Expired - Lifetime JP3113373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04049785A JP3113373B2 (en) 1992-03-06 1992-03-06 Reference oxygen supply method for air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04049785A JP3113373B2 (en) 1992-03-06 1992-03-06 Reference oxygen supply method for air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH05249077A JPH05249077A (en) 1993-09-28
JP3113373B2 true JP3113373B2 (en) 2000-11-27

Family

ID=12840819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04049785A Expired - Lifetime JP3113373B2 (en) 1992-03-06 1992-03-06 Reference oxygen supply method for air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP3113373B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5166354B2 (en) * 2009-06-05 2013-03-21 日本特殊陶業株式会社 Gas sensor element and gas sensor
JP5134065B2 (en) 2009-12-22 2013-01-30 日本特殊陶業株式会社 Sensor control device

Also Published As

Publication number Publication date
JPH05249077A (en) 1993-09-28

Similar Documents

Publication Publication Date Title
US4658790A (en) Air/fuel ratio detecting device and control system using same
JPS61170650A (en) Oxygen concentration sensor
JPH0572539B2 (en)
US20100140113A1 (en) Gas sensor control apparatus and method
JPS60128349A (en) Air fuel ratio detector
JPS62261953A (en) Air fuel ratio detecting device
US4622126A (en) Engine air/fuel ratio sensing device
JP2002071633A (en) Heater control device for air-fuel ratio sensor
JP2000081413A (en) Gas concentration detecting device
US6254765B1 (en) Method of regulating the temperature of a sensor
JP4023503B2 (en) Gas concentration detector
JP4872198B2 (en) Gas concentration detector
JPH1048180A (en) Method and apparatus for controlling temperature of total area oxygen sensor
JP3113373B2 (en) Reference oxygen supply method for air-fuel ratio sensor
JPH0635955B2 (en) Air-fuel ratio detector
US4841934A (en) Oxygen pumping device for control of the air fuel ratio
JP2509905B2 (en) Air-fuel ratio sensor
JP5067469B2 (en) Gas concentration detector
JP3563941B2 (en) Method and apparatus for detecting state of deterioration of full-range air-fuel ratio sensor
JP2004258043A (en) Method and apparatus for detecting deterioration conditions of wide range air-fuel ratio sensor
US20010052471A1 (en) Method for adjusting output characteristics of a gas sensing element based on application of electric power to this sensing element
JP3110848B2 (en) Air-fuel ratio detector
JP2678748B2 (en) Engine air-fuel ratio detector
JPH07119740B2 (en) Temperature controller for oxygen concentration sensor
JP3705812B2 (en) Method and circuit device for controlling a measuring device for measuring the oxygen concentration in a gas mixture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12