JPH0672863B2 - Oxygen concentration detector - Google Patents

Oxygen concentration detector

Info

Publication number
JPH0672863B2
JPH0672863B2 JP61040111A JP4011186A JPH0672863B2 JP H0672863 B2 JPH0672863 B2 JP H0672863B2 JP 61040111 A JP61040111 A JP 61040111A JP 4011186 A JP4011186 A JP 4011186A JP H0672863 B2 JPH0672863 B2 JP H0672863B2
Authority
JP
Japan
Prior art keywords
voltage
oxygen
oxygen concentration
electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61040111A
Other languages
Japanese (ja)
Other versions
JPS62197757A (en
Inventor
泰仕 岡田
信之 大野
豊平 中島
敏幸 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61040111A priority Critical patent/JPH0672863B2/en
Publication of JPS62197757A publication Critical patent/JPS62197757A/en
Publication of JPH0672863B2 publication Critical patent/JPH0672863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は内燃エンジンの排気ガス中の酸素濃度を検出す
る酸素濃度検出装置に関する。
TECHNICAL FIELD The present invention relates to an oxygen concentration detection device for detecting the oxygen concentration in exhaust gas of an internal combustion engine.

背景技術 内燃エンジンの排気ガス浄化、燃費改善等のために排気
ガス中の酸素濃度を検出し、エンジンに供給する混合気
の空燃比を酸素濃度検出結果に応じて目標空燃比にフィ
ードバック制御する空燃比制御装置がある。
Background Art An air-fuel ratio that detects the oxygen concentration in the exhaust gas to purify the exhaust gas of an internal combustion engine, improves fuel efficiency, etc., and feedback controls the air-fuel ratio of the air-fuel mixture supplied to the engine to the target air-fuel ratio according to the oxygen concentration detection result There is a fuel ratio control device.

このような空燃比制御装置に用いられる酸素濃度検出装
置として排気ガス中の酸素濃度に比例した出力を発生す
るものがある。例えば、平板状の酸素イオン伝導性固体
電解質部材の両主面に電極対を設けて固体電解質部材の
一方の電極面が気体滞留室の一部をなしてその気体滞留
室が排気ガス等の被測定気体と導入孔を介して連通する
ようにした限界電流方式の酸素濃度センサが特開昭52−
72286号公報に開示されている。この酸素濃度センサに
おいては、酸素イオン伝導性固体電解質部材と電極対と
が酸素ポンプ素子として作用して気体滞留室側電極が負
極になるように電極間に電流を供給すると、負極面側に
て気体滞留室内気体中の酸素ガスがイオン化して固体電
解質部材内を正極面側に移動し正極面から酸素ガスとし
て放出される。このときの電極間に流れ得る限界電流値
は印加電圧に拘らずほぼ一定となりかつ被測定気体中の
酸素濃度に比例するのでその限界電流値を検出すれば被
測定気体中の酸素濃度を測定することができる。ところ
が、かかる酸素濃度検出装置を用いて空燃比を制御する
場合に排気ガス中の酸素濃度からは混合気の空燃比が理
論空燃比よりリーンの範囲でしか酸素濃度に比例した出
力が得られないので目標空燃比をリッチ領域に設定した
空燃比制御は不可能であった。空燃比がリーン及びリッ
チ領域にて排気ガス中の酸素濃度に比例した出力が得ら
れる酸素濃度検出装置としては2つの平板状の酸素イオ
ン伝導性固体電解質部材各々に電極対を設けて2つの固
体電解質部材の一方の電極面各々が気体滞留室の一部を
なしてその気体滞留室が被測定気体と導入孔を介して連
通し一方の固体電解質部材の他方の電極面が大気室に面
するようにしたものが特開昭59−192955号に開示されて
いる。この酸素濃度検出装置においては一方の酸素イオ
ン伝導性固体電解質部材と電極対とが酸素濃度比検出電
池素子として作用し他方の酸素イオン伝導性固体電解質
材と電極対とが酸素ポンプ素子として作用するようにな
っている。酸素濃度比検出電池素子の電極間の発生電圧
が基準電圧以上のとき酸素ポンプ素子内を酸素イオンが
気体滞留質側電極に向って移動するように電流を供給
し、酸素濃度比検出電池素子の電極間の発生電圧が基準
電圧以下のとき酸素ポンプ素子内を酸素イオンが気体滞
留室側とは反対側の電極に向って移動するように電流を
供給することによりリーン及びリッチ領域の空燃比にお
いて電流値は酸素濃度に比例するのである。
As an oxygen concentration detection device used in such an air-fuel ratio control device, there is one that generates an output proportional to the oxygen concentration in the exhaust gas. For example, electrode pairs are provided on both main surfaces of a flat plate-shaped oxygen ion conductive solid electrolyte member, one electrode surface of the solid electrolyte member forms a part of a gas retention chamber, and the gas retention chamber is covered with exhaust gas or the like. A limiting current type oxygen concentration sensor that communicates with a measuring gas through an introduction hole is disclosed in Japanese Patent Laid-Open No. 52-
It is disclosed in Japanese Patent No. 72286. In this oxygen concentration sensor, when the oxygen ion conductive solid electrolyte member and the electrode pair act as an oxygen pump element to supply a current between the electrodes so that the gas retention chamber side electrode becomes the negative electrode, the negative electrode surface side Oxygen gas in the gas in the gas retention chamber is ionized, moves inside the solid electrolyte member toward the positive electrode surface, and is released as oxygen gas from the positive electrode surface. The limiting current value that can flow between the electrodes at this time is almost constant regardless of the applied voltage and is proportional to the oxygen concentration in the gas to be measured. Therefore, if the limiting current value is detected, the oxygen concentration in the gas to be measured is measured. be able to. However, when controlling the air-fuel ratio using such an oxygen concentration detection device, an output proportional to the oxygen concentration can be obtained from the oxygen concentration in the exhaust gas only when the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio control in which the target air-fuel ratio is set in the rich region was impossible. As an oxygen concentration detection device that can obtain an output proportional to the oxygen concentration in the exhaust gas in the lean and rich regions of the air-fuel ratio, two flat plate-shaped oxygen ion conductive solid electrolyte members are provided with electrode pairs on each of which two solids are provided. One of the electrode surfaces of the electrolyte member forms a part of the gas retention chamber, and the gas retention chamber communicates with the gas to be measured through the introduction hole, and the other electrode surface of the one solid electrolyte member faces the atmosphere chamber. Such an arrangement is disclosed in JP-A-59-192955. In this oxygen concentration detecting device, one oxygen ion conductive solid electrolyte member and the electrode pair act as an oxygen concentration ratio detecting battery element, and the other oxygen ion conductive solid electrolyte material and the electrode pair act as an oxygen pump element. It is like this. When the voltage generated between the electrodes of the oxygen concentration ratio detection battery element is equal to or higher than the reference voltage, a current is supplied so that oxygen ions move in the oxygen pump element toward the gas retention material side electrode, and the oxygen concentration ratio detection battery element When the generated voltage between the electrodes is less than the reference voltage, by supplying current so that oxygen ions move in the oxygen pump element toward the electrode on the side opposite to the gas retention chamber side, the air-fuel ratio in the lean and rich regions is increased. The current value is proportional to the oxygen concentration.

かかる酸素濃度検出装置においては、酸素ポンプ素子に
過剰の電流を供給すると、固体電解質部材から酸素を奪
うブラックニング現象が発生する。例えば、固体電解質
部材としてZrO2(二酸化ジルコニウム)が用いられた場
合、酸素ポンプ素子への過剰電流供給によりZrO2から酸
素O2が奪われてジルコニウムZrが析出される。このブラ
ックニング現象は酸素ポンプ素子の劣化を急速に進め酸
素濃度検出装置としての性能を悪化させるのである。
In such an oxygen concentration detection device, when an excessive current is supplied to the oxygen pump element, a blackening phenomenon occurs that deprives the solid electrolyte member of oxygen. For example, when ZrO 2 (zirconium dioxide) is used as the solid electrolyte member, excess oxygen is supplied to the oxygen pump element to remove oxygen O 2 from ZrO 2 to deposit zirconium Zr. This blackening phenomenon rapidly advances the deterioration of the oxygen pump element and deteriorates the performance of the oxygen concentration detecting device.

発明の概要 そこで、本発明の目的は、ブラックニング現象の発生を
確実に防止することがてきる酸素濃度検出装置を提供す
ることである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an oxygen concentration detection device capable of reliably preventing the occurrence of the blackening phenomenon.

本発明の酸素濃度検出装置は酸素ポンプ素子の電極間に
印加される電圧を所定電圧以下に制限する制限手段を有
することを特徴としている。
The oxygen concentration detecting device of the present invention is characterized by having a limiting means for limiting the voltage applied between the electrodes of the oxygen pump element to a predetermined voltage or less.

実施例 以下、本発明の実施例を図面を参照しつつ説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例たる酸素濃度比例出力型の酸
素濃度検出装置を示している。この酸素濃度検出装置に
おいては、ほぼ直方体状の酸素イオン伝導性固体電解質
部材1が設けられている。酸素イオン伝導性固体電解質
部材1内には気体滞留室2が形成されている。気体滞留
室2は固体電解質1外部から被測定気体の排気ガスを導
入する導入孔4に連通し、導入孔4は内燃エンジンの排
気管(図示せず)内において排気ガスが気体滞留室2内
に流入し易いように位置される。また酸素イオン伝導性
固体電解質部材1には大気を導入する大気基準室5が気
体滞留室2と壁を隔てるように形成されている。気体滞
留室2と大気基準室5との間の壁部及び大気基準室5と
は反対側の壁部には電極対7a,7b,6a,6bが各々形成され
ている。固体電解室部材1及び電極対6a,6bが酸素ポン
プ素子8として作用し、固体電解質部材1及び電極対7
a,7bが電池素子9として作用する。また大気基準室5の
外壁面にはヒータ素子10が設けられている。ヒータ素子
10はイグニッションスイッチ(図示せず)のオンと同時
に電流が供給されて発熱するようになっている。
FIG. 1 shows an oxygen concentration detection device of an oxygen concentration proportional output type which is an embodiment of the present invention. In this oxygen concentration detection device, a substantially rectangular parallelepiped oxygen ion conductive solid electrolyte member 1 is provided. A gas retention chamber 2 is formed in the oxygen ion conductive solid electrolyte member 1. The gas retention chamber 2 communicates with an introduction hole 4 for introducing the exhaust gas of the gas to be measured from the outside of the solid electrolyte 1. The introduction hole 4 has exhaust gas inside the gas retention chamber 2 inside an exhaust pipe (not shown) of an internal combustion engine. It is located so that it can easily flow into. Further, the oxygen ion conductive solid electrolyte member 1 is formed with an atmosphere reference chamber 5 for introducing the atmosphere so as to separate the wall from the gas retention chamber 2. Electrode pairs 7a, 7b, 6a, 6b are formed on the wall between the gas retention chamber 2 and the atmospheric reference chamber 5 and on the wall opposite to the atmospheric reference chamber 5, respectively. The solid electrolytic chamber member 1 and the electrode pair 6a, 6b act as the oxygen pump element 8, and the solid electrolyte member 1 and the electrode pair 7
The a and 7b act as the battery element 9. A heater element 10 is provided on the outer wall surface of the atmospheric reference chamber 5. Heater element
10 is adapted to generate heat by being supplied with electric current at the same time when an ignition switch (not shown) is turned on.

酸素イオン伝導性固体電解質部材1としては、ZrO2(二
酸化ジルコニウム)が用いられ、電極6aないし7bとして
はPt(白金)が用いられる。
ZrO 2 (zirconium dioxide) is used as the oxygen ion conductive solid electrolyte member 1, and Pt (platinum) is used as the electrodes 6a to 7b.

第2図に示すように酸素ポンプ素子8の電極6b及び電池
素子9の電極7bはアースされている。電池素子9の電極
7aには差動増幅回路16が接続され、差動増幅回路16は電
池素子9の電極7a,7b間の発生電圧と基準電圧源17の出
力電圧との差電圧に応じた電圧を出力する。基準電圧源
17の出力電圧は理論空燃比に相当する電圧(例えば、0.
4V)である。差動増幅回路16の出力端には制限回路18が
接続されている。制限回路18はオペアンプ19及び抵抗2
0,21による反転増幅回路からなり、オペアンプ19の入出
力端間には帰還抵抗21が接続され、またツェナーダイオ
ード22,23が直列に接続されている。ツェナーダイオー
ド22,23はそのアノードが互いに接続された直列回路を
形成している。ツェナーダイオード22,23は同一特性を
有している。制限回路18の出力端は電流検出抵抗24を介
して酸素ポンプ素子8の電極6aに接続されている。電流
検出抵抗24の両端電圧が酸素濃度検出値として出力され
る。
As shown in FIG. 2, the electrode 6b of the oxygen pump element 8 and the electrode 7b of the battery element 9 are grounded. Electrode of battery element 9
A differential amplifier circuit 16 is connected to 7a, and the differential amplifier circuit 16 outputs a voltage corresponding to the difference voltage between the voltage generated between the electrodes 7a and 7b of the battery element 9 and the output voltage of the reference voltage source 17. Reference voltage source
The output voltage of 17 is a voltage corresponding to the theoretical air-fuel ratio (for example, 0.
4V). The limiting circuit 18 is connected to the output terminal of the differential amplifier circuit 16. The limiting circuit 18 is an operational amplifier 19 and a resistor 2.
The operational amplifier 19 includes an inverting amplifier circuit, and a feedback resistor 21 is connected between the input and output ends of the operational amplifier 19, and Zener diodes 22 and 23 are connected in series. Zener diodes 22 and 23 form a series circuit in which their anodes are connected to each other. Zener diodes 22 and 23 have the same characteristics. The output terminal of the limiting circuit 18 is connected to the electrode 6a of the oxygen pump element 8 via the current detection resistor 24. The voltage across the current detection resistor 24 is output as the oxygen concentration detection value.

かかる構成において、差動増幅回路16及び第1制限回路
18に電源電圧が投入され、酸素ポンプ素子8へのポンプ
電流の供給が開始されると、そのときエンジンに供給さ
れた混合気の空燃比がリーン領域であれば、電池素子9
の電極7a,7b間に発生する電圧が基準電圧源17の出力電
圧より低くなるので差動増幅回路16の出力レベルが負レ
ベルになり、この負レベル信号が第1制限回路18に供給
される。第1制限回路18は差動増幅回路16から出力され
た負レベル信号を反転増幅して正レベル信号として抵抗
24及び酸素ポンプ素子8の直列回路に供給する。酸素ポ
ンプ素子8には電極6aから電極6bに向ってポンプ電流が
流れるので気体滞留室2内の酸素が電極6bにてイオン化
して酸素ポンプ素子8内を移動して電極6aから酸素ガス
として放出され、気体滞留室2内の酸素が汲み出され
る。
In such a configuration, the differential amplifier circuit 16 and the first limiting circuit
When the power supply voltage is applied to 18 and the supply of pump current to the oxygen pump element 8 is started, if the air-fuel ratio of the air-fuel mixture supplied to the engine at that time is in the lean region, the battery element 9
Since the voltage generated between the electrodes 7a and 7b of the differential voltage becomes lower than the output voltage of the reference voltage source 17, the output level of the differential amplifier circuit 16 becomes a negative level, and this negative level signal is supplied to the first limiting circuit 18. . The first limiter circuit 18 inverts and amplifies the negative level signal output from the differential amplifier circuit 16 to generate a resistance as a positive level signal.
24 and the oxygen pump element 8 are connected in series. Since a pump current flows from the electrode 6a to the electrode 6b in the oxygen pump element 8, oxygen in the gas retention chamber 2 is ionized at the electrode 6b and moves in the oxygen pump element 8 to be released as oxygen gas from the electrode 6a. Then, oxygen in the gas retention chamber 2 is pumped out.

気体滞留室2内の酸素の汲み出しにより気体滞留室2内
の排気ガスと大気基準室5内の大気の間に酸素濃度差が
生ずる。この酸素濃度差に応じた電圧Vsが電池素子9の
電極7a,7b間に発生し、この電圧Vsは差動増幅回路16の
非反転入力端に供給される。差動増幅回路16の出力電圧
は電圧Vsと基準電圧源17の出力電圧との差電圧に比例し
た電圧となるのでポンプ電流値は排気ガス中の酸素濃度
に比例し、ポンプ電流値は抵抗24の両端電圧として出力
される。
By pumping out oxygen in the gas retention chamber 2, an oxygen concentration difference occurs between the exhaust gas in the gas retention chamber 2 and the atmosphere in the atmosphere reference chamber 5. A voltage Vs corresponding to this oxygen concentration difference is generated between the electrodes 7a and 7b of the battery element 9, and this voltage Vs is supplied to the non-inverting input terminal of the differential amplifier circuit 16. Since the output voltage of the differential amplifier circuit 16 is a voltage proportional to the difference voltage between the voltage Vs and the output voltage of the reference voltage source 17, the pump current value is proportional to the oxygen concentration in the exhaust gas, and the pump current value is the resistance 24 It is output as the voltage across both ends.

リッチ領域の空燃比のときには電圧Vsが基準電圧源17の
出力電圧を越える。よって、差動増幅回路16の出力レベ
ルが負レベルから正レベルに反転する。この正レベルが
第1制限回路18によって更に反転増幅されて抵抗24及び
酸素ポンプ素子8の直列回路に供給されるので酸素ポン
プ素子8の電極6a,6b間に流れるポンプ電流が減少し、
電流方向が反転する。すなわち、ポンプ電流は電極6bか
ら電極6a方向に流れるので外部の酸素が電極6aにてイオ
ン化して酸素ポンプ素子8内を移動して電極6bから酸素
ガスとして気体滞留室2内に放出され、酸素が気体滞留
室2内に汲み込まれる。従って、気体滞留室2内の酸素
濃度が常に一定になるようにポンプ電流を供給すること
により酸素を汲み込んだり、汲み出したりするのでポン
プ電流値IP及び差動増幅回路16の出力電圧はリーン及び
リッチ領域にて排気ガス中の酸素濃度に各々比例するの
である。
When the air-fuel ratio is in the rich region, the voltage Vs exceeds the output voltage of the reference voltage source 17. Therefore, the output level of the differential amplifier circuit 16 is inverted from the negative level to the positive level. This positive level is further inverted and amplified by the first limiting circuit 18 and supplied to the series circuit of the resistor 24 and the oxygen pump element 8, so that the pump current flowing between the electrodes 6a and 6b of the oxygen pump element 8 is reduced,
The current direction is reversed. That is, since the pump current flows from the electrode 6b in the direction of the electrode 6a, external oxygen is ionized at the electrode 6a and moves in the oxygen pump element 8 to be released from the electrode 6b as oxygen gas into the gas retention chamber 2 to generate oxygen. Are pumped into the gas retention chamber 2. Therefore, oxygen is pumped in and out by supplying the pump current so that the oxygen concentration in the gas retention chamber 2 is always constant, so that the pump current value I P and the output voltage of the differential amplifier circuit 16 are lean. And is proportional to the oxygen concentration in the exhaust gas in the rich region.

次に、電池素子9の電極7a,7b間に発生する電圧と基準
電圧源17の出力電圧との差が大きくなると差動増幅回路
16の出力電圧が大きくなる。差動増幅回路16の出力電圧
をVA、抵抗20の抵抗値をR20、抵抗21の抵抗値をR21とす
ると、第1制限回路18の出力電圧VBは通常、−(R21/R
20)VAとなる。−(R21/R20)VAがツェナーダイオード2
2,23のツェナー電圧Vzを越えると、差動増幅回路16の出
力電圧が負レベルのときにはツェナーダイオード23が作
用し、差動増幅回路16の出力電圧が正レベルのときには
ツェナーダイオード22が作用して第1制限回路18の出力
電圧VBはツェナー電圧Vzにほぼ等しくなる。よって抵抗
24及び酸素ポンプ素子8の直列回路に供給される電圧の
大きさはツェナー電圧Vz以下となり、酸素ポンプ素子8
の電極6a,6b間を流れるポンプ電流を制限することがで
きる。
Next, when the difference between the voltage generated between the electrodes 7a and 7b of the battery element 9 and the output voltage of the reference voltage source 17 becomes large, the differential amplifier circuit
16 output voltage becomes large. When the output voltage of the differential amplifier circuit 16 is V A , the resistance value of the resistor 20 is R 20 , and the resistance value of the resistor 21 is R 21 , the output voltage V B of the first limiting circuit 18 is normally − (R 21 / R
20 ) It becomes V A. -(R 21 / R 20 ) V A is Zener diode 2
When the Zener voltage Vz of 2, 23 is exceeded, the Zener diode 23 acts when the output voltage of the differential amplifier circuit 16 is a negative level, and the Zener diode 22 acts when the output voltage of the differential amplifier circuit 16 is a positive level. As a result, the output voltage V B of the first limiting circuit 18 becomes substantially equal to the Zener voltage Vz. Therefore resistance
The magnitude of the voltage supplied to the series circuit of 24 and the oxygen pump element 8 becomes the Zener voltage Vz or less,
It is possible to limit the pump current flowing between the electrodes 6a, 6b of the.

第3図は本発明の他の実施例を示している。この酸素濃
度検出装置においては、酸素ポンプ素子8の電極6aには
ツェナーダイオード25,26の直列回路からなる制限回路2
7が接続されている。ツェナーダイオード25,26のアノー
ドが互いに接続され、ツェナーダイオード25のカソード
が電極6aに接続され、ツェナーダイオード26はアースさ
れている。またツェナーダイオード25,26は同一特性を
有している。よって、酸素ポンプ素子8の電極6a,6b間
に印加される電圧はツェナーダイオード25,26のツェナ
ー電圧以下となる。その他の構成は第2図に示した装置
と同様である。
FIG. 3 shows another embodiment of the present invention. In this oxygen concentration detecting device, the limiting circuit 2 including a series circuit of Zener diodes 25 and 26 is provided on the electrode 6a of the oxygen pump element 8.
7 is connected. The anodes of the zener diodes 25 and 26 are connected to each other, the cathode of the zener diode 25 is connected to the electrode 6a, and the zener diode 26 is grounded. The Zener diodes 25 and 26 have the same characteristics. Therefore, the voltage applied between the electrodes 6a and 6b of the oxygen pump element 8 is equal to or lower than the Zener voltage of the Zener diodes 25 and 26. The other structure is the same as that of the apparatus shown in FIG.

なお、第2図に示した装置の制限回路18と第3図に示し
た装置の制限回路27とを同一装置に設けて併用するよう
にしても良く、こうすることにより酸素ポンプ素子の電
極間に印加される電圧をより確実に所定電圧以下に制限
することができる。
The limiting circuit 18 of the device shown in FIG. 2 and the limiting circuit 27 of the device shown in FIG. 3 may be provided in the same device and may be used together. It is possible to more reliably limit the voltage applied to the voltage to the predetermined voltage or less.

また、本発明の実施例においては、制限回路にツェナー
ダイオードが用いられているが、これに限らず、酸素ポ
ンプ素子の電極間に印加される電圧を所定電圧以下に他
の素子によって制限できればツェナーダイオードを用い
なくても良いのである。
Further, in the embodiment of the present invention, the Zener diode is used in the limiting circuit, but the present invention is not limited to this, and if the voltage applied between the electrodes of the oxygen pump element can be limited to a predetermined voltage or less by another element, the Zener diode is used. It is not necessary to use a diode.

発明の効果 以上の如く、本発明の酸素濃度検出装置においては、酸
素ポンプ素子の電極間に印加される電圧を所定電圧以下
に制限する制限手段が設けられている。よって、酸素ポ
ンプ素子の電極間の内部抵抗の最小時にポンプ電流が過
剰に流れないように酸素ポンプ素子の電極間に印加され
る電圧の制限電圧を設定することによりブラックニング
現象の発生を確実に回避することができ、素子の急速な
劣化を防止することが可能である。
Effects of the Invention As described above, the oxygen concentration detecting device of the present invention is provided with the limiting means for limiting the voltage applied between the electrodes of the oxygen pump element to a predetermined voltage or less. Therefore, by setting the limiting voltage of the voltage applied between the electrodes of the oxygen pump element so that the pump current does not flow excessively when the internal resistance between the electrodes of the oxygen pump element is minimum, the occurrence of the blackening phenomenon is ensured. It can be avoided, and rapid deterioration of the device can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による酸素濃度検出装置の検出部を示す
図、第2図は第1図の装置の電気回路部を示す回路図、
第3図は本発明の他の実施例を示す回路図である。 主要部分の符号の説明 1……酸素イオン伝導性固体電解質部材 2……気体滞留室 4……導入孔 8……酸素ポンプ素子 9……電池素子 17……基準電圧源 18,27……制限回路
1 is a diagram showing a detection part of an oxygen concentration detection device according to the present invention, FIG. 2 is a circuit diagram showing an electric circuit part of the device of FIG. 1,
FIG. 3 is a circuit diagram showing another embodiment of the present invention. Explanation of symbols of main parts 1 …… Oxygen ion conductive solid electrolyte member 2 …… Gas retention chamber 4 …… Introduction hole 8 …… Oxygen pump element 9 …… Battery element 17 …… Reference voltage source 18,27 …… Limit circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三重野 敏幸 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (56)参考文献 特開 昭59−208451(JP,A) 特開 昭61−213664(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Mieno 1-4-1, Chuo, Wako-shi, Saitama Honda R & D Co., Ltd. (56) Reference JP-A-59-208451 (JP, A) JP Sho 61-213664 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性固体電解質壁部を有しか
つ気体拡散制御手段を介して外部に連通する気体滞留室
を形成する基体と、前記固体電解質壁部の内外壁面上に
これを挟んで対向するように設けられた2つの電極対
と、前記2つの電極対の一方の電極対間の電圧と基準電
圧との差電圧に応じた電圧を他方の電極対間に印加する
電圧印加手段とを含み、前記他方の電極対間に流れる電
流を酸素濃度検出値として出力する酸素濃度検出装置で
あって、前記電圧印加手段によって前記他方の電極対間
に印加される電圧を所定電圧以下に制限する制限手段を
有することを特徴とする酸素濃度検出装置。
1. A base having an oxygen ion conductive solid electrolyte wall portion and forming a gas retention chamber communicating with the outside through a gas diffusion control means, and a base material sandwiched between the inner and outer wall surfaces of the solid electrolyte wall portion. And a voltage applying means for applying a voltage corresponding to a difference voltage between a reference voltage and a voltage between one electrode pair of the two electrode pairs to each other. And an oxygen concentration detecting device for outputting a current flowing between the other electrode pair as an oxygen concentration detection value, wherein the voltage applied between the other electrode pair by the voltage applying means is equal to or lower than a predetermined voltage. An oxygen concentration detecting device having a limiting means for limiting.
JP61040111A 1986-02-25 1986-02-25 Oxygen concentration detector Expired - Lifetime JPH0672863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040111A JPH0672863B2 (en) 1986-02-25 1986-02-25 Oxygen concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040111A JPH0672863B2 (en) 1986-02-25 1986-02-25 Oxygen concentration detector

Publications (2)

Publication Number Publication Date
JPS62197757A JPS62197757A (en) 1987-09-01
JPH0672863B2 true JPH0672863B2 (en) 1994-09-14

Family

ID=12571741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040111A Expired - Lifetime JPH0672863B2 (en) 1986-02-25 1986-02-25 Oxygen concentration detector

Country Status (1)

Country Link
JP (1) JPH0672863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648409Y2 (en) * 1988-11-09 1994-12-12 株式会社フジクラ Low concentration gas analyzer
KR100450780B1 (en) * 1997-02-12 2004-12-17 삼성전기주식회사 The driving circuit of plated lambda senseor
JP4643459B2 (en) * 2006-01-26 2011-03-02 日本特殊陶業株式会社 Sensor control device, sensor unit

Also Published As

Publication number Publication date
JPS62197757A (en) 1987-09-01

Similar Documents

Publication Publication Date Title
US4905652A (en) Device for measuring a component of a gaseous mixture
US5686654A (en) Measuring sensor for determining the oxygen content in gas mixtures
US5391284A (en) Arrangement for determining the lambda value of an air/fuel mixture
JPH0260142B2 (en)
JPH0441780B2 (en)
US4698209A (en) Device for sensing an oxygen concentration in gaseous body with a source of pump current for an oxygen pump element
US4770758A (en) Air/fuel ratio detector
JPH0672863B2 (en) Oxygen concentration detector
US5580440A (en) Air fuel ratio sensory
JPH07104324B2 (en) Air-fuel ratio detector
JPH01155262A (en) Temperature controlling device of oxygen concentration sensor
JPH07117527B2 (en) Oxygen concentration detector
JPH0750070B2 (en) Oxygen concentration detector
JP2678748B2 (en) Engine air-fuel ratio detector
JPS62123350A (en) Air/fuel ratio detector
JP3705812B2 (en) Method and circuit device for controlling a measuring device for measuring the oxygen concentration in a gas mixture
JPH0737957B2 (en) Oxygen concentration detector
JPS62175658A (en) Method of discriminating activity of oxygen concentration sensor
JPS62177442A (en) Method for discriminating activity of oxygen concentration sensor
JPH0436341B2 (en)
JPH065621Y2 (en) Incomplete combustion detection sensor
JPH1114593A (en) Detecting apparatus for concentration of gas component
JPS6236553A (en) Oxygen concentration detector
JPS6236552A (en) Oxygen concentration detector
JPH0799365B2 (en) Oxygen concentration detector