JPS6235572A - Semiconductor nonvolatile memory element - Google Patents

Semiconductor nonvolatile memory element

Info

Publication number
JPS6235572A
JPS6235572A JP17316485A JP17316485A JPS6235572A JP S6235572 A JPS6235572 A JP S6235572A JP 17316485 A JP17316485 A JP 17316485A JP 17316485 A JP17316485 A JP 17316485A JP S6235572 A JPS6235572 A JP S6235572A
Authority
JP
Japan
Prior art keywords
film
memory element
thickness
insulating
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17316485A
Other languages
Japanese (ja)
Inventor
Hiroshi Sekii
宏 関井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP17316485A priority Critical patent/JPS6235572A/en
Publication of JPS6235572A publication Critical patent/JPS6235572A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors
    • H01L29/803Programmable transistors, e.g. with charge-trapping quantum well

Abstract

PURPOSE:To reduce an applied voltage for writing and to alleviate the condition of the thickness of an insulating layer by interposing a semiconductor charge storage layer between insulating films which vary an energy gap as thickness. CONSTITUTION:This memory element has a structure that an insulating layer 1 which is varied at X of a-Si1-XHX film in a range of 0<=X<0.7 is grown approx. 100nm by a plasma CVD method or a light CVD method on an n-type Si substrate 6, a Ge film 7, an a-Si1-XHX film 1, and an electrode 2 are sequentially laminated thereon. Since the potential barrier of the film 1 continuously varies as the value of the X, a charge implanting speed can be controlled, and this means that, even if the controllability of the insulating film thickness is deteriorated, if the composition of the film is gradually varied, the charge implantation can be performed by the slight variation of an applied voltage. A writing can be performed at a lower voltage than that of the conventional one.

Description

【発明の詳細な説明】 発明の要約 半導体電荷蓄積層を、エネルギ・ギャップが厚さととも
に変化する絶縁膜で挾むことによってポテンシャル井戸
を形成し、この井戸部分に電荷の注入または放出するこ
とによって情報の書込み。
[Detailed Description of the Invention] Summary of the Invention A potential well is formed by sandwiching a semiconductor charge storage layer between insulating films whose energy gap changes with the thickness, and by injecting or releasing charges into this well portion. Writing information.

読出しが行なわれる半導体不揮発性メモリ素子。A semiconductor nonvolatile memory element that is read.

[技術分野] この発明は、半導体不揮発性メモリ素子に関する。[Technical field] The present invention relates to semiconductor nonvolatile memory devices.

[従来技術] 半導体不揮発性メモリ素子としては、従来がらPAMO
Sメモリ素子およびMNOSメモリ素子がよく知られて
いる。
[Prior art] As a semiconductor non-volatile memory element, PAMO
S memory devices and MNOS memory devices are well known.

第4図はFAXOSメモリ素子の一例を示している。F
AMOSメモリ素子は、絶縁膜(S iO2) 31中
にどこにも電気的に接続されていない浮遊ゲート32を
有している。このゲート32の下のS iO2の厚さは
約100r+mである。この図において、36はn形S
i基板、35は電極下に形成されたp形拡散領域、 3
3.34はそれぞれドレイン、ソース電極である。
FIG. 4 shows an example of a FAXOS memory element. F
The AMOS memory element has a floating gate 32 in an insulating film (SiO2) 31 that is not electrically connected anywhere. The thickness of SiO2 under this gate 32 is approximately 100 r+m. In this figure, 36 is n-type S
i-substrate, 35 is a p-type diffusion region formed under the electrode, 3
3 and 34 are drain and source electrodes, respectively.

書込みのための浮遊ゲート32への電荷注入はドレイン
電圧を大きくしてなだれ降伏を起こすことによって達成
される。したがって電荷注入のためには数10ボルトの
電圧を必要とする。
Charge injection into floating gate 32 for writing is accomplished by increasing the drain voltage to cause avalanche breakdown. Therefore, a voltage of several tens of volts is required for charge injection.

第5図はMNOSメモリ素子の一例を示している。FIG. 5 shows an example of an MNOS memory device.

このMNOSメモリ素子は、半導体基板46上に約2n
aという非常に薄い5iO7膜(絶縁層)41と約5O
r+n+のSi3N4膜47を積層し、その上にゲート
電極42を積んだ構造となっている。43.44は電極
This MNOS memory element has approximately 2nm on the semiconductor substrate 46.
A very thin 5iO7 film (insulating layer) 41 and about 5O
It has a structure in which an r+n+ Si3N4 film 47 is laminated, and a gate electrode 42 is laminated thereon. 43.44 is an electrode.

45はp形拡散領域である。45 is a p-type diffusion region.

電荷注入はゲート電極42に大きな負電圧のパルスを印
加することにより、正孔がS iO241と513N4
47の界面近くのトラップにトンネルすることによって
達成される。トンネル効果はS iO241の膜厚に依
存しているため、S i 0241の膜厚の制御が非常
に重要であり2歩留りが悪いという問題がある。
Charge injection is performed by applying a large negative voltage pulse to the gate electrode 42, so that holes are injected into SiO241 and 513N4.
This is achieved by tunneling into a trap near the interface of 47. Since the tunneling effect depends on the film thickness of SiO241, control of the film thickness of SiO241 is very important and there is a problem that the yield is poor.

[発明の目的] この発明は、書込みのための印加電圧を低くすることが
できるとともに、絶縁層(膜)の厚さの条件を緩和でき
る半導体不揮発性メモリ素子を提供することを目的とす
る。
[Object of the Invention] An object of the present invention is to provide a semiconductor nonvolatile memory element in which the applied voltage for writing can be lowered and the conditions regarding the thickness of the insulating layer (film) can be relaxed.

[発明の構成と効果] この発明による半導体不揮発性メモリ素子は。[Structure and effects of the invention] A semiconductor nonvolatile memory device according to the present invention.

半導体電荷蓄積層を、エネルギ・ギャップが厚さととも
に変化する絶縁膜で挟むことによってポテンシャル井戸
を形成し、この井戸部分に電荷の注入または放出するこ
とによって情報の書込み、読出しが行なわれることを特
徴とする。
A potential well is formed by sandwiching a semiconductor charge storage layer between insulating films whose energy gap changes with thickness, and information is written and read by injecting or releasing charges into this well. shall be.

電荷蓄積層を挟む絶縁膜のエネルギ・ギャップが変化し
ているのでポテンシャル障壁の高さが11方向に変化し
ている。したがって、エネルギ・ギャップが一定の絶縁
膜に比べてその膜厚を厳密に制御する必要がなく歩留り
が向上するとともに、低電圧で書込みが可能である。
Since the energy gap between the insulating films sandwiching the charge storage layer changes, the height of the potential barrier changes in 11 directions. Therefore, compared to an insulating film with a constant energy gap, there is no need to strictly control the film thickness, which improves yield and allows writing at low voltage.

[実施例の説明コ 第1図は3端子をもつメモリ素子の一例を示している。[Explanation code for the example] FIG. 1 shows an example of a memory element having three terminals.

このメモリ素子は、n形Si基板6上に、a−8I  
 HのXを0≦x<0.7の範囲に−x  x おいて変化させたもの(絶縁層1)をプラズマCVD法
または光CVD法によって約100r+m成長させ、そ
の上にGe7.同構造のa−3t   Hl。
This memory element is a-8I on an n-type Si substrate 6.
Ge7. a-3t Hl with the same structure.

−x  x 電極2が順次積み重ねられた構造をもつ。電極3はSi
基板6にp形拡散(領域5)を行なったのちに蒸着法等
で形成される。電極4もまた蒸着される。
-x x It has a structure in which the electrodes 2 are stacked one after another. Electrode 3 is Si
After performing p-type diffusion (region 5) on the substrate 6, it is formed by a vapor deposition method or the like. Electrode 4 is also deposited.

絶縁層(膜)はa−81H1であり、電荷を−x  x 蓄積するのはGe7である。a−3I   H膜1は。The insulating layer (film) is a-81H1, and the charge is -x x It is Ge7 that accumulates. a-3I H film 1.

−X  x 上述のようにXの値が連続的に変化しているので。-X x As mentioned above, the value of X is changing continuously.

第3図(a)に示されるように、ポテンシャル障壁の高
さがその中方向に連続的に変化し、Ge層7側で最も高
くなっている。
As shown in FIG. 3(a), the height of the potential barrier changes continuously in the middle direction, and is highest on the Ge layer 7 side.

a−81H層1は熱励起によってSi基板6−X  x で発生する電子−正孔対が書き込み電荷として誤って電
荷蓄積層7に注入されないようにするためのポテンシャ
ル障壁であり、さらに蓄積されたキャリアが簡単に流出
しないようにも作用する。
The a-81H layer 1 is a potential barrier to prevent electron-hole pairs generated in the Si substrate 6-X x by thermal excitation from being erroneously injected as write charges into the charge storage layer 7, and further accumulates. It also acts to prevent the carrier from easily flowing out.

したがって情報の不揮発性を有することになる。Therefore, the information has non-volatility.

また、a−8it−xHxlのポテンシャル障壁の高さ
はXの値とともに連続的に変化するので、Si基板6と
電極2間の印加電圧を適当に変えればキャリアに対する
障壁幅が変わるため電荷蓄積層へのキャリアの注入速度
を変えることができる。これはトンネル効果を利用して
いることによる。
In addition, since the height of the potential barrier of a-8it-xHxl changes continuously with the value of The injection rate of carriers can be changed. This is due to the use of tunnel effect.

トンネル効果による透過率Tは、ポテンシャル障壁が第
3図(b)に示されるように角形の場合。
The transmittance T due to the tunnel effect is when the potential barrier is square as shown in Figure 3(b).

次式で表わされる ここでEは入射する電子のエネルギ、U はエネルギ陣
壁の高さ、にはエネルギ障壁中での電子の波数、Lはエ
ネルギ障壁の幅である。ここでU  >Eとする。
It is expressed by the following equation, where E is the energy of the incident electron, U is the height of the energy barrier, is the wave number of the electron in the energy barrier, and L is the width of the energy barrier. Here, it is assumed that U > E.

透過率Tを大きくするには上式の右辺第2項を小さくす
ればよい。E、Lが一定ならばU が小さいほどKが小
さくなるため透過率Tは大きくなる。またE、 U  
が一定ならばLが小さいほど透過早Tは大きくなる。し
たがってトンネル効果による透過率はエネルギ障壁が低
く、その幅が狭いほど大きくなる。
In order to increase the transmittance T, the second term on the right side of the above equation should be decreased. If E and L are constant, the smaller U is, the smaller K is, and therefore the transmittance T is larger. Also E, U
If is constant, the smaller L becomes, the faster the transmission rate T becomes. Therefore, the transmittance due to the tunnel effect increases as the energy barrier becomes lower and its width narrower.

前述したようにポテンシャル障壁の高さの変化で電荷注
入速度を制御できるが、このことは絶縁膜厚の制御性が
多数悪くても絶縁膜の組成を徐々に変えておけば印加電
圧の多少の変化で電荷注入が可能であることを意味する
。すなわち、第3図(a)の形のポテンシャル障壁にお
いて、底部の障壁中が多少厚くなっても、キャリアは上
部の障壁1]の薄い部分を通過できるので、第3図(b
)に示すような形の従来のポテンシャル障壁の[1]の
ように厳密に、その11+を制御する必要がなくなる。
As mentioned above, the charge injection speed can be controlled by changing the height of the potential barrier, but this means that even if the controllability of the insulating film thickness is poor, if the composition of the insulating film is gradually changed, the applied voltage can be adjusted more or less. This means that charge injection is possible due to change. In other words, in the potential barrier of the form shown in Fig. 3(a), even if the bottom barrier becomes somewhat thick, carriers can pass through the thin part of the upper barrier 1], so that the potential barrier shown in Fig. 3(b)
) It is no longer necessary to strictly control 11+ as in [1] of the conventional potential barrier shown in FIG.

これにより、メモリ素子製造上の歩留りが向上する。This improves the yield in manufacturing memory elements.

また、このような構造を有するメモリ素子のポテンシャ
ル障壁はせいぜい数eVであり、またその障壁の高さも
徐々に変化しているので従来に比べて低電圧で書き込み
が可能である。すなわち。
Further, the potential barrier of a memory element having such a structure is several eV at most, and the height of the barrier gradually changes, so writing can be performed at a lower voltage than in the past. Namely.

障壁の[11が上部で薄くなっており、キャリアはトン
ネル効果により容易に通過可能となり、低電圧駆動が可
能である。この発明によるメモリ素子はこのような2つ
の長所をもっている。
[11] of the barrier is thinner at the top, allowing carriers to easily pass through due to the tunnel effect, and low voltage driving is possible. The memory device according to the present invention has these two advantages.

第1図に示すメモリ素子への書込みは、電極2と4との
間に電圧を印加することにより達成される゛。注入され
た電子はGe層7の部分に蓄積されるため、下部のa−
3I   H層1が接するn−S−x  x i基板6の表面はp形に反転する。このp形に反転した
部分とp影領域5は導電型が同一なため。
Writing to the memory element shown in FIG. 1 is accomplished by applying a voltage between electrodes 2 and 4. Since the injected electrons are accumulated in the Ge layer 7, the lower a-
The surface of the n-S-x x i substrate 6 in contact with the 3I H layer 1 is inverted to p-type. This is because the conductivity type of this inverted p-type portion and the p-shaded region 5 is the same.

書込み状態においては大面積の1つのp影領域ができる
。これは電極3と4との間で7は荷容量変化として検出
される。つまり、情報の読出しは電荷容量変化の検出で
行なうことが可能である。
In the write state, one large-area p shadow region is created. This is detected as a change in charge capacity between electrodes 3 and 4. In other words, information can be read by detecting changes in charge capacity.

電極2,3.4がすべてブレーナ型となっているが、電
極4をn−3i基板6の裏面に配置してもよい。
Although the electrodes 2, 3.4 are all of the Brehner type, the electrode 4 may be placed on the back surface of the n-3i substrate 6.

第2図は、4端子メモリ素子の一例を示している。第1
図に示すものと同一物には同一符号が付けられている。
FIG. 2 shows an example of a four-terminal memory element. 1st
Components that are the same as those shown in the figures are given the same reference numerals.

書込みは電極2と基板6裏面の電極8との間で行なわれ
るが、情報の読出し方が第1図に示す実施例の場合と異
なる。第2図の実施例においては、書込み状態ではa−
81H1が接するn’−−X  x St基板6の表面がp形に反転し、電極3と4のp影領
域5がつながって1つのp影領域となる。
Writing is performed between the electrode 2 and the electrode 8 on the back surface of the substrate 6, but the method of reading information is different from that in the embodiment shown in FIG. In the embodiment of FIG. 2, in the write state, a-
The surface of the n'--X x St substrate 6 in contact with 81H1 is inverted to the p-type, and the p-shade regions 5 of the electrodes 3 and 4 are connected to form one p-shade region.

これは電極3と4間の71i流と電圧変化として検出で
きることを意味する。つまり、情報の読出しは電流と電
圧の変化の検出により可能となる。
This means that it can be detected as a 71i current and voltage change between electrodes 3 and 4. In other words, information can be read by detecting changes in current and voltage.

情報の消去法としては紫外線照射等の簡単な方法で充分
−である。
A simple method such as ultraviolet irradiation is sufficient to erase information.

」二記実施例においては絶縁層としてa−8I 1−x
Hが用いられている他の組成でもよいことはもちるんで
ある。
In the second embodiment, a-8I 1-x was used as the insulating layer.
Of course, other compositions in which H is used may also be used.

以上詳細に説明したように、この発明によれば絶縁膜の
エネルギ・ギャップを徐々に変化させているため絶縁膜
の厚さの制御性が悪くても情報の書込みは、多少の電圧
調整で容易にできる。したがって膜厚制御困難性からく
る歩留り低下を除くことができる。しかも絶縁膜による
エネルギ障壁は数eVであるので低電圧での情報書込み
が可能である。
As explained in detail above, according to the present invention, the energy gap of the insulating film is gradually changed, so even if the controllability of the insulating film thickness is poor, information can be written easily by making some voltage adjustments. Can be done. Therefore, it is possible to eliminate a decrease in yield due to difficulty in controlling the film thickness. Moreover, since the energy barrier caused by the insulating film is several eV, information can be written at low voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す断面図、第2図はこの
発明の他の実施例を示す断面図、第3図はポテンシャル
障壁を示す図である。 第4図および第5図は従来例を示すもので、第4図はF
AXOSメモリ素子の、第5図はMNOSメモリ素子の
断面図である。 1・・・絶縁膜、2・・・ゲート電極、3,4.8・・
・電極、5・・・p影領域、6・・・基板、7・・・半
導体電荷蓄積層。 以  上 特許出願人  立石電機株式会社 代 理 人  弁理士 牛久 健司 (外1名) 第2図 (a)         (b) −L−1 第4図
FIG. 1 is a sectional view showing an embodiment of the invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIG. 3 is a diagram showing a potential barrier. Figures 4 and 5 show conventional examples, and Figure 4 shows F
FIG. 5 is a cross-sectional view of an MNOS memory device. 1... Insulating film, 2... Gate electrode, 3, 4.8...
- Electrode, 5...p shadow region, 6... substrate, 7... semiconductor charge storage layer. Patent applicant Tateishi Electric Co., Ltd. Agent Patent attorney Kenji Ushiku (and one other person) Figure 2 (a) (b) -L-1 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)半導体電荷蓄積層を、エネルギ・ギャップが厚さ
とともに変化する絶縁膜で挟むことによってポテンシャ
ル井戸を形成し、この井戸部分に電荷の注入または放出
することによって情報の書込み、読出しが行なわれる、
半導体不揮発性メモリ素子。
(1) A potential well is formed by sandwiching a semiconductor charge storage layer between insulating films whose energy gap changes with thickness, and information is written and read by injecting or releasing charges into this well. ,
Semiconductor non-volatile memory element.
(2)絶縁膜の厚さが電子のド・ブロイ波長の数倍程度
である、特許請求の範囲第(1)項に記載の半導体不揮
発性メモリ素子。
(2) The semiconductor nonvolatile memory element according to claim (1), wherein the thickness of the insulating film is approximately several times the de Broglie wavelength of electrons.
JP17316485A 1985-08-08 1985-08-08 Semiconductor nonvolatile memory element Pending JPS6235572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17316485A JPS6235572A (en) 1985-08-08 1985-08-08 Semiconductor nonvolatile memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17316485A JPS6235572A (en) 1985-08-08 1985-08-08 Semiconductor nonvolatile memory element

Publications (1)

Publication Number Publication Date
JPS6235572A true JPS6235572A (en) 1987-02-16

Family

ID=15955284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17316485A Pending JPS6235572A (en) 1985-08-08 1985-08-08 Semiconductor nonvolatile memory element

Country Status (1)

Country Link
JP (1) JPS6235572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272673A (en) * 1988-06-21 1990-03-12 American Teleph & Telegr Co <Att> Memory device, memory circuit and photo detector
JPH03123083A (en) * 1989-10-05 1991-05-24 Agency Of Ind Science & Technol Semiconductor memory element
US6084262A (en) * 1999-08-19 2000-07-04 Worldwide Semiconductor Mfg Etox cell programmed by band-to-band tunneling induced substrate hot electron and read by gate induced drain leakage current
US6753568B1 (en) 1996-11-15 2004-06-22 Hitachi, Ltd. Memory device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272673A (en) * 1988-06-21 1990-03-12 American Teleph & Telegr Co <Att> Memory device, memory circuit and photo detector
JPH03123083A (en) * 1989-10-05 1991-05-24 Agency Of Ind Science & Technol Semiconductor memory element
US6753568B1 (en) 1996-11-15 2004-06-22 Hitachi, Ltd. Memory device
US6084262A (en) * 1999-08-19 2000-07-04 Worldwide Semiconductor Mfg Etox cell programmed by band-to-band tunneling induced substrate hot electron and read by gate induced drain leakage current

Similar Documents

Publication Publication Date Title
KR100468745B1 (en) Non-volatile memory cell having a silicon-oxide-nitride-oxide-silicon gate structure and fabrication method of such cell
KR100221062B1 (en) A flash memory and manufacturing method of the same
US4939559A (en) Dual electron injector structures using a conductive oxide between injectors
US7247538B2 (en) Methods of fabricating floating trap non-volatile semiconductor memory devices including high dielectric constant blocking insulating layers
US5969383A (en) Split-gate memory device and method for accessing the same
TWI517297B (en) Floating gate memory device with interpoly charge trapping structure
KR830001453B1 (en) Floating-Gate EAROM Memory with Substrate Capacitively Coupled
US20050099849A1 (en) Flash memory programming using gate induced junction leakage current
JPH01115165A (en) Nonvolatile memory cell having charge trapping layer of si-rich silicon nitride
KR20020059746A (en) Nonvolatile semiconductor storage device and production method therefor
US6894340B2 (en) Non-volatile semiconductor memory cell utilizing poly-edge discharge
EP0579779B1 (en) A single transistor non-volatile electrically alterable semiconductor memory device
US5656845A (en) EEPROM on insulator
US6903407B1 (en) Non volatile charge trapping dielectric memory cell structure with gate hole injection erase
JP2855509B2 (en) Method of manufacturing nonvolatile semiconductor memory device
EP0034653B1 (en) Dual electron injector structures
KR100630680B1 (en) Non-volatile Memory Device with Asymmetrical Gate Dielectric Layer and Manufacturing Method thereof
JPS6235572A (en) Semiconductor nonvolatile memory element
KR100849993B1 (en) Nor flash memory usimg asymmetric schottky-barrier and fabricating method thereof
US4672408A (en) Non-volatile semiconductor memory device
EP0166208B1 (en) Charge storage structure for nonvolatile memory
JP2004158614A (en) Nonvolatile semiconductor memory device and data writing method thereof
EP0081626B1 (en) Dual electron injector structure and semiconductor memory device including a dual electron injector structure
KR100782911B1 (en) Method of forming uniformly distributed nanocrystal and device of including the nanocrystal
JPS6357945B2 (en)