JPS6234084B2 - - Google Patents
Info
- Publication number
- JPS6234084B2 JPS6234084B2 JP56049850A JP4985081A JPS6234084B2 JP S6234084 B2 JPS6234084 B2 JP S6234084B2 JP 56049850 A JP56049850 A JP 56049850A JP 4985081 A JP4985081 A JP 4985081A JP S6234084 B2 JPS6234084 B2 JP S6234084B2
- Authority
- JP
- Japan
- Prior art keywords
- thin plate
- vibration
- shock
- amorphous
- microcrystals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 21
- 239000013081 microcrystal Substances 0.000 claims description 20
- 230000035939 shock Effects 0.000 claims description 16
- 230000005415 magnetization Effects 0.000 claims description 10
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 238000001514 detection method Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
発明の背景
本発明は振動ないし衝撃検知器に関する。更に
詳しくは、自動車のノツキング、洗濯機の脱水時
の異常回転振動など、種々の分野の機器におい
て、異常な振動ないし衝撃を検知するために用い
る、磁気ひずみ式の検知器に関する。BACKGROUND OF THE INVENTION The present invention relates to vibration or shock detectors. More specifically, the present invention relates to a magnetostrictive detector used to detect abnormal vibrations or shocks in equipment in various fields, such as knocking in automobiles and abnormal rotational vibrations during dehydration of washing machines.
従来、強磁性体の磁気ひずみ効果を利用する磁
気ひずみ式の圧力センサーとしては、けい素鋼板
の積層板に励磁用と出力用との2つのコイルを巻
いたものが多用されている。しかし、このような
センサーは、小型コンパクトな構造とすることが
難しいこと、外部電源を必要とすること等の欠点
をもち、上記のような振動ないし衝撃検知器とし
ての使用には不向きである。又、検出感度も低
い。更には、機器によつては、劣悪な条件下での
作動を要求されるが、耐食性の点でそのような使
用には耐えない。 Conventionally, as a magnetostrictive pressure sensor that utilizes the magnetostrictive effect of a ferromagnetic material, a sensor in which two coils, one for excitation and one for output, are wound around a laminated silicon steel plate is often used. However, such a sensor has drawbacks such as difficulty in making it small and compact and requires an external power source, and is therefore unsuitable for use as a vibration or shock detector as described above. Furthermore, detection sensitivity is low. Furthermore, some equipment is required to operate under poor conditions, but their corrosion resistance does not allow them to withstand such use.
この他、強磁性体の丸棒にコイルを巻き付け、
交流で軸方向に磁化し、円周方向の磁化変化を別
に設けた検出用コイルで検出するものや、軸方向
に流した電流で円周方向に磁化しておき、軸方向
の磁化の変化をコイルで検出するもの等も知られ
ているが、これらはいずれも外部電源を必要とし
ており、その他、種々の欠点をもち、上記のよう
な振動ないし衝撃検知器としての使用には向かな
い。 In addition, winding a coil around a ferromagnetic round bar,
There are those that are magnetized in the axial direction with alternating current and detect changes in magnetization in the circumferential direction with a separate detection coil, and those that are magnetized in the circumferential direction with current passed in the axial direction and detect changes in magnetization in the axial direction. Devices that use coils for detection are also known, but all of these require an external power source and have various other drawbacks, making them unsuitable for use as vibration or shock detectors as described above.
発明の目的
本発明は、このような実状に鑑みなされたもの
であつて、外部電源を必要とせず、又小型コンパ
クトで堅牢な構造とすることができ、更には、検
出感度が高く、加えて、劣悪な条件下でも長期に
亘り正確に作動する等の特長をもつ磁気ひずみ式
の振動ないし衝撃検知器を提供することを、その
主たる目的とする。 Purpose of the Invention The present invention was made in view of the above circumstances, and does not require an external power source, has a small, compact, and robust structure, and has high detection sensitivity. The main purpose of the present invention is to provide a magnetostrictive vibration or shock detector which has features such as being able to operate accurately over a long period of time even under poor conditions.
本発明者らはこのような目的につき鋭意検討を
繰返した結果、所定の処理を施したいわゆる非晶
質磁性合金薄板に出力コイルのみを巻回し、薄板
に振動や衝撃を印加したとき、薄板中に生じるひ
ずみにより、磁化が変化し、この変化磁化によ
り、コイル両端には起電力が生じ、外部電源なし
でも有効に振動等の検知が行えること、そして、
このような検知は、いわゆる非晶質磁性合金薄板
に所定の処理を施し、非晶質中に微結晶を析出し
てはじめて有効に行えることを見出し、このよう
な知見から本発明をなすに至つたものである。 The inventors of the present invention have repeatedly conducted intensive studies regarding this purpose, and have found that when only an output coil is wound around a so-called amorphous magnetic alloy thin plate that has been subjected to a predetermined treatment, and when vibrations and shocks are applied to the thin plate, The magnetization changes due to the strain generated in the coil, and this changed magnetization generates an electromotive force at both ends of the coil, making it possible to effectively detect vibrations etc. without an external power source.
It was discovered that such detection can be effectively carried out only when a so-called amorphous magnetic alloy thin plate is subjected to a prescribed treatment to precipitate microcrystals in the amorphous state. Based on this knowledge, the present invention was made. It is ivy.
すなわち本発明は、非晶質中に微結晶が混在す
る磁性合金の薄板と、当該薄板を支持する支持体
とを具え、当該薄板には、出力用のコイルのみが
巻回されており、振動ないし衝撃の印加に際し上
記薄板に生じる歪により、上記コイル両端に、上
記薄板の磁化変化に基づき変化する起電力を出力
するように構成したことを特徴とする振動ないし
衝撃検知器にある。 In other words, the present invention includes a thin plate of a magnetic alloy in which microcrystals are mixed in an amorphous state, and a support that supports the thin plate.Only an output coil is wound around the thin plate, and vibration The vibration or shock detector is characterized in that it is configured to output an electromotive force that changes based on a change in magnetization of the thin plate to both ends of the coil due to strain generated in the thin plate when an impact is applied.
なお、上記のように、いわゆる非晶質磁性合金
薄板に所定の処理を施さず、ほぼ完全に非晶質状
態を呈する薄板を用いるときには、本発明のよう
に検知器を構成しても、充分な出力が得られず、
振動ないし衝撃の検知を有効に行うことはできな
い。 As mentioned above, when a so-called amorphous magnetic alloy thin plate is not subjected to a prescribed treatment and a thin plate exhibiting an almost completely amorphous state is used, even if the detector is constructed as in the present invention, it is not sufficient. I can't get any output,
Vibration or impact detection cannot be performed effectively.
更に、振動ないし衝撃を検知し、これを電気信
号として出力する場合、従来、ひずみ計や圧電素
子を用いたものが用いられているが、これらは外
部電源を必要とするという欠点をもち、外部電源
が不要で、しかも小型コンパクトかつ堅牢な構造
の検知器は今まで実現していない。 Furthermore, when detecting vibrations or shocks and outputting them as electrical signals, strain gauges and piezoelectric elements have traditionally been used, but these have the disadvantage of requiring an external power source. Until now, a detector that does not require a power source, is small, compact, and has a robust structure has not been realized.
発明の具体的構成
以下、本発明の具体的構成について、第1図に
示される実施例に従い詳細に説明する。 Specific Configuration of the Invention Hereinafter, a specific configuration of the present invention will be described in detail according to the embodiment shown in FIG.
本発明の振動ないし衝撃検知器は、第1図に示
されるように、薄板1を具える。 The vibration or shock detector of the present invention comprises a thin plate 1, as shown in FIG.
用いる磁性合金の薄板1は、非晶質中に微結晶
が混在するものである。すなわち、薄板を用いX
線回折を行い、回折X線スペクトルをとると、ハ
ローの上にピークが存在する非晶質と結晶質との
中間のパターンを与えるものである。又、X線回
折写真によれば、やはり非晶質と結晶質の中間
の、所定の環径と環幅をもつデバイーシエラー環
が観察される。そして、デバイーシエラー環の環
径と環幅とから、結晶質は、微結晶状態で非晶質
中に均一に析出して混在していると考えられるも
のである。 The magnetic alloy thin plate 1 used is amorphous with microcrystals mixed therein. That is, using a thin plate
When line diffraction is performed and a diffraction X-ray spectrum is taken, a pattern intermediate between amorphous and crystalline is given with a peak above the halo. Moreover, according to the X-ray diffraction photograph, a Debye-Sierer ring with a predetermined ring diameter and ring width, which is intermediate between amorphous and crystalline, is also observed. From the ring diameter and ring width of the Debye-Sierer ring, it is considered that the crystalline substance is uniformly precipitated and mixed in the amorphous substance in a microcrystalline state.
この場合、薄板中に析出している微結晶は、ハ
ローとピークとの面積比をとつたとき、一般に、
非晶質に対し、5〜70%程度存在するものであ
る。又、微結晶は、デバイーシエラー環の環径と
環幅とから、通常、概ね数十〜数百Å程度の平均
粒径として析出していると考えられるものであ
る。 In this case, the microcrystals precipitated in the thin plate generally have the following area ratio between the halo and the peak:
It is present in about 5 to 70% of the amorphous state. Furthermore, it is thought that the microcrystals are usually precipitated with an average grain size of approximately several tens to several hundred angstroms, based on the ring diameter and ring width of the Debye-Sierer ring.
このような非晶質中に微結晶が混在する磁性合
金の薄板の組成としては、通常、鉄族元素―ガラ
ス化元素からなる、いわゆる非晶質磁性合金薄板
における公知の組成いずれであつてもよい。 The composition of such a magnetic alloy thin plate in which microcrystals are mixed in the amorphous state is usually any of the known compositions of so-called amorphous magnetic alloy thin plates consisting of iron group elements and vitrified elements. good.
すなわち、概ね10〜35at%ガラス化元素を含
み、残部実質的にFe,CoおよびNiの鉄族元素の
1〜3種からなるものであればよい。この場合、
ガラス化元素としては、Si,B,P,およびCの
うちの1〜4種からなることが好ましい。又、薄
板中には、鉄族元素の総量の10%以下の範囲内
で、Mo,W,Nb,Cr等の他の遷移金属元素の1
種以上が含まれていてもよい。 That is, it may contain approximately 10 to 35 at% of the vitrifying element, and the remainder substantially consist of one to three iron group elements such as Fe, Co, and Ni. in this case,
The vitrification element is preferably one to four of Si, B, P, and C. In addition, the thin plate may contain one or more of other transition metal elements such as Mo, W, Nb, and Cr within a range of 10% or less of the total amount of iron group elements.
It may contain more than one species.
この場合、飽和磁気ひずみがより大きい薄板を
用いれば、検出精度が向上し、より好ましい結果
を得る。このような観点からは、薄板は、特に、
鉄族元素としてFeを必須成分とする下記式で示
される組成であることが好ましい。 In this case, if a thin plate with a larger saturation magnetostriction is used, the detection accuracy will be improved and more favorable results will be obtained. From this point of view, thin plates, in particular,
It is preferable to have a composition represented by the following formula in which Fe is an essential component as an iron group element.
式 (FekColNinTo)xXyMz
上式中、Tは、Mo,W,NbおよびCrの1種以
上を表わし、Xは、Si,B,PおよびCの1〜4
種を表わし、Mは、微量成分として含有されるこ
とのあるTa,V,Mn,Cu,Ti,Zn,Al,Ge,
In,Sn,Sb,Ag,Au,Pdなどの1種以上を表
わす。又、x+y+z=100at%であり、このう
ちyは10〜30at%、zは若干量、例えば0〜4at
%である。更にk+l+m+n=100%であり、
このうち、kは0をとることがなく、又lは0〜
80at%、より好ましくは0〜20at%、mは0〜
50at%、nは0〜10at%である。 Formula (Fe k Co l Ni n To ) x X y M z In the above formula, T represents one or more of Mo, W, Nb and Cr, and X represents one to one of Si, B, P and C. 4
M represents Ta, V, Mn, Cu, Ti, Zn, Al, Ge, which may be contained as trace components.
Represents one or more of In, Sn, Sb, Ag, Au, Pd, etc. Also, x+y+z=100at%, of which y is 10 to 30at% and z is a small amount, for example 0 to 4at%.
%. Furthermore, k+l+m+n=100%,
Among these, k never takes 0, and l ranges from 0 to
80 at%, more preferably 0 to 20 at%, m is 0 to
50 at%, n is 0 to 10 at%.
このような磁性合金の薄板を得るには、公知の
高速急冷法で、常法に従い、ほぼ完全に非晶質の
薄板を得た後、これを結晶化温度近傍の温度にて
加熱処理(特に、急熱、急冷)を施し、微結晶を
析出させればよい。あるいは、ほぼ完全に非晶質
の薄板に磁場を印加しながら加熱処理を施せばよ
い。この場合、微結晶が非晶質中に混在するよう
にする処理条件は、薄板の組成によつて異なる
が、これは、実験により容易に求めることができ
る。 In order to obtain a thin plate of such a magnetic alloy, a thin plate that is almost completely amorphous is obtained by a conventional method using a known high-speed quenching method, and then this is heat-treated at a temperature near the crystallization temperature (especially , rapid heating, and rapid cooling) to precipitate microcrystals. Alternatively, heat treatment may be performed while applying a magnetic field to an almost completely amorphous thin plate. In this case, the processing conditions for making the microcrystals coexist in the amorphous state vary depending on the composition of the thin plate, but these can be easily determined through experiments.
本発明において用いる磁性合金の薄板は、以上
のように、非晶質中に微結晶が析出混在してなる
ものであるが、高速急冷法によつて製造された直
後のほぼ完全に非晶質の薄板や、加熱処理を過度
に施し、ほぼ完全に結晶質化した薄板では、後に
詳述するようにして本発明に従い、検知器を構成
しても、出力起電力は低く、満足できる出力信号
を得ることができない。 As described above, the magnetic alloy thin plate used in the present invention is composed of a mixture of precipitated microcrystals in an amorphous state, but it is almost completely amorphous immediately after being manufactured by the high-speed quenching method. In the case of a thin plate that has undergone excessive heat treatment and has become almost completely crystallized, the output electromotive force will be low and a satisfactory output signal will be obtained even if the detector is configured according to the present invention as described in detail later. can't get it.
微結晶が生成したときのみ何故充分な出力信号
が得られるのかについては必らずしも明白ではな
いが、これは、微結晶の析出により、薄板内部に
内部ひずみが発生し、薄板所定方向に磁化容易軸
が誘導され、応力に対する感度が格段と向上する
ためであると考えられる。 It is not always clear why a sufficient output signal is obtained only when microcrystals are formed, but this is because the precipitation of microcrystals causes internal strain inside the thin plate, causing the thin plate to move in a given direction. This is thought to be because the axis of easy magnetization is induced and the sensitivity to stress is significantly improved.
このような磁性合金の薄板は、一般に、10〜
100μm程度の厚さとする。又、その平板寸法と
しては、概ね1mm×10mm程度以上の大きさとすれ
ばよい。 Thin sheets of such magnetic alloys generally have a thickness of 10 to
The thickness should be approximately 100 μm. Further, the dimensions of the flat plate may be approximately 1 mm x 10 mm or more.
なお、このような磁性合金の薄板には、その耐
食性をより一層高いものとするため、その表面
に、ニツケル、クロム等の被膜を形成しておいて
もよい。又、用いる薄板には、予め張力印加等の
処理を施しておくこともできる。 Incidentally, in order to further increase the corrosion resistance of such a thin plate of magnetic alloy, a coating of nickel, chromium, or the like may be formed on the surface thereof. Further, the thin plate used may be subjected to a treatment such as applying tension in advance.
このような磁性合金の薄板は、その複数枚を積
層して用いてもよいが、通常は、その1枚のみを
用いればよい。 Although a plurality of such magnetic alloy thin plates may be used in a stacked manner, it is usually sufficient to use only one of them.
以上、詳述してきたような磁性合金の薄板1
は、所定の支持体2によつて支持される。薄板1
を支持体2により支持するには、種々の形状で支
持することができる。ただ、通常は、第1図に示
されるように、薄板1を平板状に、その平板形状
を平面的に保持するように支持すればよい。 Thin plate 1 of magnetic alloy as described above in detail
is supported by a predetermined support 2. thin plate 1
can be supported by the support body 2 in various shapes. However, normally, as shown in FIG. 1, it is sufficient to support the thin plate 1 in a flat plate shape so as to maintain the flat plate shape planarly.
支持体2としては、薄板1を、例えばほぼ平板
状に支持固定でき、ある程度の弾性をもつ剛体か
らなるものであれば特に制限はない。このため、
通常、支持体2は金属から形成すればよい。そし
て、その構造としては、種々のものとすることが
できる。。 The support 2 is not particularly limited as long as it can support and fix the thin plate 1 in, for example, a substantially flat plate shape and is made of a rigid body with a certain degree of elasticity. For this reason,
Usually, the support body 2 may be formed from metal. The structure thereof can be various. .
第1図に示される例では、2つのコ字状の金属
枠から支持体2を構成し、この枠内にて薄板1を
挾持接着している。そして、薄板1は、通常、図
示のように支持体2により、ある程度の引張力を
もつて、その長手方向両端部を支持固定され、平
板形状を保持されることになる。 In the example shown in FIG. 1, the support body 2 is constructed from two U-shaped metal frames, and the thin plate 1 is sandwiched and bonded within the frames. As shown in the figure, the thin plate 1 is normally supported and fixed at both ends in its longitudinal direction by a support 2 with a certain amount of tensile force, so that its flat plate shape is maintained.
一方、このように支持される薄板1には出力用
のコイル3が巻回される。 On the other hand, an output coil 3 is wound around the thin plate 1 supported in this manner.
この場合、本発明においては、別途外部電源に
接続された励磁用のコイルは用いられない。そし
て、この出力用コイル3は、通常、薄板巾方向に
所定ターンにて巻回されている。 In this case, the present invention does not use an excitation coil that is separately connected to an external power source. The output coil 3 is usually wound in a predetermined number of turns in the width direction of the thin plate.
このような構成において、薄板1には、振動な
いし衝撃が直接、あるいは関接的に伝達される。
この場合、得られる出力がより大きくなるという
点では、図示のように、振動等に伴う力Pが、薄
板1の面長手方向に印加され、振動等の印加に際
して、長手方向にひずみが生じるように構成する
ことが好ましい。上記のような処理により、一般
に薄板巾方向に磁化容易軸が誘導され、長手方向
の応力に対して応力感度が高くなつているからで
ある。図示の例では、振動等は、支持体2の薄板
1の一端を把持、固定する平板状の領域に直接伝
達されているが、この他、支持体2から薄板1を
凸出させ、この凸出部の薄板端面に直接振動等を
印加したり、あるいは別途設けた振動板を介し、
振動等を、支持体2や薄板1に伝達することもで
きる。 In such a configuration, vibrations or shocks are directly or indirectly transmitted to the thin plate 1.
In this case, the output obtained is larger, as shown in the figure, the force P associated with vibration etc. is applied in the longitudinal direction of the surface of the thin plate 1, and when the vibration etc. are applied, strain is generated in the longitudinal direction. It is preferable that the configuration is as follows. This is because the above-described treatment generally induces an axis of easy magnetization in the width direction of the thin plate, increasing stress sensitivity to stress in the longitudinal direction. In the illustrated example, vibrations, etc. are directly transmitted to a flat area of the support 2 that grips and fixes one end of the thin plate 1. Applying vibration directly to the thin plate end face of the exit part, or via a separately installed diaphragm,
Vibrations and the like can also be transmitted to the support 2 and the thin plate 1.
発明の具体的作用効果
このような構成からなる本発明の振動ないし衝
撃検知器を用いて検知を行うには、以下のように
行えばよい。 Specific Effects of the Invention Detection can be performed as follows using the vibration or impact detector of the present invention having such a configuration.
すなわち、振動ないし衝撃に伴う力Pが直接ま
たは間接的に印加されると、薄板1にはひずみが
生じる。そして、好ましい態様においては、薄板
長手方向に生じるひずみにより、磁化は長手方向
に生じ、振動等に伴い変化する磁化の変化に応
じ、コイル3の端子間には、起電力eが生じ、時
間的に変化する起電力eの出力波形が得られる。
この出力波形から、振動等の検知が行われること
になる。 That is, when a force P associated with vibration or impact is applied directly or indirectly, strain occurs in the thin plate 1. In a preferred embodiment, magnetization occurs in the longitudinal direction due to strain occurring in the longitudinal direction of the thin plate, and an electromotive force e is generated between the terminals of the coil 3 in response to changes in magnetization that change due to vibrations, etc. An output waveform of the electromotive force e that changes as follows is obtained.
Vibration and the like will be detected from this output waveform.
そして、この出力波形を、コンパレータに入力
したり、場合によつては、アナログ値を読みとつ
たりして、適宜所定の電気的処理を施し、前述し
たところの自動車のノツキング検知や、洗濯機の
脱水異常回転検知などが行われることになる。 Then, this output waveform is input to a comparator, or in some cases, the analog value is read, and appropriate electrical processing is performed to detect knocking in a car or washing machine. Dehydration abnormal rotation detection will be performed.
本発明によれば、外部電源を必要としない振動
ないし衝撃検知器が実現する。 According to the present invention, a vibration or shock detector that does not require an external power source is realized.
又、外部電源を用いず、所定の磁性合金の薄板
1に出力用のコイル3のみを巻回し、これを剛性
の支持体2内に収納する構造であるので、小型コ
ンパクトで、堅牢な構造とすることができる。 In addition, the structure is such that only the output coil 3 is wound around a thin plate 1 made of a predetermined magnetic alloy and housed within the rigid support 2 without using an external power source, resulting in a small, compact and robust structure. can do.
更に、薄板としては、非晶質中に微結晶が混在
する磁性合金を用いるので、きわめて検出感度が
高く、又精度の良好な検知を行うことができる。
この場合、後記実験例からも明らかになるであろ
うように、薄板として、ほぼ完全に非晶質や結晶
質の磁性合金を用いるときには、満足できる出力
信号は得られない。そして、薄板長手方向に振動
ないし衝撃を印加するように構成すれば、検出感
度はきわめて高いものとなる。 Furthermore, since the thin plate is made of a magnetic alloy in which microcrystals are mixed in an amorphous state, detection sensitivity is extremely high, and detection can be performed with good accuracy.
In this case, as will become clear from the experimental examples described later, when a substantially completely amorphous or crystalline magnetic alloy is used as the thin plate, a satisfactory output signal cannot be obtained. If the structure is such that vibration or impact is applied in the longitudinal direction of the thin plate, the detection sensitivity will be extremely high.
加えて、このような薄板は、処理前の非晶質の
磁性合金同様、耐食性が高く、劣悪な条件下でも
正確に作動する検知器が実現する。そして、特に
薄板表面に耐食性被膜を形成すれば、このような
効果はより一層高いものとなる。 In addition, such thin plates, like the amorphous magnetic alloy before treatment, have high corrosion resistance, allowing for detectors that operate accurately even under adverse conditions. In particular, if a corrosion-resistant coating is formed on the surface of the thin plate, this effect will be even higher.
本発明者らは、本発明の効果を確認するために
種々実験を行つた。以下にその1例を示す。 The present inventors conducted various experiments to confirm the effects of the present invention. An example is shown below.
実験例 1
高速急冷法により、Fe80B20の組成をもつ、厚
さ40μmの長尺薄板を得、これを幅1mm、長さ30
mmに抜いた。この薄板はX線回折の結果完全に非
晶質であり、その結晶化温度は390℃である。Experimental example 1 A long thin plate with a thickness of 40 μm having a composition of Fe 80 B 20 was obtained by the high-speed quenching method, and this was made into a sheet with a width of 1 mm and a length of 30 μm.
I extracted it to mm. This thin plate is completely amorphous according to X-ray diffraction, and its crystallization temperature is 390°C.
次いで、この薄板4枚(A〜D)につき、1枚
(A)は何ら加熱処理を施さず、又他の3枚(B〜
D)は、それぞれ250℃(B)355℃(C)および390℃(D)
にて1時間加熱処理後、室温まで空冷した。 Next, for each of these four thin plates (A to D), one
(A) was not subjected to any heat treatment, and the other three (B~
D) are 250℃ (B), 355℃ (C) and 390℃ (D) respectively.
After heat treatment for 1 hour, the mixture was air cooled to room temperature.
このようにして得た薄板は、X線回折の結果、
A,Bは完全に非晶質、Dは完全に結晶質であつ
たのに対し、Cは非晶質中に微結晶が混在してお
り、微結晶の平均径は50〜200Åと推定された。 As a result of X-ray diffraction, the thin plate obtained in this way was
A and B were completely amorphous, and D was completely crystalline, whereas C was amorphous with microcrystals mixed in, and the average diameter of the microcrystals was estimated to be 50 to 200 Å. Ta.
このようにして得た4枚の薄板A〜Dにつき、
これを、第1図に示されるように、30mm×30mm×
20mmのアルミニウム製支持体2内に、瞬間接着剤
アロンα(商品名)にて、平板状に、長手方向両
端部を接着固定した。 For the four thin plates A to D obtained in this way,
As shown in Figure 1, this is 30mm x 30mm x
Both ends in the longitudinal direction were adhesively fixed in a flat plate shape within a 20 mm aluminum support 2 using instant adhesive Aron α (trade name).
一方、各薄板1には、8000ターンにて出力用の
コイル3を巻回した。 On the other hand, an output coil 3 was wound around each thin plate 1 with 8000 turns.
このようにして、各薄板A〜Dにつき構成した
検知器を用い、20mgの微小鉄片を1cm以上の高さ
から、支持体2上に落下させ、コイル3の両端の
起電力eを測定したところ、薄板A,B,Dを用
いた場合には、満足できる出力電圧を得られなか
つたものに対し、薄板Cを用いた場合には、第2
図に示されるように、1cm(a)、2cm(b)、3cm(c)、
4cm(d)と落下高さを変えるに応じ、それぞれ落下
高さに応じた起電力eの出力電圧波形を得ること
ができた。 In this way, using the detector configured for each of the thin plates A to D, a 20 mg minute piece of iron was dropped onto the support 2 from a height of 1 cm or more, and the electromotive force e at both ends of the coil 3 was measured. , when thin plates A, B, and D were used, a satisfactory output voltage could not be obtained, whereas when thin plate C was used, the second
As shown in the figure, 1cm(a), 2cm(b), 3cm(c),
As the falling height was changed to 4 cm (d), it was possible to obtain output voltage waveforms of electromotive force e corresponding to the falling height.
なお、上記組成の高速急冷直後の薄板Aにつ
き、種々の加熱温度Tanにて1時間加熱後室温ま
で空冷し、この各加熱処理後の薄板を60Hz、
0.5Oeにて正弦波励振した。各薄板の励振時の最
大透磁率μmoと、5Kg/mm2の張力を薄板長手方
向に印加して励振したときの最大透磁率の変化Δ
μm=μm(σ=5Kg/mm2)―μmoを測定し
た。この場合、μmo、Δμmは、薄板を、単板
試験方式の励磁用ヨーク上に設定し、各4000ター
ンの逆直列接続の検出コイルを用いて、そのBH
ループから測定した。加熱温度Tanと、Δμm/
μmoとの関係を第3図に示す。 In addition, the thin plate A having the above composition immediately after high-speed quenching was heated at various heating temperatures Tan for 1 hour, then air cooled to room temperature, and the thin plate after each heat treatment was heated at 60Hz,
Sine wave excitation was performed at 0.5 Oe. The maximum magnetic permeability μmo of each thin plate when excited, and the change in maximum magnetic permeability Δ when a tension of 5 Kg/mm 2 is applied in the longitudinal direction of the thin plate and excited.
μm=μm (σ=5Kg/mm 2 )−μmo was measured. In this case, the BH
Measured from the loop. Heating temperature Tan and Δμm/
The relationship with μmo is shown in Figure 3.
第3図に示される結果から、非晶質中に微結晶
が混在する340〜360℃の加熱温度Tanでは、異常
に高いΔμm/μmoが示され、これにより上記
のような満足できる出力信号が得られるのに対
し、ほぼ完全に非晶質か、ほぼ完全に結晶質を示
す、それ以外の加熱温度Tanでは、Δμm/μ
moがきわめて小さく、これにより満足できる出
力信号が得られないことがわかる。 From the results shown in Figure 3, an abnormally high Δμm/μmo is shown at a heating temperature Tan of 340 to 360°C, where microcrystals are mixed in the amorphous state, and this results in a satisfactory output signal as described above. On the other hand, at other heating temperatures Tan, which are almost completely amorphous or almost completely crystalline, Δμm/μ
It can be seen that mo is extremely small, which makes it impossible to obtain a satisfactory output signal.
実験例 2
実験例1におけるFe80B20の薄板につき、355
℃、1時間加熱後空冷した後、その表面にNiメ
ツキを施して、実験例1と全く同様に検知器を構
成したところ、実験例1と全く同様の出力信号を
得ることができた。そして、きわめて良好な耐食
性が発揮された。Experimental Example 2 355 for Fe 80 B 20 thin plate in Experimental Example 1
℃ for 1 hour and air cooling, the surface was plated with Ni and a detector was configured in exactly the same manner as in Experimental Example 1, and it was possible to obtain an output signal exactly the same as in Experimental Example 1. In addition, extremely good corrosion resistance was exhibited.
実験例 3
高速急冷法により、Fe81(Si0.1B0.9)19の組成を
もつ厚さ40μmの長尺の薄板を得た。この薄板
は、X線回折の結果、完全に非晶質であり、その
結晶化温度は460℃である。Experimental Example 3 A long thin plate with a thickness of 40 μm and having a composition of Fe 81 (Si 0.1 B 0.9 ) 19 was obtained by a high-speed quenching method. This thin plate is completely amorphous as a result of X-ray diffraction, and its crystallization temperature is 460°C.
この長尺薄板3枚につき、1枚(E)は何ら加熱処
理を施さず、そのままとし、又他の2枚(F,
G)は、それぞれ、430℃、20分(F)および450℃、
20分(G)の加熱後室温まで空冷した。次いで、これ
らをそれぞれ幅1mm、長さ30mmに抜いた。この場
合、薄板F,GにつきX線回折を行つたところ、
Gは完全に結晶質、Fは非晶質中に微結晶が混在
していることが確認された。 Of these three long thin plates, one (E) was left as is without any heat treatment, and the other two (F,
G) are 430℃, 20 minutes (F) and 450℃, respectively.
After heating for 20 minutes (G), it was air cooled to room temperature. Next, each of these pieces was cut out to a width of 1 mm and a length of 30 mm. In this case, when X-ray diffraction was performed on thin plates F and G,
It was confirmed that G was completely crystalline, and F was amorphous with microcrystals mixed therein.
これら各薄板E〜Gにつき、実験例1と同様に
して検知器を作製して、同様の試験を行つたとこ
ろ、薄板E,Gを用いたときには、満足できる出
力信号が得られなかつたのに対し、微結晶の混在
する薄板Fを用いたときには、実験例1と同等の
出力波形を得ることができた。 When we fabricated detectors for each of these thin plates E to G in the same manner as in Experimental Example 1 and conducted the same tests, we found that when thin plates E and G were used, a satisfactory output signal could not be obtained. On the other hand, when thin plate F containing microcrystals was used, an output waveform equivalent to that of Experimental Example 1 could be obtained.
なお、この薄板Fの表面にクロムメツキを施し
たところ、やはり同等の出力信号を得ることがで
きた。 Note that when the surface of this thin plate F was chrome plated, the same output signal could be obtained.
又、上記高速急冷後の薄板Eにつき、加熱温度
Tanと加熱時間を種々変更して、加熱および室温
までの空冷を行い、それぞれの場合につき、実験
例1と同様にΔμm/μmo〔Δμm=μm〔σ
=5Kg/mm2)―μmo〕を測定した。第4図に、
加熱時間tを横軸とし、加熱温度Tanを縦軸と
し、一定加熱時間tにおけるΔμm/μmoが最
大となる加熱温度Tanを黒丸で示す。この場合、
黒丸で示される条件下では、非晶質中に微結晶が
混在していた。なお、第4図にて、斜線部で示さ
れる領域では、薄板はほぼ完全に結晶化し、Δμ
m/μmoはほぼ零であつた。 In addition, for the thin plate E after the above-mentioned high-speed quenching, the heating temperature
Heating and air cooling to room temperature were performed by varying the Tan and heating time, and in each case, Δμm/μmo [Δμm=μm [σ
=5Kg/mm 2 )-μmo] was measured. In Figure 4,
The horizontal axis represents the heating time t, the vertical axis represents the heating temperature Tan, and the heating temperature Tan at which Δμm/μmo becomes maximum for a constant heating time t is indicated by a black circle. in this case,
Under the conditions indicated by black circles, microcrystals were mixed in the amorphous state. In addition, in the shaded area in FIG. 4, the thin plate is almost completely crystallized, and Δμ
m/μmo was almost zero.
実験例 4
実験例1と同様にして、Fe78Mo2B20の組成を
もつ、厚さ40μmの完全に非晶質の薄板(結晶化
温度420℃)を得た。Experimental Example 4 In the same manner as in Experimental Example 1, a completely amorphous thin plate having a composition of Fe 78 Mo 2 B 20 and a thickness of 40 μm (crystallization temperature 420° C.) was obtained.
この薄板を410℃、20分加熱後、室温まで空冷
した。このとき、X線回折により、非晶質中に微
結晶が混在していることが確認された。 This thin plate was heated at 410°C for 20 minutes and then air cooled to room temperature. At this time, it was confirmed by X-ray diffraction that microcrystals were mixed in the amorphous material.
次いで、この薄板を用い、実験例1と同様に検
知器を構成したところ、実験例1と同等の出力信
号を得ることができた。 Next, when a detector was constructed in the same manner as in Experimental Example 1 using this thin plate, an output signal equivalent to that in Experimental Example 1 could be obtained.
なお、高速急冷直後の何ら加熱処理を施さない
薄板では、満足できる出力電圧を得ることができ
なかつた。 Note that a satisfactory output voltage could not be obtained with a thin plate that was not subjected to any heat treatment immediately after high-speed quenching.
又、上記加熱処理後の薄板につき、張力σを
種々変更して、Δμ=μm―μmoを測定したと
ころ、第5図に示されるようなΔμm/μmo変
化を得た。 Further, when the tension σ was variously changed for the thin plate after the above-mentioned heat treatment and Δμ=μm−μmo was measured, a change in Δμm/μmo as shown in FIG. 5 was obtained.
実験例 5
実験例1において、薄板を(Fe40Ni40)80P14B16
にかえ、300℃、60分の加熱処理後室温まで空冷
したものを用いたところ、実験例とほぼ同等の出
力信号を得た。Experimental Example 5 In Experimental Example 1, the thin plate (Fe 40 Ni 40 ) 80 P 14 B 16
Instead, when we used one that had been heat-treated at 300°C for 60 minutes and then air-cooled to room temperature, we obtained an output signal that was almost the same as in the experimental example.
実験例 6
実験例1において、薄板を(Fe0.95Co0.05)80
(B0.9Si0.1)20および(Fe0.85Ni0.15)80(B0.9
Si0.1)20にかえ、それぞれに、400℃、30分間、薄
板幅方向に1000Oeの磁場を印加しながら加熱
後、室温まで空冷したものを用いたところ、実験
例1とほぼ同等の出力信号を得た。Experimental Example 6 In Experimental Example 1, the thin plate was (Fe 0 . 95 Co 0 . 05 ) 80
( B 0.9 Si 0.1 ) 20 and ( Fe 0.85 Ni 0.15 ) 80 ( B 0.9
Instead of Si 0.1 ) 20 , we heated each of them at 400℃ for 30 minutes while applying a magnetic field of 1000 Oe in the width direction of the thin plate, and then air-cooled them to room temperature, and the output was almost the same as in Experimental Example 1. Got a signal.
第1図は本発明の実施例を示す断面図である。
第2図は、本発明の効果を説明するための図であ
り、a〜dは、それぞれ、異なる振動ないし衝撃
力が印加されたときの、起電力e(0.1V/1
cm)の時間t(20μsec/1cm)変化を示す線図
である。第3図は、非晶質磁性合金薄板に対し加
熱処理を施したときの5Kg/mm2の張力σ印加時の
最大透磁率変化Δμm/μmo〔Δμm=μm
(σ=5Kg/mm2)―μmo(σ=0)〕と、加熱温
度Tanとの関係を示す線図である。第4図は、非
晶質磁性合金薄板に対し、加熱時間tにて加熱処
理を施したときのΔμm/μmoの最大値を示す
加熱時間Tanを示す線図である。第5図は、薄板
のΔμm/μmoと張力σとの関係を示す線図で
ある。
1……磁性合金の薄板、2……支持体、3……
出力用のコイル。
FIG. 1 is a sectional view showing an embodiment of the present invention.
FIG. 2 is a diagram for explaining the effects of the present invention, and a to d are the electromotive force e (0.1V/1
FIG. 2 is a diagram showing a change in time t (20 μsec/1 cm) in cm). Figure 3 shows the maximum magnetic permeability change Δμm/μmo [Δμm=μm
(σ=5Kg/mm 2 )−μmo(σ=0)] and heating temperature Tan. FIG. 4 is a diagram showing the heating time Tan indicating the maximum value of Δμm/μmo when an amorphous magnetic alloy thin plate is subjected to heat treatment for a heating time t. FIG. 5 is a diagram showing the relationship between Δμm/μmo and tension σ of a thin plate. 1... Thin plate of magnetic alloy, 2... Support, 3...
Coil for output.
Claims (1)
と、当該薄板を支持する支持体とを具え、当該薄
板には、出力用のコイルのみが巻回されており、
振動ないし衝撃の印加に際し上記薄板に生じる歪
により、上記コイル両端に、上記薄板の磁化の変
化に基づき変化する起電力を出力するように構成
したことを特徴とする振動ないし衝撃検知器。 2 薄板を、支持体により、平板状に支持してな
る特許請求の範囲第1項記載の振動ないし衝撃検
知器。 3 薄板を、支持体により、平板状に、薄板長手
方向両端にて支持し、当該薄板の長手方向に、振
動ないし衝撃が印加されるように構成した特許請
求の範囲第2項記載の振動ないし衝撃検知器。 4 磁性合金の薄板が、10〜35at%のガラス化元
素を含み、残部実質的にFe,CoおよびNiの1〜
3種からなる特許請求の範囲第1項〜第3項のい
ずれかに記載の振動ないし衝撃検知器。 5 薄板の表面に耐食性被膜を形成した特許請求
の範囲第1項〜第4項のいずれかに記載の振動な
いし衝撃検知器。[Claims] 1. A thin plate of a magnetic alloy in which microcrystals are mixed in an amorphous state, and a support that supports the thin plate, and only an output coil is wound around the thin plate. ,
A vibration or shock detector characterized in that the vibration or shock detector is configured to output an electromotive force that changes based on a change in the magnetization of the thin plate to both ends of the coil due to the strain generated in the thin plate when vibration or shock is applied. 2. The vibration or impact detector according to claim 1, which comprises a thin plate supported in a flat plate shape by a support. 3. The vibration or shock recited in claim 2, wherein the thin plate is supported in a flat plate shape by a support at both ends in the longitudinal direction of the thin plate, and vibration or impact is applied in the longitudinal direction of the thin plate. Shock detector. 4. A thin plate of magnetic alloy contains 10 to 35 at% of vitrifying elements, with the balance substantially consisting of 1 to 35 at% of Fe, Co, and Ni.
The vibration or impact detector according to any one of claims 1 to 3, comprising three types. 5. The vibration or impact detector according to any one of claims 1 to 4, wherein a corrosion-resistant coating is formed on the surface of the thin plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56049850A JPS57163827A (en) | 1981-04-02 | 1981-04-02 | Oscillation and shock detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56049850A JPS57163827A (en) | 1981-04-02 | 1981-04-02 | Oscillation and shock detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57163827A JPS57163827A (en) | 1982-10-08 |
JPS6234084B2 true JPS6234084B2 (en) | 1987-07-24 |
Family
ID=12842528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56049850A Granted JPS57163827A (en) | 1981-04-02 | 1981-04-02 | Oscillation and shock detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57163827A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132121A (en) * | 1986-11-21 | 1988-06-04 | Power Reactor & Nuclear Fuel Dev Corp | Magnetostrictive conversion type acoustic detector |
JP3936470B2 (en) * | 1998-05-13 | 2007-06-27 | 内橋エステック株式会社 | Non-contact vibration sensor |
-
1981
- 1981-04-02 JP JP56049850A patent/JPS57163827A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57163827A (en) | 1982-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Egami et al. | Amorphous alloys as soft magnetic materials | |
US5907105A (en) | Magnetostrictive torque sensor utilizing RFe2 -based composite materials | |
US7473325B2 (en) | Current transformer core, current transformer and power meter | |
US4823617A (en) | Torque sensor | |
EP1181516B1 (en) | Magnetoelastic load cell | |
US4931729A (en) | Method and apparatus for measuring strain or fatigue | |
Herzer et al. | Effect of Stress Annealing on the Saturation Magnetostriction of Nanocrystalline Fe $ _ {73.5} $ Cu $ _ {1} $ Nb $ _ {3} $ Si $ _ {15.5} $ B $ _ {7} $ | |
US6432226B2 (en) | Magnetic glassy alloys for high frequency applications | |
Mohri et al. | New extensometers using amorphous magnetostrictive ribbon wound cores | |
JPS6234084B2 (en) | ||
JPH01235213A (en) | Magnetic sensor, current sensor and apparatus using them | |
US4720676A (en) | Magnetomechanical transducer utilizing resonant frequency shifts to measure pressure in response to displacement of a pressure sensitive device | |
EP0084138A2 (en) | Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability | |
JPH0470792B2 (en) | ||
Hausch et al. | Elastic, magnetoelastic, and thermal properties of some ferromagnetic metallic glasses | |
US4710709A (en) | Magnetomechanical transducers utilizing resonant frequency shifts to measure displacement of an object | |
EP1307892A2 (en) | Magnetic glassy alloys for electronic article surveillance | |
JPH0610327B2 (en) | Torque sensor | |
JPH0523612B2 (en) | ||
JPH0424530A (en) | Magnetostriction torque sensor | |
JP3693577B2 (en) | Torque sensor shaft and torque sensor using the shaft | |
JP3024817B2 (en) | Magnetostrictive detector for magnetostrictive torque sensor and method of manufacturing the same | |
Hasegawa et al. | Crystallization process of amorphous Fe–Ta–C alloy films and thermal stability of the resultant soft-magnetic nanocrystalline state | |
Wafik | Effect of deformation on Barkhausen jumps of fine wires of iron, nickel and iron-nickel alloy | |
JP2952718B2 (en) | Heat treatment method of magnetic core |