JPS6233754B2 - - Google Patents

Info

Publication number
JPS6233754B2
JPS6233754B2 JP8139481A JP8139481A JPS6233754B2 JP S6233754 B2 JPS6233754 B2 JP S6233754B2 JP 8139481 A JP8139481 A JP 8139481A JP 8139481 A JP8139481 A JP 8139481A JP S6233754 B2 JPS6233754 B2 JP S6233754B2
Authority
JP
Japan
Prior art keywords
umbrella
gate
organic compound
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8139481A
Other languages
Japanese (ja)
Other versions
JPS57196581A (en
Inventor
Takeshi Konuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8139481A priority Critical patent/JPS57196581A/en
Publication of JPS57196581A publication Critical patent/JPS57196581A/en
Publication of JPS6233754B2 publication Critical patent/JPS6233754B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法、その中でも
特にシヨツトキ障壁ゲート型電界効果トランジス
タ(以下SBFETと称する)の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a shot barrier gate field effect transistor (hereinafter referred to as SBFET).

SBFETはn型砒化ガリウム1μmのゲート長
を用いることにより、最大発振周波数max
40GHzが得られている。maxを決めるのはゲー
ト長と寄生的な抵抗、容量である。寄生的因子の
中でもゲート電極の配線抵抗による入力損失とソ
ース.ゲート電極間の直列抵抗による帰還損失の
maxの抵下への寄与がもつとも大きい。ゲート
長を短かくすると、ゲート電極の配線抵抗が増大
し、ゲート長を短縮化した効果が充分に発揮でき
ない。又ソース.ゲート電極間の直列抵抗は、写
真蝕刻技術精度の限界からソース.ゲート間距離
の短縮が困難である。又SBFETを集積回路に用
いる場合、低消費電力化を図るため、零ゲート電
圧ではドレイン電流の流れないエンハンスメン型
SBFET或はピンチオフ電圧の低いSBFETが有望
であるが、活性層の厚みが〜0.1μmと薄くな
り、又基板としてGaAsを用いる場合、表面空乏
層のため、ソース.ゲート間の活性層の厚さが実
効的に薄くなり、ソース.ゲート間の直列抵抗の
減少が難しくなり、論理集積回路の素子として用
いた場合、ゲート遅延時間の短縮が困難となる。
By using n-type gallium arsenide with a gate length of 1 μm, the SBFET has a maximum oscillation frequency of max.
40GHz is obtained. The max is determined by the gate length and parasitic resistance and capacitance. Among the parasitic factors, input loss due to gate electrode wiring resistance and source. Feedback loss due to series resistance between gate electrodes
The contribution to the decrease in max is also large. When the gate length is shortened, the wiring resistance of the gate electrode increases, and the effect of shortening the gate length cannot be fully exhibited. Also sauce. The series resistance between the gate electrodes is limited to the source due to the limits of photolithographic precision. It is difficult to shorten the distance between gates. In addition, when using SBFET in integrated circuits, in order to reduce power consumption, an enhancement type SBFET is used where no drain current flows at zero gate voltage.
SBFET or SBFET with low pinch-off voltage is promising, but the active layer thickness is as thin as ~0.1 μm, and when GaAs is used as the substrate, the source is weak due to the surface depletion layer. The thickness of the active layer between the gates becomes effectively thinner, and the thickness of the active layer between the gates becomes thinner. It becomes difficult to reduce the series resistance between the gates, and when used as a logic integrated circuit element, it becomes difficult to shorten the gate delay time.

本発明は上記欠点を除去した新規なシヨツトキ
障壁ゲート型電界効果トランジスタの製造方法を
提供することにある。本発明は自己整合でゲート
電極が形成でき、かつゲート電極の抵抗が低減で
きる方法であり、又ソース.ゲート間の抵抗も低
減できる新規な方法である。
The object of the present invention is to provide a novel method for manufacturing a short barrier gate type field effect transistor that eliminates the above-mentioned drawbacks. The present invention is a method in which a gate electrode can be formed by self-alignment, and the resistance of the gate electrode can be reduced. This is a novel method that can also reduce resistance between gates.

以下、図示の実施例について本発明を説明す
る。第1図乃至第8図は本発明の一実施例を示す
製造工程の概略図である。半絶縁性GaAs11に
所望の不純物濃度を有するn型半導体層12を形
成する「第1図」。n型半導体層12の表面にシ
リコン窒化膜(Si3N4)13を3000Å、シリコン酸
化膜(SiO2)14を4000Å夫々形成する「第2
図」。写真蝕刻法を用いて傘状構造15に絶縁膜
を形成する。傘状構造15はSiO2膜14を弗酸
(HF)系の腐蝕液でエツチングして形成した傘部
14′と、Si3N4膜13を傘部14′をマスクとし
てフレオンガス(CF4)によりプラズマエツチン
グして形成した庇部13′とからなる。庇部1
3′はプラズマエツチングの出力、エツチング時
間を設定することで容易に形成できる。実施例で
は傘部14′の長を2.0μm、庇部13′の長さを
0.7μmとした。傘状構造15の庇部13及び傘
部14′をマスクとし、イオン注入法を用いてSi
イオン16を150KeVで5X1013cm-2イオン注入す
る「第3図」。砒素の雰囲気ガス中で850℃で30分
間熱処理し、高濃度n型半導体層17を形成する
「第4図」。高濃度n型半導体層17は庇部13′
と接するn型半導体層12が高濃度n型半導体層
17に変換されないことが肝要である。そのため
傘部14′庇部13′の長さ、イオン注入条件、熱
処理条件を選択する必要がある。庇部13′と接
するn型半導体層12を高濃度n型半導体層17
に変換すると、ゲート耐圧の低下、ピンチオフ電
圧の制御が困難となる。傘状構造15をマスクと
して、金―ゲルマニウム(Au―Ge)からなる金
属を真空蒸着法で1200Å蒸着し、熱処理してソー
ス電極18、ドレイン電極19を形成する「第5
図」。ソース電極18、ドレイン電極19を傘状
構造15をマスクとして自己整合法で形成した
が、高濃度n型半導体層17を自己整合法で形成
しているので、ソース.ゲート間抵抗は充分低減
することができ、写真蝕刻法を用いてソース電極
18、ドレイン電極19を形成しても良い。又傘
部14′表面にも金属膜が形成されるが、それは
支障はない。感光性樹脂等の有機化合物20を全
面にスピンナ等を用いて塗布する。この場合、凹
部では厚く、凸部には薄く塗布される。これを酸
素プラズマ中にさらし、有機化合物をエツチング
し、傘部14′の表面を露出させる「第6図」。有
機化合物20は第6図に示すように庇部13′に
て形成される。傘状構造15を除去し、シヨツト
キ電極となる金属層21を真空蒸着法で蒸着する
「第7図」。シヨツトキ電極として例えばアルキニ
ウム(Al)等を用いる。有機化合物20を除去
することで、有機化合物20上の金属も除去する
いわゆるリストオフ法を用いてシヨツトキ電極2
1′を形成する「第8図」。シヨツトキ電極21′
は第8図に示すように傘状電極層となり、ゲート
長は短縮できかつゲート抵抗の低減が可能とな
る。ゲート電極をリフトオフ法で形成するには、
金属21の厚みは傘状構造15からなる厚みより
薄い方が望ましい。又金属21の厚みが傘状構造
15からなる厚みより厚い場合には、第7図で凹
部に感光性樹脂等の有機化合物を埋設し、有機化
合物20上にある金属をエツチング等で除去した
る後、有機化合物20を除去すれば良い。
The invention will now be described with reference to the illustrated embodiments. 1 to 8 are schematic diagrams of manufacturing steps showing an embodiment of the present invention. "FIG. 1" shows the formation of an n-type semiconductor layer 12 having a desired impurity concentration on semi-insulating GaAs 11. A second step is performed in which a silicon nitride film (Si 3 N 4 ) 13 with a thickness of 3000 Å and a silicon oxide film (SiO 2 ) 14 with a thickness of 4000 Å are formed on the surface of the n-type semiconductor layer 12.
figure". An insulating film is formed on the umbrella structure 15 using a photolithography method. The umbrella-shaped structure 15 includes an umbrella part 14' formed by etching the SiO 2 film 14 with a hydrofluoric acid (HF)-based etchant, and an umbrella part 14' formed by etching the Si 3 N 4 film 13 with Freon gas (CF 4 ) using the umbrella part 14' as a mask. and an eave portion 13' formed by plasma etching. Eave part 1
3' can be easily formed by setting the plasma etching output and etching time. In the example, the length of the umbrella part 14' is 2.0 μm, and the length of the eave part 13' is
It was set to 0.7 μm. Using the eaves part 13 and the umbrella part 14' of the umbrella-like structure 15 as a mask, Si is implanted using an ion implantation method.
"Figure 3" shows ion implantation of ion 16 at 5X10 13 cm -2 at 150 KeV. "FIG. 4" shows that a high concentration n-type semiconductor layer 17 is formed by heat treatment at 850° C. for 30 minutes in an arsenic atmosphere gas. The high concentration n-type semiconductor layer 17 is located at the eaves portion 13'.
It is important that the n-type semiconductor layer 12 in contact with the n-type semiconductor layer 12 is not converted into the high concentration n-type semiconductor layer 17. Therefore, it is necessary to select the length of the umbrella part 14' and the eave part 13', ion implantation conditions, and heat treatment conditions. The n-type semiconductor layer 12 in contact with the eaves portion 13' is replaced with a high concentration n-type semiconductor layer 17.
When converted to , gate breakdown voltage decreases and pinch-off voltage becomes difficult to control. Using the umbrella-shaped structure 15 as a mask, a metal made of gold-germanium (Au-Ge) is deposited to a thickness of 1200 Å using a vacuum evaporation method, and heat-treated to form a source electrode 18 and a drain electrode 19.
figure". The source electrode 18 and drain electrode 19 were formed by a self-alignment method using the umbrella structure 15 as a mask, but since the high concentration n-type semiconductor layer 17 was formed by a self-alignment method, the source electrode 18 and drain electrode 19 were formed by a self-alignment method using the umbrella-shaped structure 15 as a mask. The inter-gate resistance can be sufficiently reduced, and the source electrode 18 and drain electrode 19 may be formed using photolithography. A metal film is also formed on the surface of the umbrella portion 14', but this does not pose a problem. An organic compound 20 such as a photosensitive resin is applied to the entire surface using a spinner or the like. In this case, the coating is applied thickly to the concave portions and thinly to the convex portions. "FIG. 6" shows that this is exposed to oxygen plasma to etch the organic compound and expose the surface of the umbrella portion 14'. The organic compound 20 is formed at the eave portion 13' as shown in FIG. "FIG. 7" shows that the umbrella-shaped structure 15 is removed and a metal layer 21 that will become a shot electrode is deposited by vacuum evaporation. For example, alkynium (Al) or the like is used as the shot electrode. By removing the organic compound 20, the metal on the organic compound 20 is also removed using a so-called list-off method.
``Figure 8'' forming 1'. Shock electrode 21'
becomes an umbrella-shaped electrode layer as shown in FIG. 8, and the gate length can be shortened and gate resistance can be reduced. To form the gate electrode using the lift-off method,
The thickness of the metal 21 is preferably thinner than the thickness of the umbrella-shaped structure 15. If the thickness of the metal 21 is thicker than the thickness of the umbrella-shaped structure 15, an organic compound such as a photosensitive resin is buried in the recess as shown in FIG. 7, and the metal on the organic compound 20 is removed by etching or the like. After that, the organic compound 20 may be removed.

なお上記実施例では、GaAsを用いて説明した
が、他の半導体材料、例えばシリコン、インジウ
ム、砒素一燐混品等を用いたSBFETに適用でき
ることは云うまでもない。
Although the above embodiments have been explained using GaAs, it goes without saying that the present invention can be applied to SBFETs using other semiconductor materials, such as silicon, indium, arsenic-phosphorus mixtures, and the like.

本発明は、以上実施例で説明したように、第1
絶縁物層、第2絶縁物層からなる傘状構造を形成
し、その庇部にも感光性樹脂の有機化合物を充填
した後、第1、第2絶縁物層を除去し、シヨツト
キ電極として傘状金属層を形成するので、ゲート
長は半導体基板表面と接する傘状金属層で決ま
り、第1絶縁物層の長さを短縮することで容易に
ゲート長を短縮することができる。またゲート電
極の配線抵抗は、傘状金属層のためゲート長が短
かいにもかかわらず低減することができる。しか
もソース.ゲート電極間の直列抵抗も、第1絶縁
物層、第2絶縁物層からなる傘状構造をマスクと
して、イオン注入による高濃度n型半導体層の形
成、ソース.ドレイン電極の形成で自己整合法に
よりソース.ドレイン領域が形成されるため、ゲ
ート.ソース間の距離が短縮でき、ソース・ゲー
ト電極間の直列抵抗が減少できる。更にゲート抵
抗、ソース.ゲート間の直列抵抗を減少できると
共にSBFETの最大発振周波数を向上でき、また
本発明方法より製造したSBFETを集積回路に用
いれば、伝播遅延時間、消費電力を減少せしめる
ことができる。
As explained in the embodiments above, the present invention provides the first
After forming an umbrella-like structure consisting of an insulating layer and a second insulating layer, and filling the eaves with an organic compound of photosensitive resin, the first and second insulating layers are removed and the umbrella is used as a shot electrode. Since the umbrella-shaped metal layer is formed, the gate length is determined by the umbrella-shaped metal layer in contact with the semiconductor substrate surface, and the gate length can be easily shortened by shortening the length of the first insulating layer. Furthermore, the wiring resistance of the gate electrode can be reduced despite the short gate length due to the umbrella-shaped metal layer. And the sauce. The series resistance between the gate electrodes is also determined by forming a highly doped n-type semiconductor layer by ion implantation, using the umbrella-shaped structure consisting of the first insulating layer and the second insulating layer as a mask, and forming the source. Source by self-alignment method by forming drain electrode. Since the drain region is formed, the gate. The distance between the sources can be shortened, and the series resistance between the source and gate electrodes can be reduced. Furthermore, gate resistance and source. The series resistance between gates can be reduced, the maximum oscillation frequency of the SBFET can be improved, and if the SBFET manufactured by the method of the present invention is used in an integrated circuit, propagation delay time and power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本発明によるGaAs
SBFETの製造方法の一実施例を説明するための
製造工程の概略図である。 11は半絶縁性GaAs、12はn型半導体層、
13はシリコン窒化膜、14はシリコン酸化膜、
15は傘状構造、16はSiイオン、17は高濃度
n型半導体層、18はソース電極、19はドレイ
ン電極、20は有機化合物、21は金属層であ
る。
1 to 8 show GaAs according to the present invention.
FIG. 2 is a schematic diagram of a manufacturing process for explaining an example of a method for manufacturing an SBFET. 11 is semi-insulating GaAs, 12 is an n-type semiconductor layer,
13 is a silicon nitride film, 14 is a silicon oxide film,
15 is an umbrella-shaped structure, 16 is a Si ion, 17 is a high concentration n-type semiconductor layer, 18 is a source electrode, 19 is a drain electrode, 20 is an organic compound, and 21 is a metal layer.

Claims (1)

【特許請求の範囲】 1 半導体基板表面に第1絶縁物層、第2絶縁物
層からなる傘状構造を形成する工程、上記半導体
基板表面に上記傘状構造とほぼ同じ高さの有機化
合物の層を形成し、該傘状構造の庇部にも有機化
合物を充填する工程、上記第1、第2絶縁物層を
除去し、金属層を形成する工程、上記有機化合物
を除去するとともに、上記有機化合物上の金属層
を除去し、傘状金属層を形成する工程を有してな
る半導体装置の製造方法。 2 半導体基板表面に形成された第1絶縁物層、
第2絶縁物層からなる傘状構造をマスクとしてソ
ース、ドレイン領域を半導体基板に形成すること
を特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。
[Scope of Claims] 1. A step of forming an umbrella-like structure consisting of a first insulating layer and a second insulating layer on the surface of the semiconductor substrate, and forming an organic compound on the surface of the semiconductor substrate with approximately the same height as the umbrella-like structure. a step of forming a layer and also filling the eaves of the umbrella-like structure with an organic compound, a step of removing the first and second insulating layers and forming a metal layer, removing the organic compound and A method for manufacturing a semiconductor device comprising the steps of removing a metal layer on an organic compound and forming an umbrella-shaped metal layer. 2. a first insulating layer formed on the surface of the semiconductor substrate;
2. The method of manufacturing a semiconductor device according to claim 1, wherein the source and drain regions are formed on the semiconductor substrate using an umbrella-shaped structure made of the second insulating layer as a mask.
JP8139481A 1981-05-27 1981-05-27 Manufacture of semiconductor device Granted JPS57196581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8139481A JPS57196581A (en) 1981-05-27 1981-05-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8139481A JPS57196581A (en) 1981-05-27 1981-05-27 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57196581A JPS57196581A (en) 1982-12-02
JPS6233754B2 true JPS6233754B2 (en) 1987-07-22

Family

ID=13745081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8139481A Granted JPS57196581A (en) 1981-05-27 1981-05-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57196581A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229876A (en) * 1983-06-13 1984-12-24 Toshiba Corp Manufacture of schottky gate type field effect transistor
JPS60115268A (en) * 1983-11-28 1985-06-21 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS57196581A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
US5041393A (en) Fabrication of GaAs integrated circuits
US4078947A (en) Method for forming a narrow channel length MOS field effect transistor
EP0128751B1 (en) Manufacturing method of schottky gate fet
KR920009718B1 (en) Compound semiconductor apparatus and its manufacturing method
JPS5950567A (en) Manufacture of field effect transistor
US4956308A (en) Method of making self-aligned field-effect transistor
JPH08264562A (en) Semiconductor device and fabrication thereof
US4997779A (en) Method of making asymmetrical gate field effect transistor
US4193182A (en) Passivated V-gate GaAs field-effect transistor and fabrication process therefor
JP3075831B2 (en) Field effect transistor and method for manufacturing the same
JPH0897236A (en) Electrode of semiconductor device and its manufacture
US4888626A (en) Self-aligned gaas fet with low 1/f noise
JPH05326563A (en) Semiconductor device
US4350991A (en) Narrow channel length MOS field effect transistor with field protection region for reduced source-to-substrate capacitance
JPS6233754B2 (en)
JPS592385B2 (en) Mesa-type inactive V-gate GaAs field effect transistor and its manufacturing method
JPH01251668A (en) Manufacture of field effect transistor
KR920002517B1 (en) Method of field effect transistor
JPH01274477A (en) Manufacture of semiconductor device
JPS6347982A (en) Semiconductor device
JPS6258154B2 (en)
JPH063814B2 (en) Method for manufacturing semiconductor device
JPS6216574A (en) Manufacture of field-effect transistor
JPS62190773A (en) Field-effect transistor and manufacture thereof
JPS6298780A (en) Manufacture of self-aligning gaas digital integrated circuit