JPS6233483A - Superconductive integrated circuit - Google Patents

Superconductive integrated circuit

Info

Publication number
JPS6233483A
JPS6233483A JP60172518A JP17251885A JPS6233483A JP S6233483 A JPS6233483 A JP S6233483A JP 60172518 A JP60172518 A JP 60172518A JP 17251885 A JP17251885 A JP 17251885A JP S6233483 A JPS6233483 A JP S6233483A
Authority
JP
Japan
Prior art keywords
base electrode
electrode
insulating film
plasma etching
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60172518A
Other languages
Japanese (ja)
Inventor
Hideaki Nakane
中根 英章
Yoshinobu Taruya
良信 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60172518A priority Critical patent/JPS6233483A/en
Publication of JPS6233483A publication Critical patent/JPS6233483A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive the enhancement of the density of integration of a superconductive integrated circuit by enabling the high speed of a logic circuit or a memory circuit by using a material of Nb group for electrodes and employing a physical etching such as plasma etching for minute processing of an electrode pattern. CONSTITUTION:A superconductive grand plane 112 is formed on a substrate 1. The grand planes 102 and 112 are provided with openings and these openings are formed by isotropic etching such as plasma etching so that their edges are bevelled. As the plasma etching using a mixed gas of CF4 and O2 is used to bevel the edges, an interlaminar insulating film 103 on the grand planes 102 and 112 can be formed thinly and even if a base electrode 104 is formed on that, the characteristic impedance of a transmission line composed of the base electrode 104 can be reduced, which is suitable for miniaturization of the wiring. Also, an inductance of the base electrode 104 decreases when the base electrode 104 is formed and the improvement in operating speed due to reduction of a parasitic inductance of a circuit can be expected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導集積回路に係り、特に′pl細パターン
による高集積LSIに好適なインピーダンス配線構造を
有する超電導集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a superconducting integrated circuit, and particularly to a superconducting integrated circuit having an impedance wiring structure suitable for a highly integrated LSI using a 'pl thin pattern.

〔発明の背景〕[Background of the invention]

従来の超電導4JAvL回路は主にリフトオフ法で形成
されている。このため、第1図に示すように基板1の上
に、グランドプレーン2,12、グランドプレーン絶縁
膜3、ベース電極4、接合用層間絶縁膜5,15、カウ
ンター電極7、層間絶縁膜8、コントロール電極9,1
9を積み重ねる際に段差部での絶縁膜の段切れ防止を目
的として上層の膜はど厚くする構造としている。このた
め、伝送線路の下の絶縁膜は、電極同士が短絡しない程
度の厚さにする必要があった。一方、動作速度の向上を
目指して回路は微細化して行く傾向にある。
Conventional superconducting 4JAvL circuits are mainly formed by the lift-off method. Therefore, as shown in FIG. 1, on the substrate 1, ground planes 2 and 12, a ground plane insulating film 3, a base electrode 4, an interlayer insulating film for bonding 5 and 15, a counter electrode 7, an interlayer insulating film 8, Control electrodes 9,1
In order to prevent the insulating film from breaking at the step portion when stacking the insulating film 9, the upper layer film is made thicker. For this reason, the insulating film under the transmission line had to be thick enough to prevent short circuits between the electrodes. On the other hand, there is a trend toward miniaturization of circuits with the aim of improving operating speed.

現状のままで、超電導集積回路の配線を微細化して行く
とインダクタンスや特性インピーダンスが増加し、動作
速度の減少や特性インピーダンスの不整合などが起る。
If the wiring of superconducting integrated circuits continues to be miniaturized under current conditions, inductance and characteristic impedance will increase, resulting in a decrease in operating speed and mismatching of characteristic impedance.

このインダクタンス及び特性インピーダンスを減少させ
る方法としでは、特開昭58−145173号公報に記
載のように層間絶a膜の板厚を薄くシ、それにともなっ
て生ずるエツジ部での電極の露出部分を第2図に示すよ
うにプラズマ酸化により絶縁物61,71,81゜91
.101で覆う方法があった。しかしこの方法では、一
部の電極しか適用できず、また、プラズマ酸化による絶
縁膜の膜厚はあまり厚くできないため絶縁破壊現象を起
しやすいという問題があった。また、伝送線路として見
ると、局所的に大きな浮遊容量が存在し、信号の分散が
太き(なるという問題を有するが、これに対しては考慮
されていなかった。
A method for reducing this inductance and characteristic impedance is to reduce the thickness of the interlayer dielectric film, as described in JP-A-58-145173, and to reduce the exposed portions of the electrodes at the edges. As shown in Figure 2, insulators 61, 71, 81°91 are formed by plasma oxidation.
.. There was a way to cover it with 101. However, this method has the problem that it can only be applied to some electrodes, and that the insulating film cannot be made very thick by plasma oxidation, making it easy to cause dielectric breakdown. Furthermore, when viewed as a transmission line, there is a problem that locally large stray capacitance exists and signal dispersion increases, but this has not been taken into consideration.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点を解決するためになされたもので
その目的とするところは、論理回路や記憶回路の高速化
を可能とする低インピーダンス及び低インダクタンスの
微細パターン構造を有する超電導集積回路を提供するこ
とにある。
The present invention was made to solve the above problems, and its purpose is to provide a superconducting integrated circuit having a fine pattern structure with low impedance and low inductance, which enables high-speed logic circuits and memory circuits. It is about providing.

〔発明の概要〕[Summary of the invention]

従来のプロセスのままでは絶縁膜を薄くすると第3図に
示すように絶縁[3,13が電極2の縁端部の段差で断
切れを起こしてしまい、電極露出部61ができる。この
上に別の電極を付けると電極同士が短絡してしまう。そ
こで本発明では、超電導電極としてNb系の材料を用い
、これをプラズマエツチング等の物理的エツチングによ
り加工し、前記目的を達成しようとするものである。電
極としてNb系の材料を用い、電極パターンの微細加工
にプラズマエツチングなどの物理的エツチングを用いる
と、電極の縁端部にテーパが付く。
If the insulating film is thinned using the conventional process, as shown in FIG. 3, the insulators [3, 13] will break at the step at the edge of the electrode 2, creating an exposed electrode portion 61. If another electrode is attached on top of this, the electrodes will short-circuit. Therefore, in the present invention, an Nb-based material is used as a superconducting electrode and processed by physical etching such as plasma etching to achieve the above object. When a Nb-based material is used as an electrode and physical etching such as plasma etching is used for microfabrication of the electrode pattern, the edge of the electrode becomes tapered.

即ち、第4図に示すようにこのテーパがあるため、電極
の上に薄い絶縁膜を形成しても、カバーレッジが良く、
断切れなどを起さない。従って、居間絶縁膜を薄くする
ことができるのでインダクタンス及び特性インピーダン
スを低減することが可能となる。
That is, as shown in Figure 4, because of this taper, even if a thin insulating film is formed on the electrode, the coverage is good.
Does not cause disconnection. Therefore, since the living room insulating film can be made thinner, inductance and characteristic impedance can be reduced.

物理的なエツチングとしてはCF4を用いたプラズマエ
ツチングやArを用いたスパッタエツチング等を用いる
As the physical etching, plasma etching using CF4, sputter etching using Ar, etc. are used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5図により説明する。基板
1の上に超電導グランドプレーン112を形成する。グ
ランドプレーン102,112には開口部もあり、この
間゛口部はプラズマエツチング等の等方性エツチングに
より形成されるため、縁端部(エツジ)にテーパが付い
ている。本実施例ではCF4と02の混合ガスを用いた
プラズマエツチング(ガス圧カニ 200mTorr、
RF出カニ100Wの条件で行った。)によってエッチ
にテーパが付くようにした。このため、グランドプレー
ン102,112の上の層間絶縁膜103は薄くでき、
その上にベース電極104を形成してもベース電極10
4で購成する伝送線路の特性インピーダンスを下げる事
ができ、配線の微細化に適する。また、ベース電極10
4を形成する際もベース電1104のインダクタンスが
小さくなり、回路の寄生インダクタンスの減少による動
作速度の改善が期待できる。さらに、同様のインダクタ
ンス低減効果はNb系カウンター電極107やコントロ
ール電極109にも期待できる。
An embodiment of the present invention will be described below with reference to FIG. A superconducting ground plane 112 is formed on the substrate 1. The ground planes 102 and 112 also have openings, which are formed by isotropic etching such as plasma etching, so that the edges are tapered. In this example, plasma etching was performed using a mixed gas of CF4 and 02 (gas pressure crab 200 mTorr,
The test was conducted under the condition of RF output power of 100W. ) so that the etch has a taper. Therefore, the interlayer insulating film 103 on the ground planes 102 and 112 can be made thinner.
Even if the base electrode 104 is formed thereon, the base electrode 104
The characteristic impedance of the transmission line purchased in step 4 can be lowered, making it suitable for miniaturization of wiring. In addition, the base electrode 10
4, the inductance of the base conductor 1104 is also reduced, and an improvement in operating speed can be expected due to a reduction in the parasitic inductance of the circuit. Furthermore, a similar inductance reduction effect can be expected for the Nb-based counter electrode 107 and control electrode 109.

第6図の実施例では、グランドプレーン112の上にベ
ース電極104、接合障壁WJ6.カウンター電極10
7を形成した後、エツジにテーパが付くようなプラズマ
エツチング等の微細加工法によりベース電極まで一度に
加工する。その後、層間絶縁膜105,115,125
を形成し、コントロール電極109,119により回路
を碍成している。この実施例においても、電極のエツジ
にテーパが付いているため、居間絶縁膜105゜115
.125の膜厚を薄くすることができ、インダクタンス
や特性インピーダンスを小さくできる。これにより回路
動作の高速化を実現できる。
In the embodiment shown in FIG. 6, the base electrode 104 is placed on the ground plane 112, and the junction barrier WJ6. Counter electrode 10
After forming 7, the base electrode is processed at once by a microfabrication method such as plasma etching that creates a tapered edge. After that, interlayer insulating films 105, 115, 125
are formed, and a circuit is completed by control electrodes 109 and 119. In this embodiment as well, since the edges of the electrodes are tapered, the insulation film 105°115
.. The film thickness of 125 can be made thinner, and the inductance and characteristic impedance can be made smaller. This makes it possible to realize faster circuit operation.

また、配線の段差蹴えの部分に局所的に大きな容量が存
在しないため、信号の分散が小さく、超高速の信号も伝
送することができる。以上の2つの実施例とも超電導電
極はNb若しくはNb系の材料、または物理的エツチン
グが可能なハードな材料で形成することにより実現でき
る。
Furthermore, since there is no locally large capacitance at the edge of the wiring, signal dispersion is small and ultra-high speed signals can be transmitted. In both of the above embodiments, the superconducting electrode can be realized by forming the superconducting electrode from Nb or a Nb-based material, or a hard material that can be physically etched.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同じ特性インピーダンスを実現するの
に、より微細な配線を使用できるため。
According to the present invention, finer wiring can be used to achieve the same characteristic impedance.

超電導回路をより高密度に集積化でき、寄生インダクタ
ンスの低減による高速化および素子間隔の短縮による高
速化の効果がある。また、負荷インダクタンスの低減に
よる回路の高マージン化にも効果があり、さらに、伝送
線路のも匙磁界が低減することによる低ノイズ化にも効
果がある。以上のように、本発明は超電導集積回路の高
集積化に絶大な効果がある。
Superconducting circuits can be integrated more densely, and have the effect of increasing speed by reducing parasitic inductance and shortening element spacing. It is also effective in increasing the margin of the circuit by reducing the load inductance, and is also effective in reducing noise by reducing the magnetic field of the transmission line. As described above, the present invention is extremely effective in increasing the degree of integration of superconducting integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導集積回路の構造の一例を示す断面
図、第2図は従来の超電導集積回路の層間絶縁膜を深く
した超電導集積回路の構造を示す断面図、第3図、第4
図は超i!! 4集積回路の電極の断差部を拡大した断
面図、第5図、第6図は本発明の一実施例である超電導
集積回路の断面図である。 l・・・基板、2,12,102.112・・・グラン
ドプレーン、3,13,23,33,103・・・グラ
ンドプレーン絶縁膜、4,104・・・ベース電極。 5.15,105・・・接合用層間絶縁膜、6・・・接
合障壁層、7.]07・・・カウンター電極、8.18
,28,38,48,58,108・・・層間絶縁膜、
9,19,109,119・・・コントロール電極、6
1,71,81,91,101・・電極露出部を覆う絶
縁膜。
FIG. 1 is a cross-sectional view showing an example of the structure of a conventional superconducting integrated circuit, FIG. 2 is a cross-sectional view showing the structure of a conventional superconducting integrated circuit in which the interlayer insulation film is deep, and FIGS.
The diagram is super i! ! FIGS. 5 and 6 are cross-sectional views of a superconducting integrated circuit according to an embodiment of the present invention. l...Substrate, 2,12,102.112...Ground plane, 3,13,23,33,103...Ground plane insulating film, 4,104...Base electrode. 5.15,105... Interlayer insulating film for bonding, 6... Junction barrier layer, 7. ]07... Counter electrode, 8.18
, 28, 38, 48, 58, 108... interlayer insulating film,
9, 19, 109, 119... control electrode, 6
1, 71, 81, 91, 101... Insulating film covering exposed electrode parts.

Claims (1)

【特許請求の範囲】[Claims] 1、Nb系の材料からなる複数の超電導電極の縁端部を
物理的エッチングによりテーパ状に形成するとともに、
超電導電極間に形成する層間絶縁膜の膜厚を前記超電導
電極の膜厚よりも薄くしたことを特徴とする超電導集積
回路。
1. Forming the edges of a plurality of superconducting electrodes made of Nb-based material into a tapered shape by physical etching,
A superconducting integrated circuit characterized in that the thickness of an interlayer insulating film formed between superconducting electrodes is thinner than the thickness of the superconducting electrodes.
JP60172518A 1985-08-07 1985-08-07 Superconductive integrated circuit Pending JPS6233483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172518A JPS6233483A (en) 1985-08-07 1985-08-07 Superconductive integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172518A JPS6233483A (en) 1985-08-07 1985-08-07 Superconductive integrated circuit

Publications (1)

Publication Number Publication Date
JPS6233483A true JPS6233483A (en) 1987-02-13

Family

ID=15943437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172518A Pending JPS6233483A (en) 1985-08-07 1985-08-07 Superconductive integrated circuit

Country Status (1)

Country Link
JP (1) JPS6233483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152775A (en) * 1987-12-10 1989-06-15 Agency Of Ind Science & Technol Forming method of pattern of josephson junction device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797649A (en) * 1980-12-11 1982-06-17 Nec Corp Manufacture of semiconductor device
JPS59148347A (en) * 1983-02-14 1984-08-25 Seiko Instr & Electronics Ltd Method for forming wiring metal for semiconductor device
JPS59181075A (en) * 1983-03-31 1984-10-15 Agency Of Ind Science & Technol Manufacture of josephson integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797649A (en) * 1980-12-11 1982-06-17 Nec Corp Manufacture of semiconductor device
JPS59148347A (en) * 1983-02-14 1984-08-25 Seiko Instr & Electronics Ltd Method for forming wiring metal for semiconductor device
JPS59181075A (en) * 1983-03-31 1984-10-15 Agency Of Ind Science & Technol Manufacture of josephson integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152775A (en) * 1987-12-10 1989-06-15 Agency Of Ind Science & Technol Forming method of pattern of josephson junction device
JPH0530310B2 (en) * 1987-12-10 1993-05-07 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
US4767724A (en) Unframed via interconnection with dielectric etch stop
US4554567A (en) Superconductive integrated circuit incorporating a magnetically controlled interferometer
US4430662A (en) Superconductive tunnel junction integrated circuit
JPS6185879A (en) Formation of conductive pattern
US5369303A (en) Self-aligned contact process
US6208008B1 (en) Integrated circuits having reduced stress in metallization
US6465367B1 (en) Lossless co-planar wave guide in CMOS process
US5834995A (en) Cylindrical edge microstrip transmission line
JPS6233483A (en) Superconductive integrated circuit
JPH04369861A (en) Manufacture of compound semiconductor integrated circuit capacitor
KR100303225B1 (en) Semiconductor device and method of producing the same
JPS6146081A (en) Manufacture of josephson junction element
JP2727773B2 (en) Method of manufacturing Josephson integrated circuit
JPH02288403A (en) Superconductive monolithic integrated circuit and manufacture thereof
JP2772050B2 (en) Multilayer wiring structure and method of manufacturing the same
JPH10112559A (en) Josephson junction device
JP2674750B2 (en) Semiconductor device
KR100329766B1 (en) A method for forming of semiconductor device
JP2674339B2 (en) Method for manufacturing superconducting integrated circuit
KR940011737B1 (en) Metal wiring method of semiconductor device
JPH1041557A (en) Superconducting plane circuit and its manufacture
TW202410143A (en) Method for manufacturing semiconductor device
JPH06350030A (en) Wiring for semiconductor integrated circuit and forming method of said wiring
JP2000012683A (en) Integrated circuit and manufacture thereof
JPH06196669A (en) Master-slice type semiconductor integrated circuit device and it manufacture