JPS6233308A - Manufacture of magnetic head - Google Patents

Manufacture of magnetic head

Info

Publication number
JPS6233308A
JPS6233308A JP17285285A JP17285285A JPS6233308A JP S6233308 A JPS6233308 A JP S6233308A JP 17285285 A JP17285285 A JP 17285285A JP 17285285 A JP17285285 A JP 17285285A JP S6233308 A JPS6233308 A JP S6233308A
Authority
JP
Japan
Prior art keywords
magnetic material
gap
glass
core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17285285A
Other languages
Japanese (ja)
Other versions
JPH0640370B2 (en
Inventor
Terumasa Sawai
瑛昌 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17285285A priority Critical patent/JPH0640370B2/en
Publication of JPS6233308A publication Critical patent/JPS6233308A/en
Publication of JPH0640370B2 publication Critical patent/JPH0640370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the mechanical dimension accuracy by providing plural groove parts to a metallic magnetic substance with a prescribed interval perpendicularly to an operating gap formed by the metallic magnetic substance of a head block in a depth reaching a nonmagnetic part exposed to the upper face and packing the nonmagnetic material t the groove part. CONSTITUTION:The nonmagnetic part is given to a tip face of a ferrite being one main magnetic path of a couple of core halves, the metallic magnetic member 4 is provided on the ferrite and glass to form a composite core. A gap face 8 is formed by smoothing and polishing the metallic core, the glass and the frrite into the same face from one end face of the composite core, the gaps of a couple of the composite core halves are sticked by adhering a nonmagnetic substance, the gap member of the glass nearby is molten to constitute a head block H. Further, a vertical cut groove 5 is provided to the metallic magnetic substance to split the substance into plural pieces having a track width, and a nonmagnetic substance such as SiC, alpha-Fe2O3 or glass is adhered into the cut groove from the track end by sputtering, vapor-deposition or electric plating. Thus, the deterioration of the magnetic property of the core or the adverse effect to the mechanical dimension accuracy is avoided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高抗磁力記録媒体を用いた磁気記録再生装置を
用いて効果のある磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic head that is effective when used in a magnetic recording/reproducing device using a high coercive force recording medium.

従来の技術 VTRに代表される磁気記録再生装置は、近年盤々高密
度化が進んでいる。このため使用する磁気ヘッドのトラ
ック幅は10ミクロン前後の幅狭のものもある。更にコ
ア材料も飽和磁束密度の高いセンダストやアモルファス
などの金属材料が多用されている。このようにトラック
幅が狭く、かつ金属材料コアによるヘッドは磁気テープ
との摺動による摩耗が激しく、いわゆるヘッド寿命が短
かい。このためヘッドトラック幅の側面を補強し1磁気
テープとの当接幅を大きくした構造が一般的である。
BACKGROUND OF THE INVENTION In recent years, the density of magnetic recording and reproducing apparatuses represented by conventional VTRs has been increasing rapidly. For this reason, the track width of the magnetic head used is sometimes as narrow as about 10 microns. Furthermore, metal materials such as sendust and amorphous, which have a high saturation magnetic flux density, are often used as core materials. As described above, a head with a narrow track width and a metal core is subject to severe wear due to sliding with the magnetic tape, resulting in a short head life. For this reason, it is common to have a structure in which the sides of the head track width are reinforced to increase the contact width with one magnetic tape.

第2図は従来″ヘッドの前面からみた一例を示すもので
ある。
FIG. 2 shows an example of a conventional head viewed from the front.

すなわち、同A図は、トラック端の補強の一つとして、
フェライト単体ヘッドの場合には、トラックOeの両側
面からガラスαηを融着させていた。
In other words, Figure A shows that as one of the reinforcements at the track end,
In the case of a single ferrite head, glass αη was fused from both sides of the track Oe.

また同B図のセンダスト合金やアモルファス合金による
金属ヘッドでは、そのヘッドトラック0秒の側面からガ
ラスやセラミックスの薄板をエポキシ樹脂層(至)を介
して接着し、補強していた。
In addition, the metal head made of Sendust alloy or amorphous alloy shown in Figure B was reinforced by adhering a thin plate of glass or ceramics to the side surface of the 0 second head track via an epoxy resin layer.

発明が解決しようとする問題点 前記の従来の磁気ヘッドの構成では、次の如き問題点が
あった。その問題点の1つは、金属コアトラック端の補
強をガラス溶着によって構成する場合である。すなわち
、溶着時に重要なことは、コア材とガラス材の熱膨張係
数(α)が一致していることであり、コア材がセンダス
トの場合、そのα= 170X10  程度であり、そ
のα差が最も近いガラスを選択してもα=150X10
  程度である。
Problems to be Solved by the Invention The configuration of the conventional magnetic head described above has the following problems. One of the problems is when the metal core track ends are reinforced by glass welding. In other words, what is important during welding is that the coefficient of thermal expansion (α) of the core material and the glass material match, and when the core material is sendust, α = approximately 170X10, and the difference in α is the most important. Even if you select a similar glass, α=150X10
That's about it.

これらのα差によって、溶着時にガラス中にストレスが
内在し、ガラス中にクランクや欠けあるいは欠落が生じ
、高精度のトラック端補強ができなかった。
Due to these α differences, stress is inherent in the glass during welding, causing cracks, chips, or omissions in the glass, and highly accurate track edge reinforcement cannot be achieved.

又、コア材をアモルファス合金を使用した場合、アモル
ファスの結晶化温度が550℃前後と低いため、溶着ガ
ラスはpboを多く含有する低融点ガラスを使用するこ
とになり、ガラス溶着時に前記P’bOとアモルファス
合金が融着界面で相互拡散層を形成し、ガラスによって
アモルファス合金の一部が浸触されるため、トラック幅
が減少する。
In addition, when an amorphous alloy is used as the core material, the crystallization temperature of the amorphous is as low as around 550°C, so a low melting point glass containing a large amount of PBO is used as the welding glass, and the P'bO The amorphous alloy and the amorphous alloy form an interdiffusion layer at the fused interface, and a portion of the amorphous alloy is penetrated by the glass, which reduces the track width.

更に磁気テープ摺動によって低融点ガラスは段差を生じ
、トラック部よりも低い位置になり、磁気テープ粉の付
着や磁気テープに損傷を与えるなどの問題があった。
Furthermore, due to the sliding of the magnetic tape, the low melting point glass creates a step and is located at a position lower than the track portion, causing problems such as adhesion of magnetic tape powder and damage to the magnetic tape.

このため、従来、トラック部分に金属コアを用いたセン
ダストやアモルファス合金によるヘッドは、トラック端
にガラスやセラミックスのi板をエポキシ樹脂層を介し
て接着した構造が多用されているoしかし・樹脂接着で
は、耐候性の点から信頼性が低く、かつ樹脂層の近傍か
らチッピングが生じ易く、それによってトラック幅が減
少し1ヘツド特性の低下をはじめ、磁気テープにも損傷
を与えるなどの問題があった。
For this reason, conventional heads made of sendust or amorphous alloy that use a metal core in the track part often have a structure in which a glass or ceramic i-plate is bonded to the track end via an epoxy resin layer. However, this method has low reliability in terms of weather resistance, and chipping tends to occur near the resin layer, which causes problems such as a decrease in track width, deterioration of single-head characteristics, and damage to the magnetic tape. Ta.

問題点を解決するための手段 本発明は、フェライトコアの先端一部に非磁性材料を上
面部に露出して融着し、前記非磁性体部を構成し、前記
非磁性体部とフェライトコア上面部にフェライトコアよ
り未飽和磁束密度が高い金属磁性材料を被着して金属磁
性体を構成して複合コア半体とする工程、前記複合コア
半体の前記非磁性体部の下部に溝部を設け、前記金属磁
性体、非磁性体部およびフェライトコアの下部の垂直側
面部をギャップ構成面とし、ギャップ面平滑研磨を行う
工程、前記複合コア半体のギャップ構成面部に所望ギャ
ップ幅に応じた厚みの非磁性材料のギャップ部をスパッ
タリングなどで被着する工程、2個の前記ギャップ部を
具備する複合コア半体、1A、IEをギャップ部におい
て接合し、前記金属磁性体の結晶化温度よりも低い温度
で熱処理を施しヘッドブロック体とする工程、前記ヘッ
ドブロック体の金属磁性体が形成する作動ギャップに垂
直にかつ前記上面部に露出する非磁性体部に達する深さ
で所定の間隔をもって前記金属磁性体に複数の溝部を設
ける工程、および前記溝部に非磁性材料を充填する工程
からなり、前記溝部に非磁性材料を充填する方法をスパ
ッタリング法、プラズマ溶射法、電気メッキ法、または
蒸着法としたものである。
Means for Solving the Problems The present invention has a non-magnetic material exposed on the top surface and fused to a part of the tip of a ferrite core to form the non-magnetic part, and the non-magnetic part and the ferrite core to be bonded together. a step of forming a composite core half by depositing a metallic magnetic material having a higher unsaturated magnetic flux density than the ferrite core on the upper surface of the composite core half; a step of polishing the gap surface smooth by using the metal magnetic material, the non-magnetic material portion, and the vertical side surface of the lower part of the ferrite core as the gap forming surface; A step of depositing a non-magnetic material with a thickness in the gap part by sputtering or the like, joining two composite core halves, 1A, and IE each having the gap part at the gap part, and adjusting the crystallization temperature of the metal magnetic material. A step of heat-treating at a lower temperature to form a head block body, a predetermined interval perpendicular to the working gap formed by the metal magnetic material of the head block body and at a depth reaching the non-magnetic material portion exposed on the upper surface portion. a step of providing a plurality of grooves in the metal magnetic material; and a step of filling the grooves with a non-magnetic material. This is a vapor deposition method.

作用 本発明の製造法によれば、トラック巾の側面からそのギ
ャップ深さの全域にわたり基本的に高融点から成る非磁
性材料を比較的低温で被着せしめることができ、コア材
磁気特性の劣化を防ぎ、かつ機械的寸法精度の高いもの
が得られる。
Effect: According to the manufacturing method of the present invention, a non-magnetic material basically having a high melting point can be deposited at a relatively low temperature from the side surface of the track width to the entire gap depth, thereby preventing deterioration of the magnetic properties of the core material. It is possible to prevent this and obtain a product with high mechanical dimensional accuracy.

実施例 第1図(A図からH図)は本発明による磁気ヘッドの製
造工程の一例を示すものである。
Embodiment FIG. 1 (Figures A to H) shows an example of the manufacturing process of a magnetic head according to the present invention.

本発明は、作動ギャップ深さの全域が高飽和磁束密度を
もったセンダスト合金やアモルファス合金、すなわち金
属材料で構成し、かつ他の主磁路をフェライトで構成し
た複合コアから成立するヘッドである。そして高密度記
録のために幅狭に加工したヘッドトラック幅の端面を補
強して、磁気テープとの当接による耐摩耗性の向上をは
じめ機械強度の向上、さらにはトラック端の欠けや割れ
を防止させる効果を発揮させるためのヘッド製造法であ
る。
The present invention is a head consisting of a composite core in which the entire operating gap depth is made of Sendust alloy or amorphous alloy having a high saturation magnetic flux density, that is, a metal material, and the other main magnetic path is made of ferrite. . The edge of the head track width, which has been narrowed for high-density recording, is reinforced to improve wear resistance due to contact with the magnetic tape, improve mechanical strength, and prevent chips and cracks at the track edge. This is a head manufacturing method that exhibits the effect of preventing this.

すなわち、一対のコア半体の少なくとも片方の主磁路で
あるフェライトの先端面に非磁性部分、例えばガラス部
分あるいはセラミックスなどを持たせた構造とし、それ
らフェライトとガラス上に金属磁性材をスパッタなどに
よって設けた複合コアとする。更に、この複合コアの一
端面から、金属コアとガラス部分とフェライトを同一・
面に平滑研磨を行い、ギャップ構成面とし、S10□そ
の他の非磁性の物質をスパッタリングなどで付着せしめ
て、一対の複合コア半体をギャップ面接合を行い、ギャ
ップ材あるいは近傍に設けたガラスを溶着させヘッドブ
ロック体を構成する。
In other words, a structure is adopted in which a non-magnetic part, such as a glass part or ceramics, is provided on the tip end face of the ferrite, which is the main magnetic path of at least one of the pair of core halves, and a metallic magnetic material is sputtered onto the ferrite and the glass. A composite core provided by Furthermore, from one end surface of this composite core, the metal core, the glass part, and the ferrite are the same.
The surfaces are polished smooth to form the gap forming surfaces, S10□ and other non-magnetic substances are attached by sputtering, etc., and the pair of composite core halves are bonded to the gap surface, and the gap material or glass provided nearby is bonded. Weld them together to form a head block body.

更に、そのヘッドブロック体上の金属磁性体部を必要な
トラック幅に応じた寸法で作動ギャップを横断する垂直
切り溝を設ける。この場合、切り溝の深さは金属磁性体
部よりも深くガラス部に到達するように設ける。このよ
うに切溝により、複数個のトラック幅に分割した後、そ
れらのトラック端から切り溝中にSiCやα−Fe20
1あるいはガラスなどの適当なる非磁性物質をスパッタ
リングや蒸着あるいは電気メッキなどによって被着せし
める磁気ヘッドの製造法である。
Furthermore, a vertical cut groove is provided in the metal magnetic material portion on the head block body to cross the working gap with a size corresponding to the required track width. In this case, the depth of the cut groove is provided so as to reach the glass portion deeper than the metal magnetic material portion. After dividing into multiple track widths by the kerf in this way, SiC and α-Fe20 are deposited from the track ends into the kerf.
This is a method of manufacturing a magnetic head in which a suitable non-magnetic material such as 1 or glass is deposited by sputtering, vapor deposition, or electroplating.

本発明の製造法の一実施例を第1図A図からH図を用い
て説明する。
An embodiment of the manufacturing method of the present invention will be described with reference to FIGS. 1A to 1H.

A図はフェライトコア(1)の先端の一部である垂直側
面部にL字形欠除部を設けてガラス部(2)を融着させ
、ガラス部(2)を構成し、手れらの上面部(3)を同
一面に研摩する。ガラス部(2)は他のセラミックス材
料などをスパッタリングなどで形成することもできる0
又、上面部(3)は任意の曲率Rに研磨してもよい。次
に、B図は前記フェライト:+7 (11とガラス(2
)の上図部(3)に、フェライトコアfilよりも未飽
和磁束密度が高い金属磁性材料(4)例えばセンダスト
合金やアモルファス合金をスパッタリングによって被着
させたものである。次に0図は金属コア(4)の下端に
ガラス部(2)の一部を残存させてガラス部(2)のあ
る側面部の上辺部、下辺部が斜辺部となる台形の溝部(
5)を形成する。しかる後、ガラス部(2)、溝部(5
)を設けたフェライトコア(1)の端面部を同一平面に
なるように平滑研磨を行い、金属コア端面部(6)とガ
ラス端面部(6)′及びフェライト端面部(7)から成
るギャップ構成面を得る。
Figure A shows an L-shaped cutout in the vertical side part of the tip of the ferrite core (1), and the glass part (2) is fused to form the glass part (2). Polish the upper surface part (3) to the same surface. The glass portion (2) can also be formed using other ceramic materials by sputtering or the like.
Further, the upper surface portion (3) may be polished to an arbitrary curvature R. Next, Figure B shows the ferrite: +7 (11) and glass (2
), a metal magnetic material (4) such as sendust alloy or amorphous alloy having a higher unsaturated magnetic flux density than the ferrite core filtration is deposited by sputtering on the upper part (3) of the figure. Next, Figure 0 shows a trapezoidal groove (2) in which a part of the glass part (2) remains at the lower end of the metal core (4), and the upper and lower sides of the side surface where the glass part (2) is located form the oblique sides.
5) Form. After that, the glass part (2) and the groove part (5
) The end face of the ferrite core (1) provided with the ferrite core (1) is polished smooth so that it becomes the same plane, and a gap configuration consisting of the metal core end face (6), the glass end face (6)', and the ferrite end face (7) is formed. Get a face.

D図は前記ギャップ構成面部上の少なくとも金属コア(
6)上に所望のギャップ幅に応じた厚みのギャップ材(
8)例えばS10.単層あるいは他の非磁性材料を重ね
たスパッタリングなどによって高精度に被着させた一対
のコア半体IAとIBを製造するOE図は前記コア半体
IAとIBをギャップ構成面部で接合させ、ギャップ材
ガラス(8)又はガラス(2)あるいは溝部(5)から
ガラスを介在して、金属磁性体(4)の結晶化温度より
も低い温度で熱処理を施し、ヘッドブロック体1を製造
する。
Figure D shows at least the metal core (
6) Place a gap material (with a thickness corresponding to the desired gap width) on top.
8) For example, S10. The OE diagram for manufacturing a pair of core halves IA and IB, which are deposited with high precision by sputtering or the like with a single layer or other non-magnetic material layered, is such that the core halves IA and IB are joined at the gap forming surface, The head block body 1 is manufactured by performing heat treatment at a temperature lower than the crystallization temperature of the metal magnetic material (4) with the gap material glass (8) or glass (2) or glass interposed from the groove (5).

更に2図は、前記ヘッドブロック体上の先端金属磁性体
(4)を必要なヘッドトラック幅に応じた幅α〔を残し
複数の切溝部αυを順次加工する。この場合、切溝αυ
の深さα2は作動ギャップ深さαjを越え、しかもガラ
ス部(2)に到達するように加工する。
Furthermore, FIG. 2 shows that a plurality of kerf portions αυ are sequentially processed in the tip metal magnetic body (4) on the head block body, leaving a width α corresponding to the required head track width. In this case, the kerf αυ
The depth α2 exceeds the working gap depth αj and is processed so as to reach the glass portion (2).

次にG図は、切溝部00からヘッドトラック幅、(IC
の側面に非磁性物質例えばSiOやα−Fe203又は
ガラスあるいは硬質クロームなどの金属物質などの適当
な物質を被着せしめた補強部分(+4)を構成する。被
着せしめる手段は、スパッタリングやプラズマ溶射ある
いは電気メッキなどによって行う。
Next, diagram G shows the head track width from the kerf portion 00, (IC
A reinforcing portion (+4) is formed by coating a non-magnetic material such as SiO, α-Fe203, glass, or a metal material such as hard chrome on the side surface of the reinforcing portion (+4). The means for depositing it is performed by sputtering, plasma spraying, electroplating, or the like.

次にH図は、前記ヘッドブロック体1から、その非磁性
の補強部(14)を通り、トラック幅部の両端に非磁性
からなる補強部分(14’ 、ax’が残る位置で0−
0.切断分離−する。ヘッド単体IAを多数個に分離し
ヘッドを製造するものである。
Next, in diagram H, the head block body 1 passes through its non-magnetic reinforcing parts (14), and at the position where non-magnetic reinforcing parts (14', ax' remain at both ends of the track width part, 0-
0. Cut and separate. The head is manufactured by separating the single head IA into a large number of parts.

前記実施例において、B図のようにフェライトとガラス
上にアモルファス合金をおよそ30ミクロンの厚さにス
パッタリングによって被着せしめた。前記アモルファス
はCo−Nb Zr−Ta系であって、その結晶化温度
は約550℃である。
In the above example, an amorphous alloy was deposited on the ferrite and glass to a thickness of approximately 30 microns by sputtering, as shown in Figure B. The amorphous material is Co--Nb Zr--Ta based, and its crystallization temperature is about 550C.

又り図にはギャップ材(8)として、一対のコア半体I
AとIBのそれぞれにSiO□を100OAと、その上
から軟化温度400℃前後の低融点ガラスを25OAと
をスパッタリングによって被着させた。
Also shown in the figure is a pair of core halves I as the gap material (8).
A and IB were each coated with 100 OA of SiO□, and 25 OA of low melting point glass with a softening temperature of about 400° C. was deposited thereon by sputtering.

更にE図のように、コア半体IAとIBをギャップ面で
接合させて治具にて前記アモルファス合金の結晶化温度
よりも低く、かつギャップ材ガラス部−侶)中の低融点
ガラスの軟化湿度よりもおよそ100℃高い温度で約3
0分窒素雰囲気中にて熱処理を加えて一体に溶着合体し
た。
Furthermore, as shown in Fig. E, the core halves IA and IB are joined at the gap surface, and a jig is used to lower the crystallization temperature of the amorphous alloy and soften the low melting point glass in the gap material glass part. Approximately 3 at a temperature approximately 100°C higher than the humidity
They were heat-treated in a nitrogen atmosphere for 0 minutes and welded together.

更にF図のように、ダイヤモンド砥石などを用いた精密
切断機によって金属磁性体のアモルファスコア部(4)
を、15ミクロンと30ミクロンのトラック幅に応じて
2種類のトラック加工を実施し、その深さを前記アモル
ファスコア部の厚さ30ミクロンよりもおよそ、10ミ
クロン深い、溝で順次加工した。
Furthermore, as shown in Figure F, the amorphous core part (4) of the metal magnetic material is cut using a precision cutting machine using a diamond grindstone.
Two types of track processing were carried out according to track widths of 15 microns and 30 microns, and grooves were sequentially processed to a depth approximately 10 microns deeper than the 30 micron thickness of the amorphous core portion.

0図は、前記トラック端から切溝にSiOをスパッタリ
ングによって約50ミクロンの5iOO層をスパッタリ
ングによって形成した。
In Figure 0, a 5iOO layer of about 50 microns was formed by sputtering SiO from the track end to the kerf.

更にH図のように前記S1cによる補強部を含めコア幅
を100ミクロンに切断した。すなわちアモルファス合
金によるトラック幅が30ミクロンの場合はその両側に
およそ35ミクロン幅(sicの厚みは50ミクロンで
ある)のsia補強部がある。
Furthermore, as shown in Figure H, the core was cut to have a width of 100 microns including the reinforcing portion by S1c. That is, if the track width made of the amorphous alloy is 30 microns, there are SIA reinforcement portions on both sides of the track with a width of approximately 35 microns (the thickness of the SIC is 50 microns).

前記ヘッドトラック端の補強G#、補強材としてα−F
e203をはじめZ n F e 203やAノ2’0
3などのセラミックス材料あるいは5i02やガラス材
料、更には硬質クロームなどの金属材料からなる非磁性
材料が適用できる。
Reinforcement G# at the end of the head track, α-F as a reinforcing material
Including e203, Z n F e 203 and A no 2'0
Non-magnetic materials such as ceramic materials such as No. 3, glass materials such as 5i02, or metal materials such as hard chrome can be used.

一方、これらの材料を被着させる手段として、スパッタ
リングや蒸着あるいは電気メッキなどの種々の方法が適
用できるものである。
On the other hand, various methods such as sputtering, vapor deposition, and electroplating can be applied as means for depositing these materials.

以上のように製造した本発明のヘッドを試験した結果、
次の通り種々の特長と効果を生ずる。
As a result of testing the head of the present invention manufactured as described above,
It produces various features and effects as follows.

発明の効果 1、 高融点材料をその材料の軟化点や融点よりも十分
低い温度でヘッドに被着させることができるため1熱膨
張によるヘッドコア及び補強材双方にクラックなどの影
響がない。
Advantages of the Invention 1. Since the high melting point material can be applied to the head at a temperature sufficiently lower than the softening point or melting point of the material, 1. There is no effect such as cracks on both the head core and the reinforcing material due to thermal expansion.

2、比較的低温で被着できるため、加熱温度によるコア
歪などによるコアの磁気特性の劣化あるいは機械的寸法
精度への悪影響を受けない。
2. Since it can be deposited at a relatively low temperature, there is no deterioration of the magnetic properties of the core due to core distortion due to heating temperature, or any adverse effect on mechanical dimensional accuracy.

3、 オンダストロームオーダで補強材を被着するため
、コアとの被着性が良好であり、トラック端のチッピン
グなどの局所にも被着でき、磁気テープ摺動に対してト
ラック幅崩れが生じない高寸法精度が得られる。
3. Since the reinforcing material is applied in an on-dust order, it has good adhesion to the core and can be applied to localized areas such as chipping at the track edge, which prevents the track width from collapsing due to magnetic tape sliding. High dimensional accuracy can be obtained.

4、 ヘッドトラック端の形状精度を高め、磁気テープ
摺動が正確となり、磁化状態が高精度になるため、ヘッ
ドの電磁特性の向上があった。
4. The head's electromagnetic characteristics were improved because the shape accuracy of the head track end was improved, the magnetic tape slid more accurately, and the magnetization state became more precise.

5、 ギャップ深さを越える領域まで補強材を被着させ
ているため、全ギャップ深さの区間トラック燵が補強さ
れ強固である。
5. Since the reinforcing material is applied to the area that exceeds the gap depth, the section track of the entire gap depth is reinforced and strong.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気ヘッド製造法の工程図、A図はフ
ェライトコアの上部先端にガラスを融着させた出発点、
B図はコア半体の上面部を研磨し金属磁性体をスパッタ
リングで被着したコア材の複合断面図、0図は複合コア
半体のガラス部下部に連接して溝部を構成した状態の断
面図、Didは複合コアの端面部にギャップ材を被着し
た複合コア半体断面図、E図は2個の複合コア半体を端
面部で接合しギャップ構成したヘッドトラック部の斜視
図、F図はヘッドブロック体の上部の金M磁性体を含め
ヘッドトラック加工を施したヘッドブロック体の傾視図
、0図はF図のヘッドトラック部に補強部材をスパッタ
リングなどで被着してヘッドブロック体がらヘッド単体
分割をする傾視図、H図は本発明の製造法で製造したヘ
ッド単体傾視図、第2図A図、B図は従来のトラック側
面補強したヘッドの前面図、を示す。 1:フェライトコア  2ニガラス部  4:金属磁性
体  5:溝部  6:金属コア端面部6′:カラス]
1i部  7:フエライト端面部8:ギャップ材  H
:ヘッドブロック体1A、IB:複合コア半体  lO
ニドランク幅1】:切溝部  12:切溝深さ  13
:ギャップ深さ  14:補強部分  a、a、:切断
線特許出願人   松下電器産業株式会社代理人弁理士
   阿  部    功第1図 勺FI−11/\71’トj2 第1―
Figure 1 is a process diagram of the magnetic head manufacturing method of the present invention, Figure A is the starting point where glass is fused to the upper tip of the ferrite core,
Figure B is a composite cross-sectional view of the core material with the upper surface of the core half polished and a metal magnetic material coated by sputtering, and Figure 0 is a cross-section of the core material with a groove connected to the lower part of the glass part of the composite core half. Figure, Did is a sectional view of a composite core half with a gap material coated on the end face of the composite core, Figure E is a perspective view of a head track section in which two composite core halves are joined at the end face to form a gap, and F The figure is a perspective view of a head block body that has undergone head track processing, including the gold M magnetic material on the upper part of the head block body. Figure H shows a perspective view of a single head manufactured by the manufacturing method of the present invention, and Figures 2A and B show a front view of a conventional head with reinforced track sides. . 1: Ferrite core 2 Glass part 4: Metal magnetic material 5: Groove part 6: Metal core end face part 6': Crow]
1i part 7: Ferrite end face part 8: Gap material H
: Head block body 1A, IB: Composite core half body lO
Nidrank width 1]: Cut groove part 12: Cut groove depth 13
: Gap depth 14: Reinforcement part a, a,: Cutting line Patent applicant Isao Abe, Patent attorney Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)フェライトコアの先端一部に非磁性材料を上面部
に露出して融着し、前記非磁性体部を構成し、前記非磁
性体部とフェライトコア上面部にフェライトコアより未
飽和磁束密度が高い金属磁性材料を被着して金属磁性体
を構成して複合コア半体とする工程、前記複合コア半体
の前記非磁性体部の下部に溝部を設け、前記金属磁性体
、非磁性体部およびフェライトコアの下部の垂直側面部
をギャップ構成面としギャップ面平滑研磨を行う工程、
前記複合コア半体のギャップ構成面部に所望ギャップ幅
に応じた厚みの非磁性材料のギャップ部をスパッタリン
グなどで被着する工程、2個の前記ギャップ部を具備す
る複合コア半体、1A、1Bをギャップ部において接合
し、前記金属磁性体の結晶化温度よりも低い温度で熱処
理を施しヘッドブロック体とする工程、前記ヘッドブロ
ック体の金属磁性体が形成する作動ギャップに垂直にか
つ前記上面部に露出する非磁性体部に達する深さで所定
の間隔をもつて前記金属磁性体に複数の溝部を設ける工
程、および前記溝部に非磁性材料を充填する工程からな
る磁気ヘッドの製造方法。
(1) A non-magnetic material is exposed on the upper surface part and fused to a part of the tip of the ferrite core to form the non-magnetic material part, and an unsaturated magnetic flux from the ferrite core is applied to the non-magnetic material part and the upper surface part of the ferrite core. A step of forming a composite core half by depositing a metallic magnetic material with a high density to form a composite core half; A step of polishing the gap surface smooth by using the magnetic material part and the vertical side part of the lower part of the ferrite core as the gap forming surface;
A step of depositing a gap portion of a non-magnetic material having a thickness corresponding to a desired gap width on the gap-constituting surface portion of the composite core half body by sputtering or the like, a composite core half body comprising two of the gap portions, 1A, 1B. a step in which the metal magnetic material is joined at the gap portion and heat-treated at a temperature lower than the crystallization temperature of the metal magnetic material to form a head block body; A method for manufacturing a magnetic head comprising: providing a plurality of grooves in the metal magnetic material at predetermined intervals at a depth that reaches a non-magnetic material portion exposed to the magnetic material; and filling the grooves with a non-magnetic material.
(2)前記溝部に非磁性材料を充填する方法をスパッタ
リング法、プラズマ溶射法、電気メッキ法、または蒸着
法とする特許請求の範囲第1項記載の磁気ヘッドの製造
方法。
(2) The method for manufacturing a magnetic head according to claim 1, wherein the method for filling the groove with the nonmagnetic material is a sputtering method, a plasma spraying method, an electroplating method, or a vapor deposition method.
JP17285285A 1985-08-06 1985-08-06 Magnetic head manufacturing method Expired - Lifetime JPH0640370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17285285A JPH0640370B2 (en) 1985-08-06 1985-08-06 Magnetic head manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17285285A JPH0640370B2 (en) 1985-08-06 1985-08-06 Magnetic head manufacturing method

Publications (2)

Publication Number Publication Date
JPS6233308A true JPS6233308A (en) 1987-02-13
JPH0640370B2 JPH0640370B2 (en) 1994-05-25

Family

ID=15949493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17285285A Expired - Lifetime JPH0640370B2 (en) 1985-08-06 1985-08-06 Magnetic head manufacturing method

Country Status (1)

Country Link
JP (1) JPH0640370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985796A (en) * 1988-07-26 1991-01-15 Matsushita Electric Industrial Co., Ltd. Magnetic head with a tape contacting surface having a metal filled channel therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985796A (en) * 1988-07-26 1991-01-15 Matsushita Electric Industrial Co., Ltd. Magnetic head with a tape contacting surface having a metal filled channel therein

Also Published As

Publication number Publication date
JPH0640370B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
EP0115842B1 (en) Magnetic head and method of fabricating same
JPH0719347B2 (en) Manufacturing method of core slider for fixed magnetic disk drive
EP0400966B1 (en) Method of manufacturing a magnetic head
KR920006124B1 (en) Magnetic head having an integrated recording and playback head and an erasure head
JPS6341126B2 (en)
JPH0475566B2 (en)
JPS6233308A (en) Manufacture of magnetic head
JPH0475563B2 (en)
JPS6214313A (en) Magnetic head
JPS60231903A (en) Composite type magnetic head and its production
JPS635802B2 (en)
KR940011675B1 (en) Manufacturing method for magnetic head
JPS61280009A (en) Magnetic head
JPS62183012A (en) Magnetic head and its manufacture
JPH0658727B2 (en) Magnetic head
JPH0476168B2 (en)
JPH0770023B2 (en) Magnetic head
JPS62217409A (en) Magnetic head and its manufacture
JPH04221408A (en) Laminated magnetic head and its manufacture
JPS63164010A (en) Manufacture of magnetic head
JPH0622044B2 (en) Manufacturing method of core for composite type magnetic head
JPS61287018A (en) Magnetic head
JPS60217505A (en) Production of magnetic head
JPH0411306A (en) Composite-type magnetic head and its production
JPS63103405A (en) Composite type magnetic head and its production