JPS6232934B2 - - Google Patents

Info

Publication number
JPS6232934B2
JPS6232934B2 JP54142387A JP14238779A JPS6232934B2 JP S6232934 B2 JPS6232934 B2 JP S6232934B2 JP 54142387 A JP54142387 A JP 54142387A JP 14238779 A JP14238779 A JP 14238779A JP S6232934 B2 JPS6232934 B2 JP S6232934B2
Authority
JP
Japan
Prior art keywords
detection element
cornea
position detection
dimensional position
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142387A
Other languages
Japanese (ja)
Other versions
JPS5666235A (en
Inventor
Yoshi Kobayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14238779A priority Critical patent/JPS5666235A/en
Publication of JPS5666235A publication Critical patent/JPS5666235A/en
Publication of JPS6232934B2 publication Critical patent/JPS6232934B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は眼科機器に関し、殊に角膜計に関す
る。角膜の形状を測定する角膜計は一般に角膜の
曲率、乱視度そして乱視軸方向の三要素を測定す
るために使われるが、コンタクトレンズのベース
カーブの検査などにも使われることがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ophthalmological instruments, and more particularly to keratometers. A keratometer that measures the shape of the cornea is generally used to measure the three elements of corneal curvature, degree of astigmatism, and astigmatic axis direction, but it can also be used to inspect the base curve of contact lenses.

通常、オフサルモメータあるいはケラトメータ
と呼ばれる角膜計は、従来、検査マークを角膜に
投影してその反射像を顕微鏡で観察し、反射像が
既定状態になるまでの調節量から測定するもの、
あるいは同心円状のマークを角膜に投影し、その
反射像の歪から測定するものが知られている。
Conventionally, a keratometer, usually called an ophthalmometer or keratometer, projects an inspection mark onto the cornea, observes the reflected image with a microscope, and measures the amount of adjustment until the reflected image reaches a predetermined state.
Alternatively, it is known to project concentric marks onto the cornea and measure from the distortion of the reflected image.

しかしながら、周知の方法だと上記三要素を同
時に測ることができないため、測定中の被検者の
目が動くことで誤差が生じ、精度の低下を招いた
り、あるいは検査時間が短くとも検査資料収集後
の解析に長時間を要するという難点があつた。
However, with well-known methods, it is not possible to measure the above three elements at the same time, so errors may occur due to the subject's eye movement during measurement, leading to a decrease in accuracy, or even if the test time is short, test data collection The problem was that the subsequent analysis required a long time.

本発明は短時間の検査が可能で、また結果を得
るまでに時間が掛らず、しかも高い測定精度を達
成する目的を持つ。そのため後述の実施例は、最
近実用化された二次元位置検出素子を採用し、こ
の素子から出力された、平面上の光点(xy座標
上のx0,y0)を示す信号列を複数個保持し演算処
理して光点を連ねた一般に橢円となる曲線から角
膜形状を決定する。その際、曲線の形状は、正常
な角膜では円と成り、角膜乱視のあるトーリツク
な面なら橢円と成る。更に円又は橢円の大きさか
ら角膜の曲率半径、橢円率から角膜乱視度、橢円
の軸の傾きから乱視軸方向を各求めることができ
る。そして例えば橢円であつても長軸、短軸そし
て基準座標軸からの回転角度の3変数であるか
ら、座標上の3点を押えれば形状の決定は可能で
あり、もし中心が移動しても最低6点を押えれば
橢円形状は決定される。
The present invention has the object of enabling short-time testing, shortening the time it takes to obtain results, and achieving high measurement accuracy. Therefore, in the embodiment described later, a two-dimensional position detection element that has been put into practical use recently is used, and multiple signal sequences indicating a light spot on a plane (x 0 , y 0 on xy coordinates) output from this element are The shape of the cornea is determined from a curve, which is generally an ellipse, and is a series of light spots. In this case, the shape of the curve will be a circle for a normal cornea, and a circle for a toric surface with corneal astigmatism. Further, it is possible to determine the radius of curvature of the cornea from the size of the circle or ellipse, the degree of corneal astigmatism from the radial ratio, and the direction of the axis of astigmatism from the inclination of the axis of the eclipse. For example, even if it is a circle, there are three variables: the major axis, minor axis, and rotation angle from the reference coordinate axis, so the shape can be determined by pressing three points on the coordinates, and if the center moves The oval shape is determined by hitting at least 6 points.

以下、図面に従つて一実施例を説明する。第1
図は縦断面を示し、第2図は角膜側から見た正面
形態を示しており、図中でEは被検眼の角膜であ
る。1はアナログ型二次元位置検出素子で、光束
の入射位置がx座標とy座標上の位置に相当する
出力として得られ、例えば赤外波長域に感度があ
るものを使用する。2は投影系の結像レンズで、
Lは投影系光軸である。次に30から37までは
点状の微小光源で、光軸Lを中心とした円周上に
等間隔で配置し、図示されない制御回路により順
次点滅される。これら光源としては赤外発光ダイ
オードが適しているが、例えばオプテイカルフア
イバーの一端をランプに対向させ、他端をこの位
置に配しても良く、更に半径の異なる円周上に光
源を配列したものを追加して、複数の曲線を取り
出し、精度を向上させることもできる。
An embodiment will be described below with reference to the drawings. 1st
The figure shows a longitudinal section, and FIG. 2 shows a front view seen from the cornea side, and in the figure, E is the cornea of the eye to be examined. Reference numeral 1 denotes an analog two-dimensional position detection element, which obtains the incident position of the light beam as an output corresponding to the position on the x and y coordinates, and is sensitive to, for example, an infrared wavelength region. 2 is the imaging lens of the projection system,
L is the optical axis of the projection system. Next, 30 to 37 are minute light sources in the form of points, which are arranged at equal intervals on a circumference centered on the optical axis L, and are sequentially blinked by a control circuit (not shown). Infrared light emitting diodes are suitable as these light sources, but for example, one end of the optical fiber may be placed opposite the lamp, and the other end may be placed in this position, or the light sources may be arranged on a circumference with different radii. You can also add more to retrieve multiple curves and improve accuracy.

また光源の光軸方向の位置と結像レンズ、二次
元位置検出素子の配置を次の通り決定する。まず
角膜表面を鏡面とみなし、平均的な角膜の半径の
凸面鏡が所定位置に在るとすると、例えば光源3
4を発した光束はこの鏡面で虚像34′を形成す
る。従つて、光源の虚像が形成される面と二次元
位置検出素子の受光面を結像レンズ2で共役に結
び付け、また検出素子の寸法に応じて結像倍率を
決める。なお、角膜の半径が既定量と異なる場合
は光源の虚像が形成される位置がずれることが考
えられるが、被写界深度を越えることはほとんど
ない。以上の構成で、二次元位置検出素子の応答
速度に見合つた間隔で光源30〜37を点滅する
と、光源30を発した光束は角膜Ecで鏡面反射
し、結像レンズ2で二次元位置検出素子1の受光
面上に集光する。この集光位置は発光させた光源
と被検者の角膜形状とにより決定されるわけで、
例えば第3図,第4図,第5図の30′がその集
光位置を示す。
Further, the position of the light source in the optical axis direction, the imaging lens, and the arrangement of the two-dimensional position detection element are determined as follows. First, consider the corneal surface as a mirror surface, and assume that a convex mirror with an average radius of the cornea is located at a predetermined position.For example, if the light source 3
4 forms a virtual image 34' on this mirror surface. Therefore, the surface on which the virtual image of the light source is formed and the light-receiving surface of the two-dimensional position detection element are conjugately connected by the imaging lens 2, and the imaging magnification is determined according to the dimensions of the detection element. Note that if the radius of the cornea differs from the predetermined amount, the position where the virtual image of the light source is formed may shift, but it will almost never exceed the depth of field. With the above configuration, when the light sources 30 to 37 blink at intervals commensurate with the response speed of the two-dimensional position detection element, the light beam emitted from the light source 30 is specularly reflected by the cornea Ec, and the two-dimensional position detection element is detected by the imaging lens 2. The light is focused on the light receiving surface of 1. This light focusing position is determined by the light source that emits light and the shape of the subject's cornea.
For example, 30' in FIGS. 3, 4, and 5 indicates the focusing position.

二次元位置検出素子1に光束が入射するとその
位置(x座標、y座標)に相当する電気信号が出
力されるから、この信号を適宜処理を施して記憶
回路に記憶する。次いで光源31を点灯すると、
31′の位置に入光し、相当する出力があるか
ら、これを記憶する。この様にして順次、光源を
点滅すると、二次元位置検出素子1の受光面上で
は、第3図から第5図に描く通り、円もしくは橢
円の閉曲線38上に光源像が並んだことになり、
またその信号が記憶されていることになる。この
記憶された各指標像位置を連結する橢円曲線ax2
+bxy+cy2=1若しくはax2+bxy+cy2+dx+ey
=1(長軸と短軸が等しくなると円になる)に当
てはめると長軸、短軸及び回転角度が算出され
る。
When a light beam is incident on the two-dimensional position detection element 1, an electric signal corresponding to the position (x coordinate, y coordinate) is outputted, and this signal is appropriately processed and stored in the storage circuit. Next, when the light source 31 is turned on,
Since light enters the position 31' and there is a corresponding output, this is stored. When the light source is sequentially blinked in this manner, the light source images are arranged on the closed curve 38 of a circle or a circle on the light receiving surface of the two-dimensional position detection element 1, as shown in FIGS. 3 to 5. Become,
Also, that signal will be stored. A radial curve ax 2 that connects each of the stored index image positions
+bxy+cy 2 =1 or ax 2 +bxy+cy 2 +dx+ey
= 1 (when the major axis and minor axis are equal, it becomes a circle), the major axis, minor axis, and rotation angle are calculated.

第3図は光源像を連ねた曲線が円形を形成し、
従つて角膜は正常であることがわかる。一方、3
0乃至37の形成する光源の直径と位置並びにレ
ンズ2の結像倍率が定まつているから、閉曲線の
半径より角膜の半径が算出される。なお、これら
の演算処理はマイクロプロセツサーで実行するも
のとする。
In Figure 3, the curved line of light source images forms a circle,
Therefore, it can be seen that the cornea is normal. On the other hand, 3
Since the diameter and position of the light source formed by 0 to 37 and the imaging magnification of the lens 2 are fixed, the radius of the cornea can be calculated from the radius of the closed curve. It is assumed that these calculation processes are executed by a microprocessor.

第4図の閉曲線38は橢円で、長軸は水平、短
軸は垂直の角膜乱視のあるトーリツクな面である
ことがわかる。
It can be seen that the closed curve 38 in FIG. 4 is an elliptic circle, and is a toric surface with corneal astigmatism, the major axis being horizontal and the minor axis being vertical.

第5図の閉曲線38も橢円で、角膜は乱視軸が
水平軸から傾いたトーリツク面である。
The closed curve 38 in FIG. 5 is also an ellipse, and the cornea is a toric surface with the astigmatic axis tilted from the horizontal axis.

なお光源又は二次光源を円周に沿つて移動し、
所定位置で点灯することで固定光源に類似させる
こともできる。
Note that moving the light source or secondary light source along the circumference,
It can also be made to resemble a fixed light source by lighting up at a predetermined position.

以上述べた本発明は瞬時に必要な測定が完了す
るから精度は高く、また結果が簡単な処理で得ら
れるから測定後、直ぐに医師の判断に供し得るも
のである。更に構成の単純さから価格も安く、町
の眼科医でも広く使用できるので、病気の診断や
眼鏡の処方作成の正確さを増すことができる効果
がある。又、アナログ型の二次元位置検出素子を
用いて光束の重心位置を検出するため二次元位置
検出素子が所定位置から光軸方向にずれて指標像
が鮮明に結像されない場合でも角膜形状を正確に
測定できる。すなわち、二次元位置検出素子の光
軸方向設定位置の許容度が増す。更には角膜に涙
が付着して角膜反射像が二次元位置検出素子上で
ぼけても正確な測定ができる。
The present invention described above has high accuracy because the necessary measurements are completed instantaneously, and the results can be obtained through simple processing, so they can be submitted to the doctor's judgment immediately after the measurements. Furthermore, because of its simple structure, it is inexpensive and can be widely used by ophthalmologists in towns, so it has the effect of increasing the accuracy of disease diagnosis and prescription prescriptions for glasses. In addition, since an analog two-dimensional position detection element is used to detect the center of gravity of the light beam, even if the two-dimensional position detection element deviates from a predetermined position in the optical axis direction and the target image cannot be clearly formed, the corneal shape can be accurately determined. can be measured. That is, the tolerance of the set position of the two-dimensional position detection element in the optical axis direction increases. Furthermore, even if tears adhere to the cornea and the corneal reflection image becomes blurred on the two-dimensional position detection element, accurate measurements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例を示す光学断面図で、第2図は
角膜側から見た正面図、第3図,第4図,第5図
は各々位置検出素子の平面図。 図中、1は二次元位置検出素子、2は結像レン
ズ、30〜37は光源である。
FIG. 1 is an optical sectional view showing the embodiment, FIG. 2 is a front view as seen from the cornea side, and FIGS. 3, 4, and 5 are plan views of the position detection element. In the figure, 1 is a two-dimensional position detection element, 2 is an imaging lens, and 30 to 37 are light sources.

Claims (1)

【特許請求の範囲】[Claims] 1 角膜に順次投影される点状の指標であつて同
一円周上にある少なくとも3経線方向の複数個の
指標と、該指標の角膜反射像を所定像面へ結像す
る結像光学系と、該結像光学系の前記所定像面に
あるアナログ型の二次元位置検出素子と、該二次
元位置検出素子で順次検出される指標像位置座標
を記憶し、各指標像位置を連結する橢円曲線より
角膜形状を測定する手段を有することを特徴とす
る角膜計。
1. A plurality of point-like indicators sequentially projected onto the cornea in at least three meridian directions on the same circumference, and an imaging optical system that forms corneal reflected images of the indicators on a predetermined image plane. , an analog two-dimensional position detection element located on the predetermined image plane of the imaging optical system, and a mechanism for storing index image position coordinates sequentially detected by the two-dimensional position detection element and connecting each index image position. A keratometer characterized by having means for measuring the corneal shape from a circular curve.
JP14238779A 1979-11-02 1979-11-02 Cornea meter Granted JPS5666235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14238779A JPS5666235A (en) 1979-11-02 1979-11-02 Cornea meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14238779A JPS5666235A (en) 1979-11-02 1979-11-02 Cornea meter

Publications (2)

Publication Number Publication Date
JPS5666235A JPS5666235A (en) 1981-06-04
JPS6232934B2 true JPS6232934B2 (en) 1987-07-17

Family

ID=15314172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14238779A Granted JPS5666235A (en) 1979-11-02 1979-11-02 Cornea meter

Country Status (1)

Country Link
JP (1) JPS5666235A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006930A1 (en) * 1988-02-01 1989-08-10 Kabushiki Kaisha Topcon Ophthalmological instrument

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819224A (en) * 1981-07-29 1983-02-04 マミヤ光機株式会社 Measuring of radius of curvature of cornea
JPS5854927A (en) * 1981-09-25 1983-04-01 キヤノン株式会社 Method and apparatus for measuring shape of cornea
JPS5875531A (en) * 1981-10-28 1983-05-07 株式会社トプコン Apparatus for measuring curvature
JPS59105436A (en) * 1982-12-09 1984-06-18 キヤノン株式会社 Medical endoscope
JPS6018152A (en) * 1983-07-12 1985-01-30 キヤノン株式会社 Cornea measuring device
JPS6185920A (en) * 1984-10-03 1986-05-01 株式会社 ニデツク Apparatus for measuring cornea shape
JPH0651023B2 (en) * 1986-03-25 1994-07-06 キヤノン株式会社 Ophthalmic equipment
JPH02121621A (en) * 1988-11-01 1990-05-09 Topcon Corp Ophthalmic machine
JPH02121624A (en) * 1988-11-01 1990-05-09 Topcon Corp Ophthalmic machine
JPH02126828A (en) * 1988-11-08 1990-05-15 Topcon Corp Ophthalmologic instrument
DE102015110456B4 (en) * 2015-06-29 2017-02-09 Hochschule Für Technik Und Wirtschaft Des Saarlandes Purkinememeter and method for automatic evaluation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929877A (en) * 1972-07-14 1974-03-16
JPS4929887A (en) * 1972-07-13 1974-03-16
JPS5134591A (en) * 1974-07-17 1976-03-24 Saajikaru Mikuroshisutemu Inc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929887A (en) * 1972-07-13 1974-03-16
JPS4929877A (en) * 1972-07-14 1974-03-16
JPS5134591A (en) * 1974-07-17 1976-03-24 Saajikaru Mikuroshisutemu Inc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989006930A1 (en) * 1988-02-01 1989-08-10 Kabushiki Kaisha Topcon Ophthalmological instrument
DE3990085C2 (en) * 1988-02-01 1994-06-30 Topcon Corp Ophthalmic device

Also Published As

Publication number Publication date
JPS5666235A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
JP6348196B2 (en) System for determining the topography of the cornea of the eye
JP6636325B2 (en) Apparatus for reliably determining biometric variables of the whole eye
JP3630884B2 (en) Ophthalmic examination equipment
JPS6216088B2 (en)
US4944303A (en) Noncontact type tonometer
JPH0366355A (en) Topography-measuring method and apparatus thereof
JP2014209993A (en) Ophthalmologic apparatus, control method for ophthalmologic apparatus, and program
JPS6232934B2 (en)
CN113440099A (en) Human eye vision comprehensive inspection device and method
CA2080668C (en) Rectilinear photokeratoscope
JP3042851B2 (en) Corneal shape measuring device
US7128417B2 (en) Refractive power measurement apparatus
JPS6214291B2 (en)
JP3206936B2 (en) Eye refractometer
US20230255475A1 (en) Reflection based corneal topography system using prisms for improved accuracy and method of use
JPS61100227A (en) Ophthalmic measuring apparatus
JPH0360629A (en) Cornea form measuring device
JP2003038442A (en) Cornea shape measuring device
JPS629331B2 (en)
JPS6159132B2 (en)
JP2614328B2 (en) Ophthalmic measurement device
JP4436914B2 (en) Eye refractive power measuring device
JPH0577412B2 (en)
JPS6018152A (en) Cornea measuring device
JP3046062B2 (en) Eye refractive power measuring device