JPS6214291B2 - - Google Patents

Info

Publication number
JPS6214291B2
JPS6214291B2 JP54094581A JP9458179A JPS6214291B2 JP S6214291 B2 JPS6214291 B2 JP S6214291B2 JP 54094581 A JP54094581 A JP 54094581A JP 9458179 A JP9458179 A JP 9458179A JP S6214291 B2 JPS6214291 B2 JP S6214291B2
Authority
JP
Japan
Prior art keywords
cornea
light source
light
axis
keratometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54094581A
Other languages
Japanese (ja)
Other versions
JPS5618837A (en
Inventor
Yoshi Kobayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9458179A priority Critical patent/JPS5618837A/en
Publication of JPS5618837A publication Critical patent/JPS5618837A/en
Publication of JPS6214291B2 publication Critical patent/JPS6214291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は眼科機器に関し、殊に角膜計に関す
る。角膜の形状を測定する角膜計は一般に角膜の
曲率、乱視度そして乱視軸方向の三要素を測定す
るために使われるが、コンタクトレンズのベース
カーブの検査などにも使われることがある。従来
知られた角膜計においては視標を角膜に投影し、
その投影像の大きさを顕微鏡で測定する方法が用
いられてきた。しかしながら、この方法だと前記
三要素を同時に測ることができないため、測定中
の被検者の目が動くことで誤差が生じ、精度の低
下を招いた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ophthalmological instruments, and more particularly to keratometers. A keratometer that measures the shape of the cornea is generally used to measure the three elements of corneal curvature, degree of astigmatism, and astigmatic axis direction, but it can also be used to inspect the base curve of contact lenses. In conventionally known keratometers, an optotype is projected onto the cornea,
A method of measuring the size of the projected image using a microscope has been used. However, with this method, it is not possible to simultaneously measure the three elements, so errors occur due to eye movement of the subject during measurement, resulting in a decrease in accuracy.

本発明は瞬時に角膜形状の測定を可能にするこ
とで、精度の向上を計ることを目的とする。
An object of the present invention is to improve accuracy by making it possible to measure corneal shape instantaneously.

以下、図面に従つて一実施例を説明する。図
中、Ecは被検者の角膜を示す。また1は円環状
の光源で、微小光源を並べて形成してもよいし、
スリツトを照明してもよい。なお、光源を連続さ
せない配置も可能である。2は投影レンズで、第
2図に軸方向の形態を描く様に、投影レンズの光
軸Xと円環状光源1の中心は一致する。
An embodiment will be described below with reference to the drawings. In the figure, Ec indicates the subject's cornea. Further, 1 is an annular light source, which may be formed by arranging minute light sources,
The slit may be illuminated. Note that an arrangement in which the light sources are not continuous is also possible. Reference numeral 2 denotes a projection lens, and the optical axis X of the projection lens coincides with the center of the annular light source 1, as shown in the axial configuration in FIG.

11と14はポジシヨン・デイテクターで、自
己走査型一次元フオトダイオード・アレイを使用
するものとし、第1図では2つ描いているだけで
あるが、実際には第3図に示す通り、投影光学系
の光軸Xを中心に放射状で、等角度に6本(11
〜16)配置している。その光源1とデイテクタ
ー11〜16の位置関係は、角膜Ecとして平均
的な角膜曲率半径を想定し、この面を凸面鏡とみ
なした時に、光源1とデイテクター11〜16の
受光面が角膜Ecの表面と投影レンズ2に関して
共役になる様に、云い換えれば、角膜Ecによる
虚像1′とデイテクター11〜16の受光面が投
影レンズ2に関して共役になる様に関係付ける。
11 and 14 are position detectors that use a self-scanning one-dimensional photodiode array, and although only two are shown in Figure 1, in reality, as shown in Figure 3, they are equipped with projection optics. 6 (11
~16) It is arranged. The positional relationship between the light source 1 and the detectors 11 to 16 is such that the light receiving surface of the light source 1 and the detectors 11 to 16 is the surface of the cornea Ec, assuming an average radius of corneal curvature as the cornea Ec and considering this surface as a convex mirror. In other words, the virtual image 1' formed by the cornea Ec and the light-receiving surfaces of the detectors 11 to 16 are related to each other so that they are conjugate with respect to the projection lens 2.

ここで、光源1を点燈した場合、角膜Ecが球
面であればデイテクターの受光面位置では光源像
1″は円となり(第3図)、角膜乱視のあるトーリ
ツクな面なら楕円となる。更に円又は楕円の大き
さから角膜の曲率半径、楕円率から角膜乱視度、
楕円の軸方向から乱視軸方向を各求めることがで
きる。そして例えば楕円であつても中心が特定さ
れる場合、変数としては長軸、短軸そして基準座
標軸からの回転角度の3変数であるから、座標上
の3点を押えれば形状の特定は可能であり、中心
の移動がない場合は、同一半径上に位置しない少
なくとも3本の半径方向の位置情報があれば良い
ことになる。
Here, when the light source 1 is turned on, if the cornea Ec is spherical, the light source image 1'' will be a circle at the light-receiving surface position of the detector (Fig. 3), and if it is a toric surface with corneal astigmatism, it will be an ellipse. The radius of curvature of the cornea is determined from the size of the circle or ellipse, and the degree of corneal astigmatism is determined from the ellipticity.
The astigmatism axis direction can be determined from the axis direction of the ellipse. For example, when specifying the center of an ellipse, there are three variables: the long axis, the short axis, and the rotation angle from the reference coordinate axis, so the shape can be specified by selecting three points on the coordinates. Therefore, if there is no movement of the center, it is sufficient to have position information on at least three radial directions that are not located on the same radius.

以上の構成において、光源1で角膜Ecを点燈
する角膜Ecの鏡面作用で虚像1′が形成され、そ
の虚像1′が投影レンズ2でデイテクター11〜
16上に投影される。第3図の様に円環状光源
1″の像が円形となつて各デイテクターを横切る
時、各デイテクター11〜16は順にa,b,
c,d,e,f点で光に応答し、それぞれ光に応
答した位置に対応した信号を出力する。不図示の
電気処理系はこれらの信号を取り込んで記憶し、
それらを楕円を示す式に当て嵌め、その結果、長
軸と短軸が等しいことから円であることが確認さ
れ、また円の半径が算出されるので、そこから更
に球面であることおよび曲率半径が示される。
In the above configuration, a virtual image 1' is formed by the specular action of the cornea Ec by illuminating the cornea Ec with the light source 1, and the virtual image 1' is projected onto the detector 11 through the projection lens 2.
16. When the image of the annular light source 1'' crosses each detector in a circular manner as shown in FIG.
It responds to light at points c, d, e, and f, and outputs signals corresponding to the positions that responded to the light. An electrical processing system (not shown) captures and stores these signals,
Applying these to the formula for an ellipse, the results confirm that it is a circle because the major and minor axes are equal, and the radius of the circle is calculated, which further confirms that it is a spherical surface and the radius of curvature. is shown.

他方、第4図の様に光源像1″が楕円となつて
各デイテクターを横切る時、各デイテクター11
〜16は順にa′,b′,c′,d′,e′,f′点で光に応

し、それぞれ光に応答した位置に対応した信号を
出力する。この場合も、楕円の長軸、短軸そして
軸の回転角度が算出され、そこから基準曲率半
径、角膜乱視度そして軸方向が示される。
On the other hand, when the light source image 1'' becomes an ellipse and crosses each detector as shown in FIG.
.about.16 respond to light at points a', b', c', d', e', and f' in order, and output signals corresponding to the respective positions that responded to the light. In this case as well, the major axis, minor axis, and rotation angle of the axis of the ellipse are calculated, from which the reference radius of curvature, degree of corneal astigmatism, and axial direction are indicated.

以上説明した実施例で、デイテクターを同時に
作動させれば測定は瞬間にして終了するから、被
検眼の動きなどによる誤差の介入を防止して精度
の向上を図れる効果がある。なお、デイテクター
を回軸を中心に回転させて測定することも可能で
あるが、予め放射状に固設した方が、測定時間は
短くなり、回転機構は不用となり、電気処理回路
も単純になる利点がある。そして本発明の如く放
射状に固設する場合、円環状指標の角膜反射像が
放射状に配列された一次元光位置検出手段と略直
交するため斜交する場合に比べ測定範囲が大きく
とれ又測定精度も高く自動測定に適する。なお、
測定交束としては赤外線の様な不可視光を使用す
る方が、被検者を緊張させないので好ましい。
In the embodiment described above, if the detectors are operated simultaneously, the measurement ends instantly, which has the effect of preventing the intervention of errors due to movement of the subject's eye and improving accuracy. It is also possible to measure by rotating the detector around the rotation axis, but the advantage of fixing it radially in advance is that the measurement time is shorter, a rotation mechanism is not required, and the electrical processing circuit is simpler. There is. When fixedly installed radially as in the present invention, the corneal reflection image of the annular index is approximately orthogonal to the one-dimensional optical position detection means arranged radially, so the measurement range can be larger and the measurement accuracy can be increased compared to when the index is obliquely arranged. It is also suitable for automatic measurement. In addition,
It is preferable to use invisible light such as infrared rays as the measurement beam because it does not make the subject nervous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す光学断面図。
第2図は光軸方向から見た図。第3図と第4図
は、デイテクターと反射像を示す図。 図中、1は円環状光源、2は投影レンズ、11
〜14はポジシヨン・デイテクター、Ecは角
膜、Xは光軸である。
FIG. 1 is an optical cross-sectional view showing one embodiment of the present invention.
Figure 2 is a view seen from the optical axis direction. FIG. 3 and FIG. 4 are diagrams showing a detector and a reflected image. In the figure, 1 is an annular light source, 2 is a projection lens, 11
~14 is a position detector, Ec is a cornea, and X is an optical axis.

Claims (1)

【特許請求の範囲】 1 角膜に投影される円環状指標と、該指標の角
膜反射像を所定像面へ結像する結像光学系と、該
結像光学系の前記所定像面にあつて前記結像光学
系の光軸を中心に少なくとも3経線方向に放射状
に配列された一次元光位置検出器を有することを
特徴とする角膜計。 2 前記一次元光位置検出器は自己走査型のフオ
トダイオード・アレイである特許請求の範囲第1
項記載の角膜計。
[Scope of Claims] 1. An annular index projected onto the cornea, an imaging optical system that forms a corneal reflected image of the index onto a predetermined image plane, and a A keratometer comprising one-dimensional optical position detectors arranged radially in at least three meridian directions around the optical axis of the imaging optical system. 2. Claim 1, wherein the one-dimensional optical position detector is a self-scanning photodiode array.
Keratometer as described in section.
JP9458179A 1979-07-23 1979-07-23 Keratometer Granted JPS5618837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9458179A JPS5618837A (en) 1979-07-23 1979-07-23 Keratometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9458179A JPS5618837A (en) 1979-07-23 1979-07-23 Keratometer

Publications (2)

Publication Number Publication Date
JPS5618837A JPS5618837A (en) 1981-02-23
JPS6214291B2 true JPS6214291B2 (en) 1987-04-01

Family

ID=14114234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9458179A Granted JPS5618837A (en) 1979-07-23 1979-07-23 Keratometer

Country Status (1)

Country Link
JP (1) JPS5618837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102278A (en) * 1987-10-16 1989-04-19 Mitsubishi Electric Corp Refrigerated open counter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197404A (en) * 1981-05-29 1982-12-03 Nippon Kogaku Kk <Nikon> Measuring method of radius of curvature
JPS5829446A (en) * 1981-08-18 1983-02-21 キヤノン株式会社 Ophthalmic measuring apparatus
JPS5850937A (en) * 1981-09-21 1983-03-25 キヤノン株式会社 Apparatus for measuring shape of cornea
JPS5854927A (en) * 1981-09-25 1983-04-01 キヤノン株式会社 Method and apparatus for measuring shape of cornea
JPS59101129A (en) * 1982-11-30 1984-06-11 キヤノン株式会社 Apparatus for positional alignment and preciseness judgementof ophthalimic machine
JPS6185920A (en) * 1984-10-03 1986-05-01 株式会社 ニデツク Apparatus for measuring cornea shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102278A (en) * 1987-10-16 1989-04-19 Mitsubishi Electric Corp Refrigerated open counter

Also Published As

Publication number Publication date
JPS5618837A (en) 1981-02-23

Similar Documents

Publication Publication Date Title
US5106183A (en) Topography measuring apparatus
US9084564B2 (en) System for determining the topography of the cornea of an eye
US4998819A (en) Topography measuring apparatus
JPS6216088B2 (en)
JPH0566804B2 (en)
JPS6150449B2 (en)
JPH029805B2 (en)
JPS6214291B2 (en)
JPS6232934B2 (en)
JP3042851B2 (en) Corneal shape measuring device
JP5601614B2 (en) Eye refractive power measuring device
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
USRE39882E1 (en) Ophthalmologic characteristic measuring apparatus
US4591247A (en) Eye refractometer
US7128417B2 (en) Refractive power measurement apparatus
JPH06165757A (en) Retinoscopy type objective optical refractivity measuring apparatus
JP2614324B2 (en) Corneal shape measuring device
JP3206936B2 (en) Eye refractometer
JPS6151890B2 (en)
JPH0379015B2 (en)
JPS629331B2 (en)
JP2614328B2 (en) Ophthalmic measurement device
JPH0739517A (en) Ocular refraction measuring apparatus
JPS59230535A (en) Ophthalmic measuring apparatus
JPS5928945A (en) Apparatus for measuring cornea shape