JPS5928945A - Apparatus for measuring cornea shape - Google Patents

Apparatus for measuring cornea shape

Info

Publication number
JPS5928945A
JPS5928945A JP57138166A JP13816682A JPS5928945A JP S5928945 A JPS5928945 A JP S5928945A JP 57138166 A JP57138166 A JP 57138166A JP 13816682 A JP13816682 A JP 13816682A JP S5928945 A JPS5928945 A JP S5928945A
Authority
JP
Japan
Prior art keywords
index
projection
measuring device
shape measuring
corneal shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57138166A
Other languages
Japanese (ja)
Other versions
JPS6248495B2 (en
Inventor
中村 行告
恭司 関口
増田 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57138166A priority Critical patent/JPS5928945A/en
Publication of JPS5928945A publication Critical patent/JPS5928945A/en
Priority to US06/801,500 priority patent/US4666269A/en
Publication of JPS6248495B2 publication Critical patent/JPS6248495B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は角膜の曲率半径や屈折力、乱視度、及びコンタ
クトレンズのペースカーブ等を測定する角膜形状測定装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corneal shape measuring device for measuring the radius of curvature, refractive power, degree of astigmatism, pace curve of a contact lens, etc. of the cornea.

従来の角膜計には、いわゆるサクリフ式やIJ )マン
式等の装置があるが、これらはいずれも対物レンズの周
囲方向から測定用投影指標を被検眼の角膜に投影し、そ
の角膜反射像の大きさを合致システムを備えた測定光学
系で観察し、合致システムのプリズム等の移動量から角
膜曲率半径、角膜屈折力を求めている0これらは各々次
のような長所短所がある。
Conventional keratometers include devices such as the so-called Sacliff type and IJ) Mann type, but these all project a projection index for measurement onto the cornea of the eye to be examined from the circumferential direction of the objective lens, and calculate the reflected corneal image. The size is observed using a measuring optical system equipped with a matching system, and the radius of corneal curvature and corneal refractive power are determined from the amount of movement of the prism, etc. of the matching system. Each of these methods has the following advantages and disadvantages.

すなわちサクリフ式の角膜計は、円形スリット状の投影
指標が角膜に投影される為、角膜反射像の様子から角膜
乱視や涙による反射像の乱れ等がわかり、使い易いが、
投影指標と被検眼との距離が適正位置からずれると測定
値に誤差が生ずるという欠点があった。
In other words, the Sacliff-type keratometer is easy to use because a circular slit-shaped projection index is projected onto the cornea, so corneal astigmatism and disturbances in the reflected image due to tears can be seen from the appearance of the corneal reflection image.
There is a drawback that if the distance between the projection index and the eye to be examined deviates from the proper position, an error occurs in the measured value.

一方すトマン式の角膜計では投影指標と被検眼の距離が
適正位置から若干ずれても誤差の少ない正確な測定値を
得ることができるが、被検眼の角膜に対して特定経線方
向のみの指標しか投影していない為、角膜乱視の状態等
を把握しにくいという欠点があった。
On the other hand, with the Stoman type keratometer, it is possible to obtain accurate measurement values with little error even if the distance between the projection index and the eye to be examined deviates slightly from the proper position, but the index only measures a specific meridian direction relative to the cornea of the eye to be examined. However, since it only projects images, it has the disadvantage that it is difficult to grasp the state of corneal astigmatism.

本発明の目的は円形スリット状の投影指標と、該投影指
標を光学的に無限遠から角膜に投影する為の円環状シリ
ンドリカルレンズから成る投影レンズとを一体的に形成
することにより投影レンズの光軸と投影指標とが精度良
く合致し、しかも安いコストで生産でき、被検眼の角膜
と指標との距離が最適位置より若干ずれても測定誤差の
生じない正確な角膜計を実現しようとするものである0
以下図面に従って本発明の詳細な説明する0第1図で、
Ecは被検眼の角膜を示す。1は指標投影レンズで、前
面の投影光射出側は円環状シリンドリカルレンズ面とな
っており、その後側焦点位置近傍の後壁面には第2図に
示すような円形状スリットの投影指標2が、投影レンズ
1に直接蒸着や塗装等により描かれて一体化されている
。6社投影指標2を照明する光源で、例えば円環状スト
ロボや円環状螢光灯、あるいは微小光源(例えば発光ダ
イオード)を複数個円周上に配列したものでも良い。
An object of the present invention is to integrally form a circular slit-shaped projection index and a projection lens consisting of a toric cylindrical lens for optically projecting the projection index onto the cornea from an infinite distance, thereby changing the optical axis of the projection lens. The objective is to create an accurate keratometer that matches the projection index with high accuracy, can be produced at low cost, and does not cause measurement errors even if the distance between the cornea of the eye being examined and the index deviates slightly from the optimal position. Some 0
The present invention will be described in detail below according to the drawings.
Ec indicates the cornea of the eye to be examined. Reference numeral 1 denotes an index projection lens, and the projection light exit side of the front surface is an annular cylindrical lens surface, and a circular slit projection index 2 as shown in FIG. It is drawn and integrated directly onto the projection lens 1 by vapor deposition, painting, or the like. The light source for illuminating the projection index 2 may be, for example, an annular strobe, an annular fluorescent lamp, or a plurality of minute light sources (for example, light emitting diodes) arranged on the circumference.

ここで、投影レンズ10円環状シリンドリカルレンズは
各経線方向で屈折力をもち、これに直交する方向すなわ
ち円周方向で屈折力をもたないレンズである0 4社対物レンズでその後側焦点位置近傍に絞り5ヲ有し
、テレセンドリンク光学系を構成する。
Here, the projection lens 10 is a toric cylindrical lens that has refractive power in each meridian direction and has no refractive power in the direction perpendicular to this, that is, in the circumferential direction. It has an aperture of 5 and constitutes a telescopic link optical system.

対物レンズ4の結像位置に社位置検出素子6が設けられ
る。位置検出集子6としてはCCD等の1次元イメージ
センサ、1次元ホトダイオードアレイ又は2次元イメー
ジセンサ等が用いられる0と−ころで、指標投影レンズ
1及び円形状スリットの投影指標2と、円環状の光源3
とは、対物レンズ4の光軸Xを中心として同心円状に配
置される。
A position detection element 6 is provided at the imaging position of the objective lens 4. As the position detection collector 6, a one-dimensional image sensor such as a CCD, a one-dimensional photodiode array, a two-dimensional image sensor, etc. is used. light source 3
are arranged concentrically around the optical axis X of the objective lens 4.

これによって、第1図のような光軸Xを含む断面すなわ
ち所定経線方向断面内で、光源6で照明された投影指標
2からの光は円環状シリンドリカルレンズの投影レンズ
1により無限遠からの光束すなわち平行な光束に変換さ
れ、角膜EcK投影される。
As a result, within a cross section including the optical axis X as shown in FIG. It is converted into a parallel light beam and projected onto the cornea EcK.

角JiEcの凸面鏡作用によって、投影指標20角膜反
射像2′(虚像)が形成されるが、指標投影光学系が前
述のように無限遠からの光束で被検眼を照射しているた
め、投影指標と角膜Ecとの距離が最適距離より若干ず
れた場合でも角膜反射像2′の大きさは変化しない。
Due to the convex mirror action of the angle JiEc, a corneal reflection image 2' (virtual image) of the projection index 20 is formed, but since the index projection optical system illuminates the subject's eye with a light beam from infinity as described above, the projection index and Even if the distance to the cornea Ec deviates slightly from the optimum distance, the size of the corneal reflection image 2' does not change.

また角膜反射像2′を位置検出素子乙に結像する結像光
学系がテレセンドリンク系となっているだめ、膜反射像
2′の投影像7の大きさは変化しない0すなわち照明光
学系及び結像光学系の共働作用により、被検眼が光軸方
向に多少動〜・でも角膜反射像2′の大きさは変化せず
、測定誤差を生じない0ところで角膜Ecが完全球面の
場合、角膜反射像2′は真円となるが一般に角膜Ecは
トーリック面となっているので、角膜反射像2′は楕円
になることが多い。
Furthermore, since the imaging optical system that forms the corneal reflection image 2' on the position detection element B is a telescopic link system, the size of the projected image 7 of the membrane reflection image 2' does not change. Due to the cooperative action of the imaging optical system, even if the subject's eye moves slightly in the optical axis direction, the size of the corneal reflection image 2' does not change, and no measurement error occurs.If the cornea Ec is a perfect sphere at zero, The corneal reflection image 2' is a perfect circle, but since the cornea Ec is generally a toric surface, the corneal reflection image 2' is often an ellipse.

そのため、角膜反射像2′の形状を測定するには、一般
に楕円形状を求める測定システムが必要となる0 第6図はこの測定システムの一実施例の図である。
Therefore, in order to measure the shape of the corneal reflection image 2', a measurement system for determining an elliptical shape is generally required. FIG. 6 is a diagram of an embodiment of this measurement system.

これは1次元ホトダイオードアレイを位置検出菓子6に
用い、これを測定光軸Xを中心どして回転走査して角膜
反射像2′の投影像2′の楕円の長径、短径、楕円軸を
検出して電気的に演算するものである。
This uses a one-dimensional photodiode array as the position detection confectionery 6, and rotates and scans it around the measurement optical axis It is detected and calculated electrically.

この楕円形状を換算すれば、角膜の曲率半径、乱視度、
乱視軸方向を算出することができる。
If this elliptical shape is converted, the radius of curvature of the cornea, the degree of astigmatism,
The astigmatism axis direction can be calculated.

なお測定システムとしては、これに限らず、複数個例え
ば3箇の1次元ホトダイオードアレイを所定位置関係で
配置した構成にしたり、又は2次元画像素子を用いて瞬
時に自動測定するようにしても良い。
Note that the measurement system is not limited to this, and may have a configuration in which a plurality of, for example, three one-dimensional photodiode arrays are arranged in a predetermined positional relationship, or a two-dimensional image element may be used for instantaneous automatic measurement. .

なお角膜Ecと測定系との位置合わせ操作を行う際の外
観及び角膜反射像の観察をするために、測定光路中に光
分割ミラー7(例えばハーフミラ−。
In addition, in order to observe the external appearance and the corneal reflection image when aligning the cornea Ec and the measurement system, a light splitting mirror 7 (for example, a half mirror) is installed in the measurement optical path.

ダイクロイックミラー)トリレーレンズ8,9、ミラー
10、接眼レンズ11を有する観察光学系を設けると都
合が良い。なお光分割ミラー7として、ダイクロイック
ミラーを用いる場合、m整光学系に導くための光束すな
わち第1図において光分割ミラー7で反射されるような
光束を発する照明光源を別に設けると良い。
Dichroic mirror) It is convenient to provide an observation optical system having trirelay lenses 8, 9, a mirror 10, and an eyepiece 11. Note that when a dichroic mirror is used as the light splitting mirror 7, it is preferable to separately provide an illumination light source that emits a light flux to be guided to the m-alignment optical system, that is, a light flux that is reflected by the light splitting mirror 7 in FIG.

第4図は本発明の第2の実施例で、指標投影光学系の性
能を向上させようとしたものである。
FIG. 4 shows a second embodiment of the present invention, which attempts to improve the performance of the target projection optical system.

円形状スリットの投影指標102を角膜に対して投影す
る光束は、光軸Xを含む経線方向では完全な平行光束で
あることが望ましいわけである。そこで、本実施例の指
標投影レンズ101の投影光射出面のシリンドリカルレ
ンズの経線方向の断面形状を多次曲線にすることにより
、すなわち球面レンズに対する非球面レンズと同様に特
殊形状にすることにより投影光束が完全平行光束に近い
光束になるようにしたものである。投影レンズ101の
後面の投影指標102が形成されている面は投影光束と
略直角にしてあり、光源3の照明光が効率良く入射する
ようにしたものである。
It is desirable that the light beam that projects the projection index 102 of the circular slit onto the cornea is a completely parallel light beam in the meridian direction including the optical axis X. Therefore, by making the cross-sectional shape in the meridian direction of the cylindrical lens of the projection light exit surface of the target projection lens 101 of the present embodiment a multidimensional curve, that is, by making it a special shape similar to the aspherical lens with respect to the spherical lens, the projection light can be projected. The luminous flux is made to be close to a perfectly parallel luminous flux. The rear surface of the projection lens 101, on which the projection index 102 is formed, is substantially perpendicular to the projection light beam, so that the illumination light from the light source 3 is efficiently incident thereon.

112拡保膜部材で、第5図に示されるように透明な円
形の平面板からなり投影レンズ101 IC貼り付けら
れており投影レンズ101のシリンドリカルレンズ面に
傷や塵、指紋等がつかないよう保護している。又この保
護部材112は指標投影照射光束の有効光束のみを透過
し、それ以外の光を遮光する円環状透光部よりなる絞り
機能を有している。
112 is an expansion membrane member, which is made of a transparent circular flat plate as shown in FIG. Protecting. The protective member 112 has a diaphragm function consisting of an annular light transmitting portion that transmits only the effective light beam of the target projection irradiation light beam and blocks other light.

第、6図は第6の実施例で、角膜Ecの中央部のみでな
く周辺部の形状を測定する為の応用例で、指標投影レン
ズ201は同心円状に複数の円環状シリンドリカルレン
ズを有しており、各々シリンドリカルレンズの後側焦点
位置に対応して複数本の円形状スリットの投影指標20
2が設けられている。
6 shows a sixth embodiment, which is an application example for measuring the shape of not only the central part of the cornea Ec but also the peripheral part, and the index projection lens 201 has a plurality of toric cylindrical lenses arranged concentrically. A projection index 20 of a plurality of circular slits is provided, each corresponding to the rear focal point position of the cylindrical lens.
2 is provided.

以上本発明によれば、投影指標と被検眼角膜との距離が
最適位置から多少ずれても角膜反射像の大きさが変化し
ない、角膜形状測定用の指標投影光学系を精度良く、し
かも安い生産コストで提供できるものである。
As described above, according to the present invention, an index projection optical system for corneal shape measurement that does not change the size of the corneal reflected image even if the distance between the projection index and the cornea of the eye to be examined deviates from the optimum position is produced with high precision and at low cost. It can be provided at a low cost.

本発明の指標投影光学系をテレセン) IJツク式の結
像光学系と、検出部に一次元ホトダイオードアレイや二
次元画像菓子を用いた自動測定システムと組合せること
により、正確で作動距離(測定装置と被検眼角膜との距
離)合わせの許容範囲の広い自動角膜形状測定装置を容
易に実現できるものである。
By combining the target projection optical system of the present invention with an IJ-type imaging optical system and an automatic measurement system that uses a one-dimensional photodiode array or two-dimensional image confectionery as the detection section, it is possible to accurately measure the working distance. This makes it possible to easily realize an automatic corneal shape measuring device with a wide tolerance for alignment (distance between the device and the cornea of the eye to be examined).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の断面図、第2図は円形状
スリット指標の図、第3図は角膜反射像の形状検出部の
説明図、第4図は本発明の第2実施例の図、第5図は投
影光学系の絞り機能を備えた保護部材の説明図、第6図
は本発明の第3実施例の図、 図中Ecは角膜、1,101.201社指標投影レンズ
、2゜102.202 a投影指標、2′は投影指標の
角膜反射像、2″は角膜反射後の投影像、3は光源、4
は対物レンズ、5は絞り、6は検出素子である。 出願人 キャノン株式会社 箔47   F、5(2) も乙霞
FIG. 1 is a sectional view of the first embodiment of the present invention, FIG. 2 is a diagram of a circular slit index, FIG. 3 is an explanatory diagram of a shape detection section of a corneal reflection image, and FIG. 4 is a diagram of a second embodiment of the present invention. Figure 5 is an explanatory diagram of a protective member with an aperture function of the projection optical system, Figure 6 is a diagram of the third embodiment of the present invention, Ec in the figure is the cornea, and 1,101.201 company Index projection lens, 2゜102.202 a Projection index, 2' is a corneal reflection image of the projection index, 2'' is a projected image after corneal reflection, 3 is a light source, 4
5 is an objective lens, 5 is an aperture, and 6 is a detection element. Applicant Canon Co., Ltd. Haku 47 F, 5 (2) Mootoka

Claims (1)

【特許請求の範囲】 1、被検眼角膜に所定指標を投影し、該指標の角膜反射
像より角膜形状を測定する装置において、前記指標を投
影する手段が該指標を無限遠から投影する手段であり、
該投影手段と前記指標が一体的に設けられることを特徴
とする角膜形状測定装置。 2、前記投影手段が各経線方向で屈折力を有し、これに
直交する円周方向では屈折力の無い円環状シリンドリカ
ル面を有する特許請求の範囲第1項記載の角膜形状測定
装置。 3、各経線方向で同心円状に複数個の円環状シリンドリ
カル面を有する特許請求の範囲第2項記載の角膜形状測
定装置。 4、各経線方向で円環状シリンドリカル面から焦点位置
までが同じ屈折率の同一媒体である特許請求の範囲第2
項又は第3項記載の角膜形状測定装置。 5、各経線方向で投影指標が焦点位置に設けられる特許
請求の範囲第4項記載の角膜形状測定装置0 6、前記投影手段の射出側に透明保護板が設けられる特
許請求の範囲第1項記載の角膜形状測定装置。 7、前記保護板が前記投影手段の有効光束以外を遮光す
る絞り機能を備えた特許請求の範囲第6項記載の角膜形
状測定装置。 8、投影指標が円環状であって各経線方向で投影光軸に
直角に設けられる特許請求の範囲第5項記載の角膜形状
測定装置。 9、投影指標が円形状であって各経線方向で投影光軸1
/Cf1Jrめに設けられる特許請求の範囲第5項記載
の角膜形状測定装置。
[Scope of Claims] 1. In an apparatus for projecting a predetermined index onto the cornea of a subject's eye and measuring the corneal shape from a corneal reflection image of the index, the means for projecting the index is a means for projecting the index from an infinite distance. ,
A corneal shape measuring device characterized in that the projection means and the index are provided integrally. 2. The corneal shape measuring device according to claim 1, wherein the projection means has a toric cylindrical surface that has refractive power in each meridian direction and has no refractive power in the circumferential direction perpendicular thereto. 3. The corneal shape measuring device according to claim 2, having a plurality of annular cylindrical surfaces arranged concentrically in each meridian direction. 4. Claim 2 in which the same medium has the same refractive index from the toric cylindrical surface to the focal point in each meridian direction
The corneal shape measuring device according to item 1 or 3. 5. A corneal shape measuring device according to claim 4, in which a projection index is provided at a focal position in each meridian direction. 6. Claim 1, in which a transparent protection plate is provided on the exit side of the projection means. The corneal topography measurement device described. 7. The corneal shape measuring device according to claim 6, wherein the protection plate has an aperture function that blocks light other than the effective light beam of the projection means. 8. The corneal shape measuring device according to claim 5, wherein the projection index is annular and is provided at right angles to the projection optical axis in each meridian direction. 9. The projection index is circular and the projection optical axis 1 is aligned in each meridian direction.
The corneal shape measuring device according to claim 5, which is provided at the third point /Cf1Jr.
JP57138166A 1982-08-09 1982-08-09 Apparatus for measuring cornea shape Granted JPS5928945A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57138166A JPS5928945A (en) 1982-08-09 1982-08-09 Apparatus for measuring cornea shape
US06/801,500 US4666269A (en) 1982-08-09 1985-11-25 Ophthalmologic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138166A JPS5928945A (en) 1982-08-09 1982-08-09 Apparatus for measuring cornea shape

Publications (2)

Publication Number Publication Date
JPS5928945A true JPS5928945A (en) 1984-02-15
JPS6248495B2 JPS6248495B2 (en) 1987-10-14

Family

ID=15215566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138166A Granted JPS5928945A (en) 1982-08-09 1982-08-09 Apparatus for measuring cornea shape

Country Status (1)

Country Link
JP (1) JPS5928945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231617A (en) * 1986-04-01 1987-10-12 キヤノン株式会社 Apparatus for measuring eye refraction power
JP2016220860A (en) * 2015-05-28 2016-12-28 株式会社ニデック Ophthalmologic measuring device
JP2019528835A (en) * 2016-09-02 2019-10-17 カール ツアイス メディテック アクチエンゲゼルシャフト Illumination system for identifying the shape of the cornea of the eye

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134229A (en) * 1974-09-18 1976-03-23 Japan National Railway Semento asufuarutogurauto no ryudoseikairyohoho
JPS5626206A (en) * 1979-08-09 1981-03-13 Canon Inc Detecting device
JPS5778838A (en) * 1981-09-09 1982-05-17 Canon Kk Apparatus for measuring shape of cornea

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134229A (en) * 1974-09-18 1976-03-23 Japan National Railway Semento asufuarutogurauto no ryudoseikairyohoho
JPS5626206A (en) * 1979-08-09 1981-03-13 Canon Inc Detecting device
JPS5778838A (en) * 1981-09-09 1982-05-17 Canon Kk Apparatus for measuring shape of cornea

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231617A (en) * 1986-04-01 1987-10-12 キヤノン株式会社 Apparatus for measuring eye refraction power
JPH0370962B2 (en) * 1986-04-01 1991-11-11 Canon Kk
JP2016220860A (en) * 2015-05-28 2016-12-28 株式会社ニデック Ophthalmologic measuring device
JP2019528835A (en) * 2016-09-02 2019-10-17 カール ツアイス メディテック アクチエンゲゼルシャフト Illumination system for identifying the shape of the cornea of the eye

Also Published As

Publication number Publication date
JPS6248495B2 (en) 1987-10-14

Similar Documents

Publication Publication Date Title
US4666269A (en) Ophthalmologic apparatus
US4421391A (en) Auto eye-refractometer
US4159867A (en) Device and method for measuring the curvature of the cornea
US4944303A (en) Noncontact type tonometer
US4917458A (en) Cornea shape measuring apparatus
JPS61234837A (en) Apparatus for measuring eye refraction
JPS6232934B2 (en)
JPS6324383B2 (en)
JPS5928945A (en) Apparatus for measuring cornea shape
JPS6214291B2 (en)
JPS629331B2 (en)
US4299455A (en) Vision testing instrument
JPH02220626A (en) Apparatus for measuring shape of cornea
US20230255475A1 (en) Reflection based corneal topography system using prisms for improved accuracy and method of use
SU1115715A1 (en) Keratometer
JPS59155232A (en) Ophthalmic apparatus
SU1337042A1 (en) Keratometer
JPS6240568Y2 (en)
SU1397021A1 (en) Keratometer
JPH069544B2 (en) Eye measuring device
JPS6018152A (en) Cornea measuring device
JPS628170B2 (en)
JPS61206422A (en) Visual field measuring apparatus
JPS6264331A (en) Ophthalmic measuring apparatus
JPH0566805B2 (en)