JPS6232619B2 - - Google Patents

Info

Publication number
JPS6232619B2
JPS6232619B2 JP54154370A JP15437079A JPS6232619B2 JP S6232619 B2 JPS6232619 B2 JP S6232619B2 JP 54154370 A JP54154370 A JP 54154370A JP 15437079 A JP15437079 A JP 15437079A JP S6232619 B2 JPS6232619 B2 JP S6232619B2
Authority
JP
Japan
Prior art keywords
conductor layer
semiconductor region
forming
electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54154370A
Other languages
Japanese (ja)
Other versions
JPS5678141A (en
Inventor
Hideo Tanbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15437079A priority Critical patent/JPS5678141A/en
Publication of JPS5678141A publication Critical patent/JPS5678141A/en
Publication of JPS6232619B2 publication Critical patent/JPS6232619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は半導体装置の電極形成法、特にDHD
(ダブルヒートシンクダイオード)型のダイオー
ドにおける電極を形成する方法に関する。
[Detailed Description of the Invention] (1) Field of Application of the Invention The present invention relates to a method for forming electrodes of semiconductor devices, particularly DHD.
The present invention relates to a method of forming an electrode in a (double heat sink diode) type diode.

(2) 従来技術及びその問題点 従来、P型基板を使用したシヨツトキーダイオ
ードの場合、メツキ時に接合が逆バイアスとなり
電流が流れず不可能であるため、第1図に示すよ
うにバリアメタルであるCr―Ag層3をウエハー
1全面に残したままでホトレジスト4によりメツ
キ径をしぼつてAgバンプ電極5を電気メツキ形
成している。しかる後、レジスト除去し、Agバ
ンプ電極5をマスクとしてCr―Ag層3のエツチ
をしている。
(2) Prior art and its problems Conventionally, in the case of a Schottky diode using a P-type substrate, the junction becomes reverse biased during plating, making it impossible for current to flow. While leaving the Cr--Ag layer 3 on the entire surface of the wafer 1, the plating diameter is reduced using photoresist 4, and Ag bump electrodes 5 are formed by electroplating. Thereafter, the resist is removed and the Cr--Ag layer 3 is etched using the Ag bump electrode 5 as a mask.

このCr―Ag層3のエツチの際にAgバンプ電極
5も若干エツチされたり、電極5直下のホトレジ
スト4が完全に除去されないためにCr―Ag層3
がエツチされなかつたりした。このため、Cr―
Ag層3のエツチ時の電極径のばらつきにより容
量がばらつくという欠点が生じた。また電極材料
としてCr、Ti等酸化膜と密着のよい一部の金属
しか使えないという制約が生じて材料選択の自由
度が損なわれていた。
During etching of the Cr--Ag layer 3, the Ag bump electrode 5 may also be slightly etched, and the photoresist 4 directly under the electrode 5 may not be completely removed.
was not fucked, but it was leaking. For this reason, Cr—
A drawback occurred in that the capacitance varied due to variations in the electrode diameter when the Ag layer 3 was etched. Furthermore, there was a restriction that only certain metals such as Cr and Ti, which have good adhesion to the oxide film, could be used as electrode materials, reducing the degree of freedom in material selection.

なお、第1図において、iはメツキ電流、2は
SiO2膜、6はAg板を示す。
In addition, in Fig. 1, i is the plating current, and 2 is the plating current.
SiO 2 film, 6 indicates Ag plate.

(3) 発明の目的 電気メツキ用の導体層のエツチをホトレジ工程
により精度良く形成する事を可能にする。又、電
極材料選択の自由度を増す。
(3) Purpose of the invention To enable etching of a conductor layer for electroplating to be formed with high accuracy by a photoresist process. Furthermore, the degree of freedom in selecting electrode materials is increased.

(4) 発明の要点 本発明によれば、P型半導体基板の一主面に形
成されたPN接合で区画されたN型半導体領域に
電気メツキによりバンプ電極を形成するPN接合
を有する半導体装置の電極形成法において、上記
N型半導体領域を取り囲みかつ該N型半導体領域
と離間して上記P型半導体基板の主面に高濃度の
P型ガードリング半導体領域を形成する工程と、
上記N型半導体領域上に第1の導体層を選択的に
形成する工程と、上記第1の導体層と上記ガード
リング半導体領域との間を電気的接続するため
に、上記P型半導体基板の主面に絶縁膜を介して
第2の導体層を形成する工程と、上記第1の導体
層から上記第2の導体層を通して上記ガードリン
グ半導体領域にメツキ用電流を流すことによつて
上記第1の導体層上にバンプ電極を電気メツキす
る工程と、しかる後、上記第2の導体層を除去す
る工程とより成ることを特徴とする。
(4) Summary of the Invention According to the present invention, a semiconductor device having a PN junction is provided in which a bump electrode is formed by electroplating in an N-type semiconductor region defined by a PN junction formed on one main surface of a P-type semiconductor substrate. In the electrode forming method, forming a highly concentrated P-type guard ring semiconductor region on the main surface of the P-type semiconductor substrate surrounding and spaced from the N-type semiconductor region;
selectively forming a first conductor layer on the N-type semiconductor region; forming a second conductor layer on the main surface via an insulating film; and passing a plating current from the first conductor layer to the guard ring semiconductor region through the second conductor layer. The method is characterized by comprising a step of electroplating a bump electrode on the first conductor layer, and then a step of removing the second conductor layer.

(5) 発明の実施例 実施例 1 ここで説明される実施例はチヤンネル防止のた
めのガードリング領域を有するPN接合ダイオー
ドである。
(5) Embodiments of the Invention Embodiment 1 The embodiment described here is a PN junction diode having a guard ring region for channel prevention.

第2図はかかるダイオードのAgバンプを形成
する状態を示した説明図である。図に示すダイオ
ードは半導体ウエーハの状態で次の工程により形
成される。
FIG. 2 is an explanatory diagram showing the state in which Ag bumps of such a diode are formed. The diode shown in the figure is formed on a semiconductor wafer through the following steps.

(a) P+型半導体基板1が準備される。(a) A P + type semiconductor substrate 1 is prepared.

(b) 基板1表面上にP-型エピタキシヤル層10
が形成される。
(b) P - type epitaxial layer 10 on the surface of the substrate 1
is formed.

(c) P-型エピタキシヤル層10表面上にSiO2
のような絶縁物質膜2が形成される。
(c) An insulating material film 2 such as a SiO 2 film is formed on the surface of the P - type epitaxial layer 10 .

(d) SiO2膜2をホトレジスト処理により選択的
にエツチングし、そのSiO2膜2に第1の不純
物導入用窓およびその第1の不純物導入用窓よ
り離間され、かつその窓を取り囲むリング状の
第2の不純物導入用窓を形成する。
(d) The SiO 2 film 2 is selectively etched by photoresist treatment, and a first impurity introduction window and a ring shape surrounding the first impurity introduction window are formed in the SiO 2 film 2 and are separated from the first impurity introduction window. A second impurity introduction window is formed.

(e) 第2の不純物導入用窓を通してP-型エピタ
キシヤル層10内にP型決定不純物、例えばボ
ロンを拡散またはイオン打込みにより導入し、
深さ約2μのP+型ガードリング半導体領域1
2を形成する。
(e) introducing a P-type determining impurity, such as boron, into the P - type epitaxial layer 10 through a second impurity introduction window by diffusion or ion implantation;
P + type guard ring semiconductor region 1 with a depth of about 2μ
form 2.

(f) 第1の不純物導入用窓を通してP-型エピタ
キシヤル層10内にn型決定不純物、例えばリ
ンあるいはヒ素を拡散またはイオン打込みによ
り導入し、深さ約1.5μの基板と反対導電型の
n+型半導体領域11を形成する。
(f) Introduce an n-type determining impurity, such as phosphorus or arsenic, into the P - type epitaxial layer 10 by diffusion or ion implantation through the first impurity introduction window to form a substrate of the opposite conductivity type to a depth of approximately 1.5 μm.
An n + type semiconductor region 11 is formed.

(f) n+型半導体領域11に接続し、SiO2膜2表
面上に延在するCr―Ag層3をホトレジスト処
理により選択的に形成する。
(f) A Cr—Ag layer 3 connected to the n + type semiconductor region 11 and extending on the surface of the SiO 2 film 2 is selectively formed by photoresist treatment.

(h) 基板10全面にAlより成る導体層7を被着
する。この導体層7の厚さは10000Å程度であ
る。
(h) A conductor layer 7 made of Al is deposited on the entire surface of the substrate 10. The thickness of this conductor layer 7 is approximately 10,000 Å.

(i) Cr―Ag層3が露出するようにこの導体層7
がホトレジスト4をマスクとして選択的にエツ
チされる。この導体層7の選択的エツチの際に
はCr―Ag層3はエツチされない。なぜなら
ば、導体層7のエツチングは、アルカリエツチ
液が用いられるためである。
(i) Cut this conductor layer 7 so that the Cr-Ag layer 3 is exposed.
is selectively etched using the photoresist 4 as a mask. During this selective etching of conductor layer 7, Cr--Ag layer 3 is not etched. This is because the conductor layer 7 is etched using an alkaline etchant.

このようにして得られたダイオードは第2図に
示されるように電気メツキ処理が施され、Agバ
ンプ電極5が形成される。
The diode thus obtained is subjected to electroplating as shown in FIG. 2, and Ag bump electrodes 5 are formed.

このAgバンプ電極5形成の際、メツキ電流i
は矢印に示されたように流れる。すなわち、メツ
キ電流iは、Agバンプ電極5→Cr―Ag層3→導
体層7→P+型ガードリング半導体領域12→P-
型エピタキシヤル層10→基板1の経路で流れ
る。このような電流経路は半導体ウエーハに構成
された各ダイオードに対して確実に実行されるの
で、極めて短時間でAgバンプ電極形成が行なわ
れる。
When forming this Ag bump electrode 5, plating current i
flows as shown by the arrow. That is, the plating current i is as follows: Ag bump electrode 5 → Cr-Ag layer 3 → conductor layer 7 → P + type guard ring semiconductor region 12 → P -
It flows along the path from the type epitaxial layer 10 to the substrate 1. Since such a current path is reliably carried out for each diode formed on the semiconductor wafer, the Ag bump electrodes can be formed in an extremely short time.

この後、ホトレジスト4および導体層7がエツ
チングされる。なお、導体層7は完全に除去せ
ず、P+型ガードリング半導体領域12に接続さ
れ、かつSiO2膜2の表面に延在するように選択
にエツチする。エツチ液はアルカリエツチ液(例
えば、KOH20g/1純水の水溶液)が使用さ
れる。この結果第3図で示す如き構造のダイオー
ドが得られる。なお、第3図から明らかなように
バンプ電極5の方向にのびる導体層7(ガードリ
ング電極)の端部はP+型ガードリング半導体領
域12をこえて位置している。これは、寄生チヤ
ンネル(N型)がその領域12に達しないように
するためである。このため耐圧低下の防止が計れ
る。
After this, the photoresist 4 and the conductor layer 7 are etched. Note that the conductor layer 7 is not completely removed, but is selectively etched so that it is connected to the P + type guard ring semiconductor region 12 and extends over the surface of the SiO 2 film 2. As the etch solution, an alkaline etch solution (for example, a 20 g KOH/1 aqueous solution of pure water) is used. As a result, a diode having a structure as shown in FIG. 3 is obtained. As is clear from FIG. 3, the end of the conductor layer 7 (guard ring electrode) extending in the direction of the bump electrode 5 is located beyond the P + type guard ring semiconductor region 12. This is to prevent parasitic channels (N type) from reaching the region 12. Therefore, it is possible to prevent a drop in breakdown voltage.

実施例 2 ここで説明される実施例は前記実施例の変形例
である。すなわち、ダイオードの構造が若干前記
実施例のダイオードと異なつている。
Example 2 The example described here is a modification of the previous example. That is, the structure of the diode is slightly different from the diode of the previous embodiment.

第4図にそのダイオードにおけるAgバンプ電
極形成の状態が示される。第4図に示されたダイ
オードはn+型半導体領域11と接触する導体層
3としてTi―Pd合金が用いられている。そし
て、この導体層3と同時に形成されたガードリン
グ電極13が設けられている。そして、さらに
CVD―SiO2膜あるいはPSG膜のような相間絶縁
膜14を介してメツキ電流経路をつくるための
Alから成る導体層7が形成されている。この相
間絶縁膜14は電極13とバンプ電極5との間の
シヨート防止の役目をはたす。
FIG. 4 shows the state of Ag bump electrode formation in the diode. In the diode shown in FIG. 4, a Ti--Pd alloy is used as the conductor layer 3 in contact with the n + -type semiconductor region 11. A guard ring electrode 13 formed simultaneously with this conductor layer 3 is provided. And further
For creating a plating current path through an interphase insulating film 14 such as CVD-SiO 2 film or PSG film.
A conductor layer 7 made of Al is formed. This interphase insulating film 14 serves to prevent shorts between the electrode 13 and the bump electrode 5.

Agバンプ電極5が形成された後、導体層7お
よびホトレジスト4が完全に除去され、第5図の
ようなダイオードが得られる。導体層7のエツチ
液は前述と同様にアルカリエツチ液が使用され
る。そして、導体層7が形成された開口部15に
そつて個々のペレツトに分割される。この場合、
P+型ガードリング半導体領域12の形状は形成
すべきペレツトの外周形状と同一形態にされる。
After the Ag bump electrode 5 is formed, the conductor layer 7 and the photoresist 4 are completely removed, resulting in a diode as shown in FIG. As the etchant for the conductor layer 7, an alkaline etchant is used as described above. It is then divided into individual pellets along the opening 15 in which the conductor layer 7 is formed. in this case,
The shape of the P + type guard ring semiconductor region 12 is made to be the same as the outer peripheral shape of the pellet to be formed.

なお、導体層7は完全に除去せず、第3図のよ
うに表面保護として残しておいてもよい。
Note that the conductor layer 7 may not be completely removed, but may be left as a surface protection as shown in FIG.

(6) 発明の効果 発明の採用によれば、電極形状がCr―Ag層あ
るいはTi―Pd層のホトレジスト処理により精度
良く決定されるので、均一なAgバンプ電極を形
成することが可能となつた。また、導体材料の選
択の自由度が増大した。
(6) Effects of the invention According to the adoption of the invention, the shape of the electrode is determined with high precision by photoresist processing of the Cr--Ag layer or the Ti--Pd layer, so it has become possible to form a uniform Ag bump electrode. . Furthermore, the degree of freedom in selecting conductor materials has increased.

なお、本発明は複数のトランジスタやダイオー
ドを有するICデバイスにも適用される。
Note that the present invention is also applicable to IC devices having multiple transistors and diodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法を説明する半導体装置の断
面図、第2図、第4図は本発明の方法を説明する
半導体装置の断面図、第3図および第5図は本発
明の方法によつて得られた半導体装置の断面図で
ある。 3……導体層、5……Agバンプ電極、7……
Alより成る導体層。
FIG. 1 is a cross-sectional view of a semiconductor device for explaining the conventional method, FIGS. 2 and 4 are cross-sectional views of a semiconductor device for explaining the method of the present invention, and FIGS. 3 and 5 are cross-sectional views of a semiconductor device for explaining the method of the present invention. FIG. 3 is a cross-sectional view of the semiconductor device thus obtained. 3... Conductor layer, 5... Ag bump electrode, 7...
A conductor layer made of Al.

Claims (1)

【特許請求の範囲】 1 P型半導体基板の一主面に形成されたPN接
合で区画されたN型半導体領域に電気メツキによ
りバンプ電極を形成するPN接合を有する半導体
装置の電極形成法において、上記N型半導体領域
を取り囲みかつ該N型半導体領域と離間して上記
P型半導体基板の主面に高濃度のP型ガードリン
グ半導体領域を形成する工程と、上記N型半導体
領域上に第1の導体層を選択的に形成する工程
と、上記第1の導体層と上記ガードリング半導体
領域との間を電気的接続するために、上記P型半
導体基板の主面に絶縁膜を介して第2の導体層を
形成する工程と、上記第1の導体層から上記第2
の導体層を通して上記ガードリング半導体領域に
メツキ用電流を流すことによつて上記第1の導体
層上にバンプ電極を電気メツキする工程と、しか
る後、上記第2の導体層を除去する工程とより成
ることを特徴とする半導体装置の電極形成法。 2 上記第1の導体層を形成する工程において、
上記P型ガードリング半導体領域に電気的接続さ
れるガードリング電極を同時に形成することを特
徴とする特許請求の範囲第1項記載の半導体装置
の電極形成法。
[Claims] 1. An electrode formation method for a semiconductor device having a PN junction, in which a bump electrode is formed by electroplating in an N-type semiconductor region defined by a PN junction formed on one main surface of a P-type semiconductor substrate, forming a highly doped P-type guard ring semiconductor region on the main surface of the P-type semiconductor substrate surrounding the N-type semiconductor region and spaced from the N-type semiconductor region; selectively forming a conductor layer on the main surface of the P-type semiconductor substrate via an insulating film in order to electrically connect between the first conductor layer and the guard ring semiconductor region. a step of forming a second conductor layer, and a step of forming a conductor layer from the first conductor layer to the second conductor layer;
electroplating a bump electrode on the first conductor layer by passing a plating current through the guard ring semiconductor region through the conductor layer; and then removing the second conductor layer. A method for forming an electrode for a semiconductor device, characterized by comprising the steps of: 2 In the step of forming the first conductor layer,
2. The method of forming an electrode for a semiconductor device according to claim 1, wherein a guard ring electrode electrically connected to the P-type guard ring semiconductor region is simultaneously formed.
JP15437079A 1979-11-30 1979-11-30 Method of forming electrode for semiconductor device Granted JPS5678141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15437079A JPS5678141A (en) 1979-11-30 1979-11-30 Method of forming electrode for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15437079A JPS5678141A (en) 1979-11-30 1979-11-30 Method of forming electrode for semiconductor device

Publications (2)

Publication Number Publication Date
JPS5678141A JPS5678141A (en) 1981-06-26
JPS6232619B2 true JPS6232619B2 (en) 1987-07-15

Family

ID=15582669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15437079A Granted JPS5678141A (en) 1979-11-30 1979-11-30 Method of forming electrode for semiconductor device

Country Status (1)

Country Link
JP (1) JPS5678141A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614248A (en) * 1984-06-19 1986-01-10 Nec Kansai Ltd Forming method of bump electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105962A (en) * 1978-02-07 1979-08-20 Mitsubishi Electric Corp Projection electrode forming method for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105962A (en) * 1978-02-07 1979-08-20 Mitsubishi Electric Corp Projection electrode forming method for semiconductor device

Also Published As

Publication number Publication date
JPS5678141A (en) 1981-06-26

Similar Documents

Publication Publication Date Title
US5021840A (en) Schottky or PN diode with composite sidewall
JPH05347383A (en) Manufacture of integrated circuit
JPH07183302A (en) Formation of metal layer and bonding method therefor
GB2148591A (en) Semiconductor device isolation grooves
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
US4393573A (en) Method of manufacturing semiconductor device provided with complementary semiconductor elements
US4730208A (en) Semiconductor device
US5702987A (en) Method of manufacture of self-aligned JFET
EP0112773B1 (en) Buried schottky clamped transistor
US4524376A (en) Corrugated semiconductor device
DE102011004475B4 (en) A manufacturing method of an insulated gate semiconductor device
JPH0145224B2 (en)
JP2605030B2 (en) Quadrature bipolar transistor
US4464825A (en) Process for fabrication of high-speed radiation hard bipolar semiconductor devices
US4119446A (en) Method for forming a guarded Schottky barrier diode by ion-implantation
JPS6232619B2 (en)
US6197649B1 (en) Process for manufacturing planar fast recovery diode using reduced number of masking steps
JPS5950104B2 (en) Hand tie souchi
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JPH0677465A (en) Semiconductor device
JPS58188158A (en) Semiconductor device and manufacture thereof
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPH0855999A (en) Semiconductor device
JPH0247854B2 (en)
JPH0376023B2 (en)