JPS6232336A - Liquid leak detecting method by itv camera - Google Patents

Liquid leak detecting method by itv camera

Info

Publication number
JPS6232336A
JPS6232336A JP17118285A JP17118285A JPS6232336A JP S6232336 A JPS6232336 A JP S6232336A JP 17118285 A JP17118285 A JP 17118285A JP 17118285 A JP17118285 A JP 17118285A JP S6232336 A JPS6232336 A JP S6232336A
Authority
JP
Japan
Prior art keywords
image
itv camera
smoothing
boundary
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17118285A
Other languages
Japanese (ja)
Inventor
Keiichi Sasaki
恵一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17118285A priority Critical patent/JPS6232336A/en
Publication of JPS6232336A publication Critical patent/JPS6232336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To detect automatically a liquid leaked from a valve, etc., and to reduce a burden on a plant monitoring person, by providing an image processor on a monitor system, and deciding a pool by processing a variable density image which is caught by an ITV camera. CONSTITUTION:A general purpose image processor 8 is provided additionally on a monitor system consisting of an ITV camera 3, an illumination use power source 4 and a monitor television 5. In such state, smoothing of a variable density image which is caught by the ITV camera 3 or smoothing which has held the edge is executed, and subsequently, an edge detection is executed to the image which is obtained by smoothing, by using eight kinds of differential operators. Next, the edge detected image is brought to a binary-coding processing by a prescribed threshold value, and thereafter, a variable density value of a boundary is extracted by executing a picture element expansion processing and a differential processing, and a pool is decided by detecting the existence of a sudden variation point. In such a way, a pool, etc. which have leaked from a pipe, a valve, etc. can be detected automatically.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子カプラントや化学プラン!・にJjいて
配管あるいはバルブ等の機器から漏洩した油、水等をI
’T’Vカメラを用いて自動的に検出する方法に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an atomic couplant and a chemical plan!・Remove oil, water, etc. leaked from pipes or equipment such as valves.
This invention relates to a method of automatic detection using a 'T'V camera.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、原子カブラン1−や化学プラント内の配管あるい
は弁等のvi器は、ITVカメラ等の閉回路テレビシス
テムを利用した監視システムによって監視されている。
BACKGROUND OF THE INVENTION Conventionally, vi devices such as piping or valves in an atomic reactor or a chemical plant have been monitored by a monitoring system using a closed-circuit television system such as an ITV camera.

第9図はその監視システムの一例を示すもので、1は配
管、2はバルブ、3はITVカメラ、4は照明用光源、
5はモニタテレビである。
FIG. 9 shows an example of the monitoring system, in which 1 is a pipe, 2 is a valve, 3 is an ITV camera, 4 is a light source for illumination,
5 is a monitor television.

このような構成の監視システムにおいては、バルブ2か
ら油や水が漏洩し、床面7に水溜まり6が発生した場合
、得られる情報はそれだけで、その情報を基に人間が水
溜まりであるか否かの判断を行っていた。従って、この
方式ではプラント監視員が常時モニタテレビ5を監視し
ていなければならず、プラント監視員の負担が増大し、
プラント運転の監視性および操作性を低下させていた。
In a monitoring system with such a configuration, if oil or water leaks from the valve 2 and a puddle 6 occurs on the floor surface 7, that is the only information that can be obtained, and based on that information, it is possible to determine whether or not a person is in the puddle. He was making such a judgment. Therefore, in this method, the plant monitor must constantly monitor the monitor television 5, which increases the burden on the plant monitor.
This reduced the ease of monitoring and operability of plant operations.

本発明はかかる事情に鑑みなされたもので、その目的は
配管、バルブ等からの液体漏洩をITVカメラを用いて
自動的に検出し、プラント監視員の負担を軽減すること
にある。
The present invention was made in view of the above circumstances, and its purpose is to automatically detect liquid leakage from piping, valves, etc. using an ITV camera, thereby reducing the burden on plant supervisors.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するために、プラント内の配
管または弁等をITVカメラを用いてモニタする監視装
置において、上記ITVカメラで捕えた濃淡画像を平滑
化またはエツジを保ったスムージングを行うスムージン
グ工程と、このスムージング工程で得られた画像に対し
て8方尚の微分オペレータを用いてエツジ検出を行うエ
ツジ検出工程と、このエツジ検出工程で得られた画像を
実験的に定めたしきい値で二値化処理を行う二値化処理
工程と、この二値化処理工程で得られた二値化画像に対
して数画素膨張させる処理を行い、膨張前後の画像間で
差分処理を行う差分処理工程と、この差分処理工程で得
られた境界の濃淡値を抽出する′a淡面画像抽出工程、
このi11淡画像抽出工程で19られた′a濃淡値対し
て急激な変化点の有無を検出して水溜まりを判定する工
程とを具備したことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention is a monitoring device that monitors piping or valves in a plant using an ITV camera, in which a gray-scale image captured by the ITV camera is smoothed or smoothed while preserving edges. A smoothing process, an edge detection process in which edges are detected using an 8-way differential operator on the image obtained in this smoothing process, and an experimentally determined threshold for the image obtained in this edge detection process. A binarization process in which a value is binarized, a process to expand the binarized image obtained in this binarization process by several pixels, and a difference process is performed between the images before and after the expansion. a difference processing step, and a pale image extraction step for extracting the boundary gray values obtained in the difference processing step;
This method is characterized by comprising a step of determining whether there is a puddle by detecting the presence or absence of an abrupt change point in the 'a gray value obtained in the step of extracting the i11 light image.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図乃至第8因を参照して説明する。 Hereinafter, the present invention will be explained with reference to FIGS. 1 to 8.

第1図は本発明による監視システムの一実施例を示す図
で、1は配管、2はバルブ、3はITVカメラ、4は照
明用光源、5はモニタテレビ、6は水溜まり、7は床面
、8は汎用の画像処理装置である。また、第2図はIT
Vカメラ3で水溜まり6を捕えた映m(画像)の−例を
示し、画素単位を11淡値で表わしたものである。
FIG. 1 is a diagram showing an embodiment of the monitoring system according to the present invention, in which 1 is a pipe, 2 is a valve, 3 is an ITV camera, 4 is an illumination light source, 5 is a monitor TV, 6 is a water puddle, and 7 is a floor surface. , 8 are general-purpose image processing devices. Also, Figure 2 shows the IT
An example of a video m (image) of a puddle 6 captured by the V camera 3 is shown, and the pixel unit is expressed by 11 light values.

水溜まり6の境界(エツジ)付近は表面張力を有し、丸
みをおびている。その境界へITVカメラ横の照明用光
源4から照明すると、境界部分に明暗が生じる。これは
水溜まり特有の性質で、本発明はこの性質を抽出し、水
溜まりを判定するものである。
The vicinity of the boundary (edge) of the water puddle 6 has surface tension and is rounded. When the border is illuminated from the illumination light source 4 next to the ITV camera, brightness and darkness will occur at the border. This is a characteristic unique to puddles, and the present invention extracts this property to determine whether it is a puddle.

以下、その抽出方法について説明する。The extraction method will be explained below.

ITVカメラ3によって得られる画像情報には光源、I
TVカメラ、伝送路等で発生した雑音(ノイズ)が重畳
している。この雑音を除去するために、まず3×3また
は5×5(以下の説明では3X3を用いる)の微分オペ
レータを用い、ITVカメラ3で捕えた画像(原画)を
平滑化またはエツジを保ったスムージングを行う。平滑
化は3×3のオペレータに同一の荷重係数を用い、第2
図に示す原画間で積和演算を施す。また、エツジを保っ
たスムージングにはいくつかのアルゴリズムがあるが、
目的はコントラストの変化点つまりエツジを保存したま
まで平滑化を行うものである。
The image information obtained by the ITV camera 3 includes a light source, I
Noise generated by TV cameras, transmission lines, etc. is superimposed. To remove this noise, first use a 3x3 or 5x5 (3x3 is used in the following explanation) differential operator to smooth the image (original image) captured by the ITV camera 3 or smooth the image while preserving the edges. I do. Smoothing uses the same loading factor for the 3x3 operator and the second
A sum-of-products operation is performed between the original images shown in the figure. Also, there are several algorithms for smoothing that preserves edges.
The purpose is to perform smoothing while preserving contrast change points, that is, edges.

次に上記のスムージングで得られた画像に対して8種類
の微分オペレータを用いてエツジ検出を行う。8種類の
微分オペレータは第3図に示すような荷重係数を持ち、
各々のオペレータで積和演算処理された8枚の画像間で
最大値をとり、エツジ検出を行う。このようにして得ら
れたエツジ検出画像は濃淡画像であり、濃度の急激な変
化点を表わしている。なお、水溜まり6には明暗があり
、正の方向と負の方向に変化が生じるため絶対値をとる
Next, edge detection is performed on the image obtained by the above smoothing using eight types of differential operators. The eight types of differential operators have loading coefficients as shown in Figure 3.
Edge detection is performed by taking the maximum value among the eight images processed by each operator. The edge detection image obtained in this manner is a grayscale image, and represents a point of sudden change in density. Note that the water puddle 6 has brightness and darkness, and since changes occur in the positive direction and the negative direction, the absolute value is taken.

次に上記のエツジ検出画像を実験的に定めたしきい値で
二値化処理を行い、第4図に示す二値化画像を作成する
。その後、この二値化画像に対して数画素膨張させる処
理を行い、膨張前後の画像間で差分処理を行う。そして
、差分処理で得られた差分画像を膨張させて領域の境界
を抽出する。
Next, the edge detection image described above is subjected to a binarization process using an experimentally determined threshold value to create a binarized image shown in FIG. Thereafter, this binarized image is expanded by several pixels, and a difference process is performed between the images before and after expansion. Then, the difference image obtained by the difference processing is expanded to extract the boundary of the region.

第5図は領域の境界を抽出する手順を示したもので、(
a)は原画、(b)は原画の二値化画像、(C)は数画
素膨張処理画像、(d)は差分画像である。また(e)
は原画から差分画像領域を抽出した画像を示すもので、
図中黒塗りは境界を示し、黒塗り領域と斜線領域は境界
部分の値を書込んだものである。すなわち、この抽出は
水溜まりの境界部分を抽出し、かつ明暗のパックグラウ
ンドどなるものである。
Figure 5 shows the procedure for extracting the boundaries of an area.
(a) is an original image, (b) is a binarized image of the original image, (C) is an image expanded by several pixels, and (d) is a difference image. Also (e)
indicates an image obtained by extracting the difference image area from the original image,
In the figure, the black areas indicate boundaries, and the black areas and diagonally shaded areas are the values of the boundaries. In other words, this extraction extracts the boundary part of the puddle, and the contrast between light and dark puddles.

第6図は第5図(a)に示す原画のA−A−断面の濃淡
値を示したものである。また、第7図及び第8図は境界
部分の濃淡値を抽出する手順を示したもので、第7図(
a)は画素膨張処理画像領域の原画とその濃淡値を示し
、(b)は差分画像領域の原画とその濃淡値を示したも
のである。第6図及び第7図かられかるように、第7図
(a)に示す画像と第7図(b)に示す画像の差分をと
ることにより第8図に示すような濃淡値を抽出すること
が可能となる。すなわち、この領域に対して8方向の濃
淡値を抽出し、その濃淡値に対して急激な変化点(水溜
まりの特徴である明暗)の有無を検出して水溜まりと判
定する。
FIG. 6 shows the shading values of the AA section of the original picture shown in FIG. 5(a). In addition, Figures 7 and 8 show the procedure for extracting the shading values of the boundary area.
Part a) shows the original image of the pixel expansion processing image area and its gradation value, and part (b) shows the original image of the difference image area and its gradation value. As shown in FIGS. 6 and 7, by taking the difference between the image shown in FIG. 7(a) and the image shown in FIG. 7(b), the grayscale values shown in FIG. 8 are extracted. becomes possible. That is, gradation values in eight directions are extracted for this area, and the presence or absence of a sudden change point (brightness and darkness, which is a characteristic of a puddle) in the gradation values is detected to determine that it is a puddle.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、ITVカメラで捕えた濃
淡画像から原画が持つあいまいな情報を除去し、水溜ま
りの特徴を効果的に抽出することができる。従って、配
管やバルブ等から漏洩した水溜まり等を自動的に検出で
き、従来のようにブラント監視員が常時モニタテレビを
監視する必要がないので監視員の負担を軽減できるとと
もに、プラント運転の監視性および操作性を向上させる
ことができる。
As described above, according to the present invention, ambiguous information contained in the original image can be removed from a grayscale image captured by an ITV camera, and the characteristics of a puddle can be effectively extracted. Therefore, it is possible to automatically detect puddles of water leaking from pipes, valves, etc., and there is no need for Brandt monitors to constantly monitor the TV monitor as in the past, reducing the burden on the monitors and improving the ability to monitor plant operations. and operability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は本発明を説明するための図で、第1
図は本発明による監視システムの一実施例を示す概略図
、第2図はITVカメラで水溜まりを捕えた画像を示す
図、第3図はエツジ検出のための8種類の微分オペレー
タを示す図、第4図は水溜まりの二値化画像を示す図、
第5図は水溜まりの境界部分を抽出する手順を示す説明
図、第6図は第5図(a)のA−A=断面における原画
の濃淡値を示す図、第7図及び第8図は境界部分のa淡
値を抽出する手順を示す説明図、第9図は従来の監視シ
ステムの一例を示す図である。 1・・・配管、2・・・バルブ、3・・・ITVカメラ
、4・・・照明用光源、5・・・モニタテレビ、6・・
・水溜まり、7・・・床面、8・・・画像処理装置。 出願人代理人 弁理士 鈴江武彦 第2図 \     I     / 第3図 第4図 (a)       (b)         (C)
(d)        (e) 第5図 第6図 第7図 第8図 第9図
1 to 8 are diagrams for explaining the present invention, and the first
Figure 2 is a schematic diagram showing an embodiment of the monitoring system according to the present invention, Figure 2 is a diagram showing an image of a puddle captured by an ITV camera, Figure 3 is a diagram showing eight types of differential operators for edge detection, Figure 4 is a diagram showing a binarized image of a puddle;
Figure 5 is an explanatory diagram showing the procedure for extracting the boundary part of a puddle, Figure 6 is a diagram showing the shading values of the original image at the A-A cross section in Figure 5(a), and Figures 7 and 8 are FIG. 9 is an explanatory diagram showing a procedure for extracting the a-value of a boundary portion, and is a diagram showing an example of a conventional monitoring system. 1... Piping, 2... Bulb, 3... ITV camera, 4... Light source for illumination, 5... Monitor TV, 6...
- Water puddle, 7... Floor surface, 8... Image processing device. Applicant's representative Patent attorney Takehiko Suzue Figure 2\ I / Figure 3 Figure 4 (a) (b) (C)
(d) (e) Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] プラント内の配管または弁等をITVカメラを用いてモ
ニタする監視装置において、上記ITVカメラで捕えた
濃淡画像を平滑化またはエッジを保つたスムージングを
行うスムージング工程と、このスムージング工程で得ら
れた画像に対して8方向の微分オペレータを用いてエッ
ジ検出を行うエッジ検出工程と、このエッジ検出工程で
得られた画像を実験的に定めたしきい値で二値化する二
値化処理工程と、この二値化処理工程で得られた二値化
画像に対して数画素膨張させる処理を行い、膨張前後の
画像間で差分処理を行う差分処理工程と、この差分処理
工程で得られた差分画像を膨張させて境界を抽出する膨
張処理工程と、この膨張処理工程で得られた境界の濃淡
値を抽出する濃淡画像抽出工程と、この濃淡画像抽出工
程で得られた濃淡値に対して急激な変化点の有無を検出
して水溜まりを判定する工程とを具備したことを特徴と
するITVカメラによる液体漏洩検出方法。
In a monitoring device that monitors piping or valves, etc. in a plant using an ITV camera, a smoothing step is performed to smooth the grayscale image captured by the ITV camera or smooth the edge while preserving the edges, and an image obtained in this smoothing step. an edge detection step in which edges are detected using a differential operator in eight directions; a binarization processing step in which the image obtained in the edge detection step is binarized using an experimentally determined threshold; A difference processing step in which the binarized image obtained in this binarization processing step is expanded by several pixels, and a difference processing is performed between the images before and after the expansion, and a difference image obtained in this difference processing step. an expansion processing step in which the boundary is extracted by expanding the boundary, a grayscale image extraction step in which the grayscale value of the boundary obtained in this dilation processing step is extracted, and a sharp change in the grayscale value obtained in this grayscale image extraction step A method for detecting liquid leakage using an ITV camera, comprising the step of determining whether there is a puddle by detecting the presence or absence of a change point.
JP17118285A 1985-08-05 1985-08-05 Liquid leak detecting method by itv camera Pending JPS6232336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17118285A JPS6232336A (en) 1985-08-05 1985-08-05 Liquid leak detecting method by itv camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17118285A JPS6232336A (en) 1985-08-05 1985-08-05 Liquid leak detecting method by itv camera

Publications (1)

Publication Number Publication Date
JPS6232336A true JPS6232336A (en) 1987-02-12

Family

ID=15918521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17118285A Pending JPS6232336A (en) 1985-08-05 1985-08-05 Liquid leak detecting method by itv camera

Country Status (1)

Country Link
JP (1) JPS6232336A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993956B2 (en) * 2001-03-29 2006-02-07 Koninklijke Philips Electronics N.V. Method for measuring a permeation rate, a test and an apparatus for measuring and testing
WO2017104617A1 (en) * 2015-12-15 2017-06-22 コニカミノルタ株式会社 Image processing device for gas detection, image processing method for gas detection, image processing program for gas detection, computer-readable recording medium having image processing program for gas detection recorded thereon, and gas detection system
WO2017122660A1 (en) * 2016-01-15 2017-07-20 コニカミノルタ株式会社 Gas visualizing apparatus, gas visualizing method, and gas visualizing program
WO2020166148A1 (en) * 2019-02-14 2020-08-20 株式会社日立製作所 Leakage oil detection apparatus and leakage oil detection method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993956B2 (en) * 2001-03-29 2006-02-07 Koninklijke Philips Electronics N.V. Method for measuring a permeation rate, a test and an apparatus for measuring and testing
US7117720B2 (en) 2001-03-29 2006-10-10 Koninklijke Philips Electronics N. V. Method for measuring a permeation rate, a test and an apparatus for measuring and testing
WO2017104617A1 (en) * 2015-12-15 2017-06-22 コニカミノルタ株式会社 Image processing device for gas detection, image processing method for gas detection, image processing program for gas detection, computer-readable recording medium having image processing program for gas detection recorded thereon, and gas detection system
JPWO2017104617A1 (en) * 2015-12-15 2018-03-01 コニカミノルタ株式会社 Gas detection image processing apparatus, gas detection image processing method, gas detection image processing program, computer-readable recording medium recording the gas detection image processing program, and gas detection system
WO2017122660A1 (en) * 2016-01-15 2017-07-20 コニカミノルタ株式会社 Gas visualizing apparatus, gas visualizing method, and gas visualizing program
JPWO2017122660A1 (en) * 2016-01-15 2018-11-01 コニカミノルタ株式会社 Gas visualization device, gas visualization method, and gas visualization program
WO2020166148A1 (en) * 2019-02-14 2020-08-20 株式会社日立製作所 Leakage oil detection apparatus and leakage oil detection method
JP2020134188A (en) * 2019-02-14 2020-08-31 株式会社日立製作所 Leakage oil detector and leakage oil detection method
EP3926319A4 (en) * 2019-02-14 2022-11-09 Hitachi, Ltd. Leakage oil detection apparatus and leakage oil detection method
US11994448B2 (en) 2019-02-14 2024-05-28 Hitachi, Ltd. Leakage oil detection device and leakage oil detection method

Similar Documents

Publication Publication Date Title
Iyer et al. Segmentation of pipe images for crack detection in buried sewers
Moselhi et al. Automated detection of surface defects in water and sewer pipes
CN110648349A (en) Weld defect segmentation method based on background subtraction and connected region algorithm
JPH03160349A (en) Device for detecting crack
JP2005165387A (en) Method and device for detecting stripe defective of picture and display device
JPS6232336A (en) Liquid leak detecting method by itv camera
JP4139291B2 (en) Defect inspection method and apparatus
JP4318776B2 (en) Nonuniformity inspection method and apparatus
JP3536884B2 (en) Semiconductor wafer defect classification method and apparatus
JP3283356B2 (en) Surface inspection method
JP3160743B2 (en) LCD panel defect inspection equipment
JP2001028059A (en) Method and device for color unevenness inspection
JP2002074332A (en) Method and device for detecting sealing defect of packing material and packing body
JPH08304302A (en) Method for detecting surface flaws of object to be inspected
Iyer et al. Automated condition assessment of buried sewer pipes based on digital imaging techniques
JP3138381B2 (en) Monitoring device
JP3175347B2 (en) Inspection method for foreign substances in sheet products
JPH0735699A (en) Method and apparatus for detecting surface defect
JPH07280696A (en) Liquid leakage monitoring device
JPH09288037A (en) Inspection method for lcd panel
Swarnalatha et al. Automated assessment tool for the depth of pipe deterioration
JPH07301609A (en) Defect inspection method
JPH02236787A (en) State change detector
KR100212845B1 (en) Method for calculating direction of edge in digital image data
JPH0777495A (en) Pattern inspection method