JPS6231879Y2 - - Google Patents

Info

Publication number
JPS6231879Y2
JPS6231879Y2 JP1981146469U JP14646981U JPS6231879Y2 JP S6231879 Y2 JPS6231879 Y2 JP S6231879Y2 JP 1981146469 U JP1981146469 U JP 1981146469U JP 14646981 U JP14646981 U JP 14646981U JP S6231879 Y2 JPS6231879 Y2 JP S6231879Y2
Authority
JP
Japan
Prior art keywords
measurement
wavelengths
baseline
values
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981146469U
Other languages
Japanese (ja)
Other versions
JPS5851257U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14646981U priority Critical patent/JPS5851257U/en
Publication of JPS5851257U publication Critical patent/JPS5851257U/en
Application granted granted Critical
Publication of JPS6231879Y2 publication Critical patent/JPS6231879Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【考案の詳細な説明】 本考案は吸光度の時間的な変化を測定するのに
適した分光光度計に関する。
[Detailed Description of the Invention] The present invention relates to a spectrophotometer suitable for measuring temporal changes in absorbance.

従来一波長ダブルビームの分光光度計で生体試
料等の懸濁試料を測定する場合、反応試薬の添加
により濁りの状態が変動するためベースラインが
変動し、スペクトルの変化を観察するのが困難で
あつた。一般にこの濁りによるベースラインの変
化は比較的おそく、吸光度の変化と波長とに対し
て略直線的な傾きの変化として現れる。本考案は
このベースラインの変動を消去し正確なスペクト
ルの時間的変化を測定できるような分光装置を提
供しようとするものである。
When measuring suspended samples such as biological samples with conventional single-wavelength double-beam spectrophotometers, the baseline changes because the turbidity changes due to the addition of reaction reagents, making it difficult to observe changes in the spectrum. It was hot. Generally, changes in the baseline due to this turbidity are relatively slow and appear as changes in the slope that are approximately linear with respect to changes in absorbance and wavelength. The present invention aims to provide a spectroscopic device that can eliminate this baseline fluctuation and accurately measure temporal changes in spectra.

まず本考案の原理を第1図によつて説明する。
第1図において横軸は波長、縦軸は測定された吸
光度を表わす。この図でλ1,λ2は吸光度の時
間的変化を零に補正する波長とする。これらの波
長λ1,λ2には着目している反応によつては吸
光度が変化しない波長をとる。今基準時間即ち測
定の始めにおける吸収スペクトルをF(λ)と
し、F(λ)の波長λ1,λ2における値を
A1,A2とする。このA1,A2を結ぶ直線をf
(λ)とする。次に一定時間後のスペクトルをG
(λ)とし、G(λ)の波長λ1,λ2における
値をB1,B2とし、B1,B2を結ぶ直線をg(λ)
とする。
First, the principle of the present invention will be explained with reference to FIG.
In FIG. 1, the horizontal axis represents wavelength, and the vertical axis represents measured absorbance. In this figure, λ1 and λ2 are wavelengths that correct the temporal change in absorbance to zero. These wavelengths λ1 and λ2 are wavelengths at which the absorbance does not change depending on the reaction of interest. Let the absorption spectrum at the reference time, that is, the beginning of the measurement, be F(λ), and the values of F(λ) at wavelengths λ1 and λ2 are
Let them be A1 and A2. The straight line connecting A1 and A2 is f
(λ). Next, the spectrum after a certain period of time is G
(λ), the values at wavelengths λ1 and λ2 of G(λ) are B1 and B2, and the straight line connecting B1 and B2 is g(λ).
shall be.

A1,A2を結ぶ線f(λ)およびB1,B2を結ぶ
線g(λ)は何れもベースラインそのものではな
い。ベースライン変動の結果、f(λ)がg
(λ)に移動したのである。従つてG(λ)のg
(λ)の上に乗つている部分をg(λ)がf
(λ)に一致する位置まで引下げると、F(λ)
とG(λ)とを同じベースライン上で比較してい
ることになり、吸収スペクトルの時間的変化が明
瞭になる。即ち波長λxにおける基準時刻の吸光
度Axと一定時間後の吸光度を比較するにはAxと
Bxとを比較するのではなく、Bxからを引いた
ものとAxとを比較すべきであつて、Ax−(Bx−
)が波長λxにおける吸光度の変化である。
は次式によつて求まる。
Neither the line f(λ) connecting A1 and A2 nor the line g(λ) connecting B1 and B2 is the baseline itself. As a result of baseline fluctuation, f(λ) becomes g
(λ). Therefore, g of G(λ)
(λ) is the part where g(λ) is f
(λ), F(λ)
This means that G(λ) and G(λ) are compared on the same baseline, and the temporal change in the absorption spectrum becomes clear. In other words, to compare the absorbance Ax at the reference time at the wavelength λx and the absorbance after a certain time, Ax and
Instead of comparing with Bx, you should compare Bx minus Ax with Ax−(Bx−
) is the change in absorbance at wavelength λx.
is determined by the following equation.

=(B2−A2)(λ1−λx)+(B1−A1)(λx−λ2)/λ1−λ2 …(1) 次に本考案の一実施例を第2図によつて説明す
る。1は光源、2は分光器、3は試料セル、4は
光検出器、5は増幅器、6はA/D変換器、Sは
切換スイツチである。7は装置全体を制御する中
央制御装置(CPU)である。最初波長走査する
場合波長λ1及びλ2において、CPU7により
スイツチSを接点1側に切換え、上記波長での吸
光度A1,A2をサンプリングしてRAMの所定のア
ドレスにメモリさせる。次に試薬添加後波長走査
する場合CPU7によつてスイツチSを接点2側
に切換え、第1図で説明したスペクトルG(λ)
をRAMにメモリさせる。その後RAM内の波長λ
1及びλ2に対するG(λ)の値B1,B2及び先
にメモリさせたA1,A2のデータを用いCPU7の
命令により演算回路8において、上記(1)式の演算
と、それに基くG(λx)−の演算が各波長に
ついて行われ、レコーダ9に出力される。この動
作によつてレコーダ9には、波長λ1及びλ2に
おいて常に吸光度A1=B1,A2=B2でベースライ
ンの時間的変化のない吸収スペクトルが記録され
る。
=(B2-A2)(λ1-λx)+(B1-A1)(λx-λ2)/λ1-λ2 (1) Next, an embodiment of the present invention will be described with reference to FIG. 1 is a light source, 2 is a spectrometer, 3 is a sample cell, 4 is a photodetector, 5 is an amplifier, 6 is an A/D converter, and S is a changeover switch. 7 is a central control unit (CPU) that controls the entire device. When scanning wavelengths for the first time, the CPU 7 switches the switch S to the contact 1 side at wavelengths λ1 and λ2, samples the absorbances A1 and A2 at the wavelengths, and stores them at predetermined addresses in the RAM. Next, when performing wavelength scanning after adding the reagent, the switch S is switched to the contact 2 side by the CPU 7, and the spectrum G (λ) explained in FIG.
is stored in RAM. Then the wavelength λ in RAM
Using the values B1 and B2 of G(λ) for 1 and λ2 and the data of A1 and A2 previously stored in memory, the arithmetic circuit 8 performs the calculation of equation (1) above according to the instructions of the CPU 7, and calculates G(λx) based thereon. - calculation is performed for each wavelength and output to the recorder 9. By this operation, the recorder 9 records an absorption spectrum with no temporal change in the baseline at wavelengths λ1 and λ2 with absorbances A1=B1 and A2=B2.

ベースラインおよび、ベースラインの時間的変
化を決定するのは面倒であるが、本考案によれば
ベースライン決定の操作を必要とせず以上のよう
にしてλ1からλ2まで波長走査する場合の試料
の濁りによるベースラインの変動が一様と見なせ
る場合、その影響を完全に取除くことができる。
Although it is troublesome to determine the baseline and the temporal change in the baseline, according to the present invention, there is no need to perform the operation of determining the baseline. If the baseline variation due to turbidity can be considered uniform, its influence can be completely removed.

なお上の説明ではf(λ),g(λ)を直線と
して扱つたが他の既知関数形で表わせる場合、
=g(λx)−f(λx)であり、補正された
吸収スペクトルA(λx)は A(λx)=G(λx)
−{g(λx)−f(λx)} で算出される。また吸光度の時間変化を零にする
波長は2個に限定されるものではなく、2個以上
採用することができる。
In the above explanation, f(λ) and g(λ) are treated as straight lines, but if they can be expressed in other known function forms,
= g(λx) - f(λx), and the corrected absorption spectrum A(λx) is A(λx) = G(λx)
−{g(λx)−f(λx)} Further, the number of wavelengths at which the time change in absorbance becomes zero is not limited to two, and two or more wavelengths can be employed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の動作原理を説明するグラ
フ、第2図は本考案の一実施例装置の構成を示す
ブロツク図である。 1……光源、2……分光器、3……試料セル、
4……光検出器、8……演算回路、9……レコー
ダ。
FIG. 1 is a graph explaining the operating principle of the device of the present invention, and FIG. 2 is a block diagram showing the configuration of an embodiment of the device of the present invention. 1... Light source, 2... Spectrometer, 3... Sample cell,
4...Photodetector, 8...Arithmetic circuit, 9...Recorder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測定基準時刻および任意時刻におけるスペクト
ル測定値を記録する手段と、測定基準時刻におけ
る特定複数波長に対する測定値を記憶する手段
と、任意時刻における上記特定波長に対する測定
値を連ねる線と測定基準時刻に対する測定値を連
ねる線との差分を任意時刻における測定値から引
算する演算手段を備え、この演算手段の出力を任
意時刻における測定値として記録するようにした
分光光度計。
A means for recording spectrum measurement values at a measurement reference time and an arbitrary time, a means for storing measurement values for a plurality of specific wavelengths at the measurement reference time, a line connecting the measurement values for the specific wavelengths at an arbitrary time, and a measurement for the measurement reference time. A spectrophotometer comprising a calculation means for subtracting the difference with a line connecting values from a measured value at an arbitrary time, and recording the output of the calculation means as a measurement value at an arbitrary time.
JP14646981U 1981-09-30 1981-09-30 spectrophotometer Granted JPS5851257U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14646981U JPS5851257U (en) 1981-09-30 1981-09-30 spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14646981U JPS5851257U (en) 1981-09-30 1981-09-30 spectrophotometer

Publications (2)

Publication Number Publication Date
JPS5851257U JPS5851257U (en) 1983-04-07
JPS6231879Y2 true JPS6231879Y2 (en) 1987-08-15

Family

ID=29939374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14646981U Granted JPS5851257U (en) 1981-09-30 1981-09-30 spectrophotometer

Country Status (1)

Country Link
JP (1) JPS5851257U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425436A (en) * 1977-07-27 1979-02-26 Shin Kobe Electric Machinery Lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425436A (en) * 1977-07-27 1979-02-26 Shin Kobe Electric Machinery Lead storage battery

Also Published As

Publication number Publication date
JPS5851257U (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US5751418A (en) Spectrometry and optical method and apparatus for obtaining a stable spectrum with use of an informationless spectrum contained therein
US5696580A (en) Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample
JPH0134337B2 (en)
US20080231841A1 (en) Method and apparatus for gas concentration quantitative analysis
JPH0427494B2 (en)
Wojciechowski et al. Quantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy
JPH03209149A (en) Spectroscopic measurement method
JP3706437B2 (en) Analysis method of multi-component aqueous solution
JPS6231879Y2 (en)
JPH06500387A (en) Multiwavelength pyrometer
JPS6140928B2 (en)
JPH07294519A (en) Measurement of component in urine
JPH0245150B2 (en)
JPS5957123A (en) Apparatus for measuring surface color of moving object
JPS6182169A (en) Flow injection method
JPS62172261A (en) Method for removing background shift from peak spectrum in chromatogram using multiwavelength detector
JPH04303768A (en) Data processor for chromatograph
JP2950329B1 (en) Food component analyzer
SU1409898A1 (en) Method of analysis of mineral composition of substances
JPS5852513Y2 (en) gas concentration meter
JPH0460442A (en) Method for multicomponent analysis in spectral analysis
JPH03221844A (en) Spectral measurement
JPS63273043A (en) Spectrophotometer for continuous measurement
JPS6079248A (en) Spectrophotometer
JPH02254343A (en) Spectroscopic measurement apparatus