JPH02254343A - Spectroscopic measurement apparatus - Google Patents

Spectroscopic measurement apparatus

Info

Publication number
JPH02254343A
JPH02254343A JP7755689A JP7755689A JPH02254343A JP H02254343 A JPH02254343 A JP H02254343A JP 7755689 A JP7755689 A JP 7755689A JP 7755689 A JP7755689 A JP 7755689A JP H02254343 A JPH02254343 A JP H02254343A
Authority
JP
Japan
Prior art keywords
sample
absorbance
wavelength
measured
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7755689A
Other languages
Japanese (ja)
Inventor
Yoshio Tsunasawa
綱沢 義夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7755689A priority Critical patent/JPH02254343A/en
Publication of JPH02254343A publication Critical patent/JPH02254343A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate assay by providing a correction function to determine a correction absorbance from actually measured absorbance by a function containing a coefficient not depending on a concentration of a sample, indicating a band width of a spectroscope and an inclination of a spectrum of a sample to be measured as parameter. CONSTITUTION:Sample cells C1, C2... are set on an automatic sample exchanger T and moved to a measuring position sequentially being controlled by a computer K. Then, the computer K takes in outputs of one or more of photo detectors Di, Dj... specified previously in the order of the cells C1, C2... on the exchanger T according to a given program and absorbance corrected to a desired substance in a sample is calculated according to a specified formula. A concentration of the desired substance is determined from a data of a calibration curve given about the substance to be recorded on a recorder together with a sample number.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸光度補正式分光光度計に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an absorbance-corrected spectrophotometer.

(従来の技術) 吸光flを測定して試料中の目的成分濃度を求める場合
、通常はその目的成分の吸収スペクトルのピーク中心波
長における吸光度を測定するが、吸収スペクトルのピー
クの立上り側或は立下り個の傾斜部に測定波長を設定し
て定量を行わねばならない場合がある。例えば、自動分
析器の分光光度計などで波長が連続可変でないため、ピ
ーク波長の所に測定波長が設定できない場合とか、ピー
クの吸光度が大き過ぎて精度の良い測定ができないため
、吸光度の低いピーク裾の部分に波長を設定する場合等
である。このような場合、検量線に曲りが生じ、定量精
度が低下する。ピーク波長での測定とピークからはずれ
た場合の測定がいかに異なるかは別表aおよびbにきわ
めて明瞭に示される。これは第3図に示すような半値幅
50nmのスペクトル(計算を容易にするためガウス形
を仮定した。)を分光器のバンド幅2 、5.5 * 
10r 15nmの4つの場合で測定するとして数値計
nを行ったものである。正しい測定値に対する予測され
る測定値の比を、ピーク波長の場合(a)とピークから
25 n m (半値幅の1/2〉だけ離れた波長第3
図矢印Bとで計算したものを示した。この比が1000
に近い■?正しい値であることを意味する。バンド幅が
小さい程より正しい値となるのは当然であるが、(a>
と(b)の場合の相異として最も注目すべきは、試料の
吸光度が太き(なっていく場合の、この“比”が一定で
あるか否かである。
(Prior art) When determining the concentration of a target component in a sample by measuring absorbance fl, the absorbance at the peak center wavelength of the absorption spectrum of the target component is usually measured. There are cases where it is necessary to set measurement wavelengths on the descending slopes and perform quantitative determination. For example, because the wavelength is not continuously variable in the spectrophotometer of an automatic analyzer, it is not possible to set the measurement wavelength at the peak wavelength, or the peak absorbance is too large and accurate measurement cannot be performed. This is the case, for example, when setting the wavelength at the hem. In such a case, the calibration curve becomes curved and the quantitative accuracy decreases. How measurements at the peak wavelength differ from measurements taken off-peak are shown very clearly in Annex a and b. This means that a spectrum with a half-width of 50 nm (a Gaussian shape is assumed for ease of calculation) as shown in Figure 3 has a spectrometer bandwidth of 2,5.5 *
Numerical measurement n was performed assuming that measurements were taken in four cases of 10r and 15nm. The ratio of the expected measured value to the correct measured value is calculated for the case of the peak wavelength (a) and for the third wavelength 25 nm (1/2 half width) away from the peak.
The arrow B in the figure shows the calculated value. This ratio is 1000
Close to■? means the value is correct. Naturally, the smaller the bandwidth, the more accurate the value, but (a>
The most notable difference between cases (b) and (b) is whether or not this "ratio" remains constant when the absorbance of the sample increases.

例えば、バンド幅10nmの場合についていえば、ピー
ク波長(a>の場合には、吸光度0.2から吸光度4.
0までの試料に対し、上記“比”の値は0.9818か
ら0.9797までごくわずかの変化しかしない(0,
9797÷0.9818=0.9978である)。すな
わち変化はわずか0.2%にすぎない。
For example, in the case of a band width of 10 nm, if the peak wavelength (a>), the absorbance ranges from 0.2 to 4.
For samples up to 0, the value of the above "ratio" changes only slightly from 0.9818 to 0.9797 (0,
9797÷0.9818=0.9978). In other words, the change is only 0.2%.

これに対し、ピークから25nmfiれた(b)の場合
では、同じ試料が吸光度が半分にあられるので、対応す
る吸光度は0.1から2.0になるが、上記比の値は0
.9955から0.8281まで即ち、(0,8281
÷0.9955=0゜8318であるので)17%も変
化する。吸光度が高くなる程比の値が下っているので、
いわゆる検量線が大幅に曲っていることを表わしている
On the other hand, in case (b), which is 25 nmfi from the peak, the same sample has half the absorbance, so the corresponding absorbance changes from 0.1 to 2.0, but the value of the above ratio is 0.
.. From 9955 to 0.8281, i.e. (0,8281
Since ÷0.9955=0°8318), it changes by 17%. As the absorbance increases, the ratio value decreases, so
This indicates that the so-called calibration curve is significantly curved.

従って(a>の場合には、検量線は直線のままで、傾き
がわずかに小さくなるだけゆえ、1よりわづか大きい係
数を掛けるだけで容易に補正が可能であるのに反し、(
l〕〉の場合は、高吸光程度、吸光度の下り方が大きい
ので、単純な係数の81算ではFfff正ができない。
Therefore, in the case of (a>), the calibration curve remains a straight line and the slope becomes only slightly smaller, so it can be easily corrected by simply multiplying by a coefficient slightly larger than 1, whereas (
In the case of 1], the degree of absorbance is high and the absorbance decreases greatly, so Ffff cannot be positive by simple calculation of 81 coefficients.

要するk、バンド幅が無限小の場合は、ピーク波長で測
定しても、ピーク波長からはずれたところで測定しても
検量線は直線であるが、ある程度バンド幅が広いと、ピ
ークからはずれた波長での検量線の曲りが極度に大きく
なるという困難があり、特k、自動分析装置などに用い
られている分光光度計は、バンド幅が10nm程度と比
較的広く、かつ波長がステップ状にしか選択できない場
合が多いので、上述したことが問題になる。
If the bandwidth is infinitesimal, the calibration curve will be a straight line whether measured at the peak wavelength or at a point deviating from the peak wavelength, but if the band width is wide to some extent, the calibration curve will be straight at a wavelength deviating from the peak wavelength. In particular, spectrophotometers used in automatic analyzers have a relatively wide band width of about 10 nm, and the wavelength can only be set in steps. Since there are many cases where selection is not possible, the above-mentioned problem becomes a problem.

しかし従来この検量線の曲りを予測して補正する方法が
知られていなかったので、このような場合、補正なしの
定量値をそのま\使うか、濃度の異る多種の標準液を用
意して曲った検ffi線を作成するか何れかの方法がと
らてれいた。この検量線の曲りの原因は、概路次のよう
なものである。分光器の透過光の波長は設定波長λ0を
中心に成る波長範囲の広がり(バンド幅)を持っている
ので、第2図でA(λ)を試料ピークの傾斜部の吸光度
曲線とし、S(λ)を分光器の波長透過特性とすると、
試料および分光器を透過した光の波長分布は分光器の設
定波長λ0を中心にした左右対称の形とはならず、左右
非対称な形になって、透過光の中心波長は短波長側にず
れ、実質的に分光器の設定波長λ0より短波長側で吸光
度を測定していることになり実測吸光度は波長λ0にお
ける吸光度Aoより小さく現われる。この傾向は吸光度
曲線の傾きが大きい程大になるから、吸光度が大、つま
り試料濃度が大になる程見掛けの吸光度が小さくなって
、濃度吸光度の関係が曲るのである。
However, until now, there was no known method to predict and correct the curvature of the calibration curve, so in such cases, you should either use the uncorrected quantitative value as is, or prepare various standard solutions with different concentrations. Either method was used to create a curved inspection ffi line. The cause of this curve in the calibration curve is roughly as follows. The wavelength of transmitted light from a spectrometer has a wide wavelength range (bandwidth) centered around the set wavelength λ0, so in Figure 2, A(λ) is the absorbance curve of the slope of the sample peak, and S( If λ) is the wavelength transmission characteristic of the spectrometer, then
The wavelength distribution of the light that has passed through the sample and spectrometer is not symmetrical about the spectrometer's set wavelength λ0, but is asymmetrical, with the center wavelength of the transmitted light shifting toward shorter wavelengths. , the absorbance is substantially measured at a wavelength shorter than the set wavelength λ0 of the spectrometer, and the actually measured absorbance appears smaller than the absorbance Ao at the wavelength λ0. This tendency increases as the slope of the absorbance curve increases, so as the absorbance increases, that is, the sample concentration increases, the apparent absorbance decreases, and the relationship between concentration and absorbance becomes distorted.

(発明が解決しようとする課題) 本発明は、吸光度測定による定量分析で、測定波長を吸
収ピークの中心波長に設定できない場合においても検量
線の曲りを補正して正しい濃度を測定できる分光光度計
を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention provides a spectrophotometer that can correct the curvature of the calibration curve and measure the correct concentration even when the measurement wavelength cannot be set to the center wavelength of the absorption peak in quantitative analysis using absorbance measurement. This is what we are trying to provide.

(課題を解決するための手段) 分光器のバンド幅Bと、被測定試料の特性値としての吸
収スペクトルの測定波長における傾斜度に応じた係数k
(kは詳しくは式4のように定義される、試料の濃度に
よらない量である)と、実但し α一定数Xk2B2 試料濃度が求まる。上記(1)式は分母子に1−n″A
o=A一定数Xk2B2Δ2−(2)の算式に基いてΔ
0を決定する演算手段を分光光度計に設けた。
(Means for solving the problem) The bandwidth B of the spectrometer and the coefficient k corresponding to the slope at the measurement wavelength of the absorption spectrum as a characteristic value of the sample to be measured
(K is defined in detail as in Equation 4 and is a quantity independent of the concentration of the sample), where α constant number Xk2B2 The sample concentration is found. The above formula (1) has 1-n″A in the denominator and numeral.
Based on the formula o=A constant number Xk2B2Δ2-(2), Δ
The spectrophotometer was equipped with arithmetic means for determining 0.

(作用) 上記(1)、(2)式において、分光器のバンド幅Bは
分光器個有の定数で予め判明しており、試料の特性値と
してのkは被測定試料の適当な標準液と十分バンド幅の
狭い、波長連続可変の標ネ的分光光度計を用いて予め実
測的に求めておくことができる。これらのB、にの値を
予め演算手段に入力しておき、被測定試料について吸光
度Aを測定すると、Aから補正された吸光度Aoが求ま
る。この吸光度Aoは検量線の曲りに対する補正がなさ
れたものであるから、適当な濃度の標準溶液の測定によ
り作られた直線的な検量線によって正しいと書直せる。
(Function) In the above equations (1) and (2), the bandwidth B of the spectrometer is known in advance by a constant unique to the spectrometer, and k, which is a characteristic value of the sample, is determined by the appropriate standard solution of the sample to be measured. It can be determined in advance by actual measurements using a standard spectrophotometer with a sufficiently narrow band width and continuously variable wavelength. By inputting the values of B and B in advance into the calculation means and measuring the absorbance A of the sample to be measured, the corrected absorbance Ao can be determined from A. Since this absorbance Ao has been corrected for the curvature of the calibration curve, it can be rewritten as correct using a linear calibration curve created by measuring standard solutions of appropriate concentrations.

以下(1)式の成立ちについて説明する。The establishment of formula (1) will be explained below.

第2図においてΔ(λ)は被測定試料の成る濃度の液の
吸光度特性を示す。(λ0)は分光装置の設計上の中心
波長で、Aoは波長(λ0)における上記試料溶液の吸
光度である。第2図で任意波長と(λ0)との差を改め
てλとおき上記試料溶液の傾斜特性A(λ)を式で表わ
すと、A(λ)=Ao十k ’λ・・・(3)こ\でに
゛はAがλと共に増加するときを正としている。第2図
(B)は分光装置の透過特性で波長目盛は第2図(Δ)
と同じに設定しである。この透過特性をS(λ)とする
と、 こ\でBは上述バンド幅で上記透過特性の半値幅である
。Bの値は10nm程度である。今分光装置の透過光波
長範囲で強度一定である光源の光を分光装置に入射させ
たときの同分光装置の透過光強度の波長分布として上記
S(λ)が与えられる。こ\で上記光源を仮定して上記
分光装置を用いた上記試料溶液の透過率の測定値Tは上
記試料溶液の透過率波長特性をT(λ)とすると、であ
る。(5)式の分子は整理すると、(enlo) ・k
’ ・B=xと置いて(8)式の指数で表わされる。(
5)式を具体的に計算するためには吸光度特性A(λ)
を透過率特性T(λ)に変換しておく必要がある。即ち −Ao     −盆72 T(λ) = 10−””’) = 10   X 1
0・・・・・・・・・・・・(6) (5)式の分母は第2図Bの三角形の面接でoB 十・・・・・・ となるから、 上記Tを吸光変人に変換すると、これも展開を川む)で となって(1)式が得られる。(二次方程式の二つこ\
でAは分光装置で実測される上記試料溶液の吸光度であ
る。以上の計算で用いたに°は成る濃度の試料溶液の吸
光度の傾斜で、吸光度の傾斜は濃度に比例しているから
、 k ’ =kAo・・・・・・(10〉なるkが試料の
特性値として存在している。即ちkは試料の濃度によら
ない量である。具体的には既知濃度の標準液で波長λ0
における吸光度の傾斜に′を実測することによりk =
 k ’ / A oでkが求められる。上記(9)式
のに′をこのkに書換えとなる。(11)式でAは実測
吸光度、Aoが補正さ的近い定数となるので、 α=定数×r2B2・・・・・・(12)とおくのが一
般的である。また式(11)を次のような近似的な方法
で解いた式を用いることも出来と書ける。(11)’式
右辺の第2項はAoとへの差(Ao−A)を与える式で
あって、Δ自身に(らべれば小さい値である。故に(1
1)’式のAoのかにつき解(と 記理由で定数と置いである。
In FIG. 2, Δ(λ) represents the absorbance characteristic of a liquid having the concentration of the sample to be measured. (λ0) is the designed center wavelength of the spectrometer, and Ao is the absorbance of the sample solution at the wavelength (λ0). In Fig. 2, the difference between the arbitrary wavelength and (λ0) is rewritten as λ, and the slope characteristic A(λ) of the above sample solution is expressed by the formula: A(λ) = Ao + k'λ... (3) Here, ゛ is positive when A increases with λ. Figure 2 (B) shows the transmission characteristics of the spectrometer, and the wavelength scale is shown in Figure 2 (Δ).
It is set the same as . If this transmission characteristic is S(λ), then B is the above-mentioned bandwidth and the half-width of the above-mentioned transmission characteristic. The value of B is about 10 nm. The above S(λ) is given as the wavelength distribution of the intensity of the light transmitted by the spectrometer when light from a light source whose intensity is constant within the wavelength range of the light transmitted by the spectrometer is incident on the spectrometer. Here, the measured value T of the transmittance of the sample solution using the spectrometer assuming the light source is as follows, where T(λ) is the transmittance wavelength characteristic of the sample solution. The numerator of formula (5) can be rearranged as (enlo) ・k
'・B=x and is expressed by the exponent of equation (8). (
5) To specifically calculate the formula, absorbance characteristic A(λ)
must be converted into a transmittance characteristic T(λ). That is -Ao -Bon72 T(λ) = 10-””’) = 10 X 1
0・・・・・・・・・・・・(6) Since the denominator of equation (5) is oB 10・・・・・・ in the triangular interview shown in Figure 2 B, we can change the above T to an absorption oddball. After conversion, we obtain equation (1) as follows: (Two quadratic equations\
where A is the absorbance of the sample solution actually measured with a spectrometer. ° used in the above calculation is the slope of the absorbance of the sample solution with a concentration of It exists as a characteristic value. That is, k is an amount that does not depend on the concentration of the sample. Specifically, in a standard solution of known concentration, the wavelength λ0
By actually measuring the slope of absorbance at k =
k is determined by k'/Ao. In the above equation (9), '' is rewritten as k. In equation (11), A is the measured absorbance and Ao is a constant that is close to the corrected value, so it is common to set α=constant x r2B2 (12). It can also be written that equation (11) can be solved using the following approximate method. The second term on the right side of the equation (11)' is an equation that gives the difference (Ao - A) from Ao, and is a small value when compared to Δ itself. Therefore, (1
1) Solution for the value of Ao in the equation (For the reason, it is set as a constant.

(1)式と(2)式とを(らべれば、(1)式は平方根
の演算を含むので、計算プログラムが長(なるなどやや
面倒な点があるが、0式は単なる二次式ゆえ、装置への
組込みが容易である。
If we compare equations (1) and (2), we can see that equation (1) involves a square root operation, so the calculation program is quite long, which can be a bit troublesome, but equation 0 is just a quadratic equation. Because of the formula, it is easy to incorporate into the device.

(実施例) 第1図に本発明の一実施例を示す。Lは光源、C1,C
2,C3・・・は試料セル、Sは分光器の入口スリット
、Gは回折格子で、DI;D2・・・Dnは回折格子G
によって形成されるスペクトル像面上に配置された光検
出器で、Dlから順にλ1゜λ2.・・・λnの波長の
光を検出するようになっている。Kはコンピュータで上
記装置全体を制御すると共に光検出器DI、D2・・・
の出力を取込み演算処理を施して各試料の濃度を算出す
る。試料セルCI、C2・・・は自動試料交換機Tにセ
ットされ、コンピュータKにより制御されて順次測定位
置に移動せられ、コンピュータには与えられたプログラ
ムに従い、自動試料交換機上の試料セルの順番に応じて
予め指定されている−乃至複数の光検出機Di、Dj・
・・の出力を取込み前記(1)或はC)式に従って試料
中の目的物質の補正された吸光度を算出し、その物質に
ついて与えられている検量線のデータから目的物質の濃
度を決定して試料番号と共に記録装置に記録する。
(Example) FIG. 1 shows an example of the present invention. L is the light source, C1, C
2, C3... is the sample cell, S is the entrance slit of the spectrometer, G is the diffraction grating, DI; D2...Dn is the diffraction grating G
A photodetector is placed on the spectral image plane formed by λ1°, λ2, . ...It is designed to detect light with a wavelength of λn. K is a computer that controls the entire device, and also includes photodetectors DI, D2...
The concentration of each sample is calculated by importing the output and performing arithmetic processing. The sample cells CI, C2, etc. are set in the automatic sample exchanger T, and are sequentially moved to the measurement position under the control of the computer K. According to the program given to the computer, the sample cells on the automatic sample exchanger are - or a plurality of photodetectors Di, Dj, specified in advance according to the
Calculate the corrected absorbance of the target substance in the sample according to formula (1) or C) by taking in the output of ..., and determine the concentration of the target substance from the calibration curve data given for that substance. Record it on the recording device along with the sample number.

通常第1図に示されるような分光光度計は、多項目生化
学自動分析装置に用いられることが多い。この種装置は
、測定項目が定まっている(例えば30f111)ので
、各項目の被測定試料の特性としてのkの値は定まって
いる。
A spectrophotometer as shown in FIG. 1 is usually used in a multi-item biochemical automatic analyzer. In this type of device, the measurement items are fixed (for example, 30f111), so the value of k as a characteristic of the sample to be measured for each item is fixed.

またバンド輻Bは例えば10nm程度で、波長に多少の
依存性があるものの、波長が定まれば、既知の値である
Further, the band width B is, for example, about 10 nm, and although it is somewhat dependent on the wavelength, it is a known value once the wavelength is determined.

通常各項目ごとk、測定波長や試料採取量、試薬分注量
などを、いわゆる「測定パラメータ」として設定するよ
うになっているので、今回導入したkの値とBの値を項
目ごとのパラメータに追加して設定するようにしておけ
ば、夫々の項目に応じて、自動的に適当なkとBの値を
用いて補正計算を行うことが可能である。
Normally, k, measurement wavelength, sample collection amount, reagent dispensing amount, etc. are set for each item as so-called "measurement parameters," so the values of k and B introduced this time are set as parameters for each item. By additionally setting the values, it is possible to automatically perform correction calculations using appropriate values of k and B according to each item.

前記(1)或は(2)式による補正された吸光度Aoの
算出動作は、実際に(1)或は(2)式の演算プログラ
ムによって行うようにしてもよく、或はAとAoとの関
係表を作っておいて、実測吸光度値Aから補正された吸
光度Aoを引出すようにしておいてもよい。
The calculation operation of the corrected absorbance Ao according to the above formula (1) or (2) may be actually performed by the calculation program according to the formula (1) or (2), or the calculation operation between A and Ao A relational table may be created and the corrected absorbance Ao may be derived from the actually measured absorbance value A.

これまでの説明に於いては1波長の場合について述べて
きた。しかし、自動分析装置でしばしば使用される2波
長法や多波長法への転用も有効である。三波長法の例で
は、第4図のようk、吸収ピーク上に二つの波長λ1と
λ2を設定するが、λ1、λ2のいずれかが、傾斜の部
分になることが多い。バンド幅が広いときは、[A(λ
1)−A(λ2)]を直接計算すると検量線が曲るので
、夫々の波長においてAo(λ1)、Ao(λ2)への
補正を行った後[Ao(λ1)−Ao(λ2)]を求め
ることにより正しい値を求めるこができる。
In the explanation so far, the case of one wavelength has been described. However, it is also effective to apply the method to a two-wavelength method or a multi-wavelength method that is often used in automatic analyzers. In the example of the three-wavelength method, two wavelengths λ1 and λ2 are set on the absorption peak k as shown in FIG. 4, but either λ1 or λ2 is often the part of the slope. When the bandwidth is wide, [A(λ
1) - A(λ2)] will curve the calibration curve, so after making corrections to Ao(λ1) and Ao(λ2) at each wavelength, [Ao(λ1)-Ao(λ2)] The correct value can be found by calculating .

別 表a 第3図へ点くピーク波長)で測定する場合4つのバンド
幅に対する計算結果 別 表b (発明の効果) 本発明によれば、測定波長が被測定試料の丁度ピークの
中心波長に設定できないような場合でも、分光器のバン
ド幅の影響による検量線の曲りを補正した正しい濃度が
求められ、精度の良い定量が可能となる。
Attachment A Calculation results for four bandwidths when measuring at the peak wavelength shown in Figure 3) Attachment B (Effects of the invention) According to the present invention, the measurement wavelength cannot be set to exactly the center wavelength of the peak of the sample to be measured. Even in such a case, the correct concentration can be determined by correcting the curvature of the calibration curve due to the influence of the spectrometer's bandwidth, allowing highly accurate quantification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置のブロック図、第2図は
本発明の作用説明図、第3図はピーク波長での測定と、
ピークから離れた波長で測定する場合の相異を示す具体
例の説明図、第4図は本発明を2波長法に適用する場合
の説明図である。 L・・・光源C1,C2・・・試料セル、T・・・自動
試料交換機、S・・・入口スリット、G・・・回折格子
、Dl、D2・・・光検出機、K・・・コンピュータ。 代理人  弁理士 縣  浩 介 第3図す点(ピークから25nrn離れた波長)で測定
する場合の4つのバンド幅に対する計算結果12図 庫 図 弔 4図 沁長
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the present invention, and FIG. 3 is a diagram showing measurement at a peak wavelength.
FIG. 4 is an explanatory diagram of a specific example showing the difference when measuring at a wavelength far from the peak, and FIG. 4 is an explanatory diagram when the present invention is applied to a two-wavelength method. L...Light sources C1, C2...Sample cell, T...Automatic sample exchanger, S...Entrance slit, G...Diffraction grating, Dl, D2...Photodetector, K... Computer. Agent Hiroshi Agata, Patent Attorney Figure 3: Calculation results for four bandwidths when measuring at a point (wavelength 25nrn away from the peak)

Claims (2)

【特許請求の範囲】[Claims] (1)分光器のバンド幅Bと、被測定試料のスペクトル
の傾きを表わし、試料の濃度にはよらない下記に定める
係数kをパラメータとして含む下記の関数によって、実
測吸光度Aから補正吸光度Aoを求める補正機能を有す
る分光測定装置。 ただしAo=F(B、k、A) ここでkは測定を行う波長に於いて、被測定試料の適当
な濃度の標準品の正しい吸光度Asと、その標準品のス
ペクトルの傾きksの比としてk=ks/As より求まる量とし、fはBとkとAの関数とする。
(1) Calculate the corrected absorbance Ao from the measured absorbance A using the following function that includes as parameters the band width B of the spectrometer and the coefficient k defined below, which represents the slope of the spectrum of the sample to be measured and does not depend on the concentration of the sample. A spectrometer with the desired correction function. However, Ao = F (B, k, A) where k is the ratio of the correct absorbance As of the standard product at an appropriate concentration of the sample to be measured to the slope ks of the spectrum of the standard product at the wavelength to be measured. It is assumed that k=ks/As, and f is a function of B, k, and A.
(2)上記関数が Ao=2A/[1+√(1−4Aα)] ただしα=(ln10/12)k^2B^2またはその
近似式である請求項(1)記載の分光測定装置。
(2) The spectrometer according to claim 1, wherein the function is Ao=2A/[1+√(1-4Aα)] where α=(ln10/12)k^2B^2 or an approximate expression thereof.
JP7755689A 1989-03-28 1989-03-28 Spectroscopic measurement apparatus Pending JPH02254343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7755689A JPH02254343A (en) 1989-03-28 1989-03-28 Spectroscopic measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7755689A JPH02254343A (en) 1989-03-28 1989-03-28 Spectroscopic measurement apparatus

Publications (1)

Publication Number Publication Date
JPH02254343A true JPH02254343A (en) 1990-10-15

Family

ID=13637291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7755689A Pending JPH02254343A (en) 1989-03-28 1989-03-28 Spectroscopic measurement apparatus

Country Status (1)

Country Link
JP (1) JPH02254343A (en)

Similar Documents

Publication Publication Date Title
CA2286093C (en) Method for standardizing raman spectrometers to obtain stable and transferable calibrations
US5610836A (en) Process to use multivariate signal responses to analyze a sample
US4373818A (en) Method and device for analysis with color identification test paper
US8352205B2 (en) Multivariate optical elements for nonlinear calibration
US8862445B2 (en) Selecting spectral elements and components for optical analysis systems
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
CA2575585A1 (en) Method for producing independent multidimensional calibrating patterns
KR0163788B1 (en) Spectrometric method free from variations of error factors
CN108037084A (en) A kind of anti-jamming measurement methods suitable for photometry principle water quality automatic analyzer
US3988591A (en) Photometric method for the quantitative determination of a material or substance in an analysis substance and photoelectric photometer for the performance of the aforesaid method
JP4506554B2 (en) Emission spectroscopy analysis method and emission spectroscopy analyzer
US5305076A (en) Quantitative analytical method and apparatus for spectrometric analysis using wave number data points
JPH1030982A (en) Method for analysing multicomponent aqueous solution
US4944589A (en) Method of reducing the susceptibility to interference of a measuring instrument
JPH063264A (en) Method for forming calibration curve in near infrared analysis
JPH07151677A (en) Densitometer
Blanco et al. Wavelength calibration transfer between diode array UV-visible spectrophotometers
JPS6140928B2 (en)
JPH02254343A (en) Spectroscopic measurement apparatus
JP3212107B2 (en) Spectrometry
US20230194416A1 (en) Preparation method for preparing spectrometric determinations of at least one measurand in a target application
JPH0755565A (en) Method and apparatus for quantitatively calculating by using spectrum
JP3128163U (en) Spectrophotometer
JP2950329B1 (en) Food component analyzer
Igne et al. 17 Calibration Transfer