JPS6079248A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS6079248A
JPS6079248A JP18704583A JP18704583A JPS6079248A JP S6079248 A JPS6079248 A JP S6079248A JP 18704583 A JP18704583 A JP 18704583A JP 18704583 A JP18704583 A JP 18704583A JP S6079248 A JPS6079248 A JP S6079248A
Authority
JP
Japan
Prior art keywords
memory
light
wavelength
array
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18704583A
Other languages
Japanese (ja)
Inventor
Yoshio Toyama
遠山 恵夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18704583A priority Critical patent/JPS6079248A/en
Publication of JPS6079248A publication Critical patent/JPS6079248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to obtain accurate light measurement even if crosstalk and stray light are increased by reducing stray light, by preliminarily storing the degree of the influence of stray light or higher light between different wavelengths and calculating an actual influence amount from the multiplication result of the degree of the stored mutual influence and actually measured light intensity. CONSTITUTION:Light emitted from a light source 1 transmits a specimen 3 and is incident on a spectrometer 4. The output scanning pulse generator 8 and the output A/D converter 9 of a photodiode array 7 receives control by CPU10 and an electric signal amount E1 corresponding to each bit of the array 7 is stored in A-memory 11. On the other hand, proportion constants A1-An are stored in B-memory 12 corresponding to the arrangement of the bits of the array 7 and CPU10 takes out stored values E1, A1 corresponding to the same bit of the array 7 from the A-memory 11 and the B-memory 12 and E1 and A1 are multiplied in an operation part 3 which in turn further adds E1.A1+E2.A2+... +En. An. By this method, crosstalk due to the incompleteness of the spectrometer 4 can be removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、試料の透過又は反射を測定することを目的と
しだ分yC光度削に係わり、分光器固有の迷光や高次光
の影響を除去して正しい測光値をイ(+る分光光度側に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to yC luminous intensity reduction for the purpose of measuring the transmission or reflection of a sample, and is a method for eliminating the effects of stray light and higher-order light inherent in a spectrometer. Concerning the spectral luminosity side, which is the correct photometric value.

〔発明の背景〕[Background of the invention]

従来、この種の分光光度側において、迷光や回折格子の
高次光を除去するため、カントフィルターを組み合わせ
たり、分光器を2個使用したダブルモノクロメータの採
用など独りの工夫がなされている。一方近年において、
マルチダイオードアレーを用いた多波長分光光度側が普
及してきたが、マルチダイオードアレーを用いた分光器
では11固の検知アレーの前に複数個のカットフィルタ
を組み合わせることができず、またダブルモノクロメー
タを使用することもできない。さらにマルチダイオード
アレーの場合は、検知器自体の隣接受光素子へのクロス
トークもあり、検訊線に直接性が出なくなる原因となっ
ていた。
Conventionally, in this type of spectrophotometry, in order to remove stray light and high-order light from diffraction gratings, unique ideas have been used, such as combining cant filters and adopting a double monochromator using two spectrometers. On the other hand, in recent years,
Multi-wavelength spectrophotometry using a multi-diode array has become popular, but a spectrometer using a multi-diode array cannot combine multiple cut filters in front of an 11-piece detection array, and it is difficult to use a double monochromator. It cannot be used either. Furthermore, in the case of a multi-diode array, there is also crosstalk to adjacent photodetectors of the detector itself, which causes the interrogation line to lack directness.

〔発明の目的〕[Purpose of the invention]

本発明はマルチダイオードアレーを用いた分光光度計に
限らず2波長以上の波長を自動的に設定できる機能を持
った分光光度計において、迷光や高次光の影響をし得る
分光光度計を提供することを目的とする。
The present invention is not limited to a spectrophotometer using a multi-diode array, but also has a function of automatically setting two or more wavelengths, and provides a spectrophotometer that can be affected by stray light and higher-order light. With the goal.

〔発明の概要〕[Summary of the invention]

迷光や高次光の影響を除去するには、物理的な光学的除
去方法が最も良いが、マルチダイオードを用いる場合な
どでは光学的除去方法は採用できない場合がある。また
、通常の人、出射スリットを持った分光光度計において
も、光学的除去方法を用いずに低迷光化を計りたい場合
がある。本発明は、異なる波長間での迷光や高次光の影
響の度合をあらかじめ記憶しておき、この記憶した相互
影響の度合と実測した光強度の乗算結果から実際の影響
量を算出し、計算上で迷光を減少せしめ、正しい測光値
を得゛るようにしたものである。
Physical optical removal methods are best for removing the effects of stray light and higher-order light, but optical removal methods may not be applicable in cases such as when using multiple diodes. Furthermore, even in a spectrophotometer equipped with an exit slit, there are cases in which it is desired to reduce stray light without using an optical removal method. In the present invention, the degree of influence of stray light and higher-order light between different wavelengths is stored in advance, and the actual amount of influence is calculated from the result of multiplying the stored degree of mutual influence by the actually measured light intensity. This is designed to reduce stray light and obtain correct photometric values.

〔発明の実施例〕[Embodiments of the invention]

まず、本発明の原理について説明する。今、分光光度°
計の波長範囲をn点(n≧2)に分割し、夫夫の波長を
λl、λ2.λ3・・・・・・A1・・・・・・A0と
する。一方、分光光度計の光源から出射した光が分光器
、試料部を経て検知器に照射されると、光強度に比例し
た電気信号量に変換されるが、この電気信号量は波長λ
1.λ2・・・・・・λ。によって夫夫異なる。そこで
この値をE11#E2・・・・・訃ビ・・′°゛E・と
する。もし、分光器が完全であれば異なる2波長(λ1
.λJ)間でE、、EJO間には相互影響はあり得ない
が、実際の分光器では相互形jjAiがあり得る。通常
、この相互影響は迷光、高次光又はクロストークと呼ば
れるもので分光光度計の構造によって決定づけられるも
のである。今、1 λh λ」の2波長に注目すると、
波長λ、の電気信号量EIKは、真に波長λlだけに依
存する電気信号、tt[Et)と、波長λjによるクロ
ス) −り(迷光、高次光も含む)信号のEl、、02
2成分が含まれている。E’、 、は波長λJの電気信
号量E」に比例するので、E’、lJ二AB−Elであ
らゎせる。ここにA11は波長Jの単位電気信号量が波
長iの電気信号に混入する値を示す。
First, the principle of the present invention will be explained. Now, spectrophotometry °
The wavelength range of the meter is divided into n points (n≧2), and the wavelengths of the husband and husband are λl, λ2, . Let λ3...A1...A0. On the other hand, when the light emitted from the light source of a spectrophotometer passes through the spectrometer and sample section and hits the detector, it is converted into an electrical signal amount proportional to the light intensity, but this electrical signal amount has a wavelength of λ
1. λ2...λ. It varies depending on the husband. Therefore, let this value be E11#E2...'°゛E. If the spectrometer was perfect, it would have two different wavelengths (λ1
.. There can be no mutual influence between E, , and EJO between λJ), but there may be a mutual influence jjAi in an actual spectrometer. This mutual influence is usually called stray light, higher order light, or crosstalk, and is determined by the structure of the spectrophotometer. Now, if we focus on the two wavelengths of 1 λh λ,
The electrical signal quantity EIK of the wavelength λ is the cross between the electrical signal tt[Et] that truly depends only on the wavelength λl and the signal El of the wavelength λj (including stray light and higher-order light), 02
Contains two ingredients. Since E', , is proportional to the electric signal amount E' of wavelength λJ, it can be expressed as E', lJ2AB-El. Here, A11 indicates the value at which the unit electric signal amount of wavelength J is mixed into the electric signal of wavelength i.

一方、E + * E Jは実測結果であり・AIJは
EIIEJに無関係な一定の値であり、分光光度計の系
が決まれば実験的にめておくことができる。
On the other hand, E+*EJ is an actual measurement result, and AIJ is a constant value unrelated to EIIEJ, which can be determined experimentally once the spectrophotometer system is determined.

よって、真の′iは気信号ffi[E+〕は次式でする
Therefore, the true 'i' and the air signal ffi[E+] are expressed as follows.

(E I]=E + A I」・E、 ・・・・・・明
・・・・・(11これまではA1 λjの2波長につい
て検討したが全波長については次式で木製る。
(E I]=E + A I"・E,... Bright... (11 Up to now, we have considered two wavelengths, A1 and λj, but the total wavelength can be calculated using the following formula.

〔EI〕=EI−ΣA1・帽 ・川・団・・・・・・・
(2+−1 但し、A目=0とする。
[EI] = EI-ΣA1, hat, river, group...
(2+-1 However, A-th = 0.

以上の解析よりA +i + A I21 A Is 
・・曲A Inをあらかじめ実験でめておき、次にbs
 e E2・・・・・・Elを測定すれば、計算の上か
ら(Et)がまる。
From the above analysis, A +i + A I21 A Is
・Memorize the song A In in advance by experiment, and then play the bs
e E2...If El is measured, (Et) is calculated from above.

これにより、分光器が完全でなくとも真の測光値E1が
算出可能であることがわかる。
This shows that the true photometric value E1 can be calculated even if the spectrometer is not perfect.

ところで、All r A12・・・・・・Alaは波
長λ1に対する各波長のA4人の度合を示す値であるが
、この値は波長λ魚によって決定づけられるもので、波
長λ1が変わればA 111 A +z・由・・A1.
、も変わる。
By the way, All r A12...Ala is a value indicating the degree of A4 of each wavelength with respect to wavelength λ1, but this value is determined by the wavelength λ fish, and if the wavelength λ1 changes, A 111 A +z・Yu・・A1.
, also changes.

そこで、波長λ1.λ2・・・・・・λ、に対し、それ
ぞれ(A11l A12. Ate−−A+n ) (
A2t、 A221A23・・・・・・A2n)・・・
・・・(A、しA。2・・・・・・A、、)をすべて記
憶しておけば、全波長λ1・・・・・・λ。に対し真の
測光値(gt ] [E2 :]・・・・・・〔1う。
Therefore, the wavelength λ1. For λ2...λ, respectively (A11l A12.Ate--A+n) (
A2t, A221A23...A2n)...
...(A, shiA.2...A,,), the total wavelength λ1...λ. The true photometric value (gt) [E2:]...[1].

〕がまる。この場合、A11.A1□・・・・・・An
 aの記憶点数は波長点数nの2乗(I2)の数になる
] Gamaru. In this case, A11. A1□・・・・・・An
The number of memory points of a is the number of wavelength points n squared (I2).

第1図は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

同図において、光源1を出射した光は、試料部2に1α
かれた試料3を透過したあと分光器4に入射する。分光
器4は入射スリット5、凹面回折格子6及びフォトダイ
メートアレー7より成る。フォトダイオードアレー7の
出方走査ノくルス発生器′8、出力A/L)変換器9は
CPUl0によって制御を受け、フォトダイオードアレ
ー7の各ピントに対応する電気信号1t、(H+)をA
メモリ11にビット単位で記憶する。この記憶値はCP
Ul0から走査パルス発生器8ヘパルス発生命令を出す
のと同期してクリアされ、常に最新の測光値が記憶され
る。
In the figure, the light emitted from the light source 1 is transmitted to the sample section 2 by 1α
After passing through the sample 3 , it enters the spectrometer 4 . The spectrometer 4 consists of an entrance slit 5, a concave diffraction grating 6 and a photodimate array 7. The output scanning pulse generator '8 of the photodiode array 7, the output A/L) converter 9 is controlled by the CPU10, and converts the electrical signals 1t, (H+) corresponding to each focus of the photodiode array 7 into A.
It is stored in the memory 11 bit by bit. This memory value is CP
It is cleared in synchronization with issuing a pulse generation command from Ul0 to the scanning pulse generator 8, and the latest photometric value is always stored.

一方、Bメモリ12にはフォトダイオードアレー7のビ
ットの配列に対応して比例定数Al1A2・・・・・・
A、が記憶されており、この匝は常に一定値である。A
メモリ11にフォトダイオードアレー7の電気信号量゛
を全て記憶し終ると、CPU10はAメモリ11とBメ
モリ12よりフォトダイオードアレー7の同一ビットに
利応する記憶値E l’+ A +をとり出し演算部1
3にてE t + A Iを乗算する。更に演′算部1
3はEl・AI +E2・ん+・・・・・・十E。−A
1を加算する。但しA+=0とする。次に演算部13は E I’ (Et−At+E2・Ax 十−−+E 、
 ・A−)を算出し、出力I10回路14にその結果を
出力する。出力I10回路14は結果を表示部15に出
力する。
On the other hand, the B memory 12 has proportional constants Al1A2, . . . corresponding to the bit arrangement of the photodiode array 7.
A is stored, and this value is always a constant value. A
When the memory 11 has finished storing all the electric signal amounts of the photodiode array 7, the CPU 10 takes the stored value E l'+ A + corresponding to the same bit of the photodiode array 7 from the A memory 11 and the B memory 12. Output calculation unit 1
Multiply E t + A I by 3. Furthermore, arithmetic unit 1
3 is El・AI +E2・n+...10E. -A
Add 1. However, A+=0. Next, the calculation unit 13 calculates E I' (Et-At+E2・Ax 1--+E,
- A-) and outputs the result to the output I10 circuit 14. The output I10 circuit 14 outputs the result to the display section 15.

以上より分光器4の不完全さによるクロス) −り等は
除去できる。
From the above, crosses, etc. due to imperfections in the spectrometer 4 can be removed.

第2図は本発明の他の実施例を示すブロック図である。FIG. 2 is a block diagram showing another embodiment of the invention.

この第2図では、分光器4としてフォトダイオードアレ
ーを使用せず、凹面回折格子6により単色光となった光
の内、特定波長の光だけが出射スリット16を出射し、
検知器17に入射する。凹面回折格子6は回転機構18
の上に直かtr。
In FIG. 2, a photodiode array is not used as the spectrometer 4, and only light of a specific wavelength out of the monochromatic light produced by the concave diffraction grating 6 is output from the output slit 16.
The light enters the detector 17. The concave diffraction grating 6 is a rotating mechanism 18
Directly on top of tr.

る。回転機構18は、波長駆動モータ19及び回転機構
部18により駆動される。波長、駆動モータ19は波長
駆動回路20によって駆動される。
Ru. The rotation mechanism 18 is driven by a wavelength drive motor 19 and a rotation mechanism section 18 . The wavelength drive motor 19 is driven by a wavelength drive circuit 20.

第1図では各波長での側光値はフォトダイオードアレー
7のビットに対応していたが、第2図では波長駆動モー
タの駆動パルスに対応する。第1図と異なり第2図は全
波長を走査するために、機構系が走査することになるが
、走査後の演算処理などは第1図と同様である。
In FIG. 1, the side light value at each wavelength corresponds to the bit of the photodiode array 7, but in FIG. 2, it corresponds to the drive pulse of the wavelength drive motor. Unlike FIG. 1, in FIG. 2 the mechanical system scans all wavelengths, but the calculation processing after scanning is the same as in FIG. 1.

第3図は本発明のさらに他の実施例を示すブロック図で
ある。
FIG. 3 is a block diagram showing still another embodiment of the present invention.

第1図では波長λSについての真のdtll定値(El
:]をめていたが、この第3図の実施例では全波長につ
いても測定可能とするため第1図OBメモリ12を8倍
し、メモリBssメモリB2・・・・・・メモIJ B
 fiとしたものである。CPUl0は任意の波長λj
に対しAメモリ11の記憶値E 1 ’ I” E 2
・・・・・・ −Elと、メモリBj12の記憶値ん1
+AB・・・・・・A fi4をとり出し、真値〔E、
〕をめ、全波長点にわたって算出した結果を表示部15
や記録計21に表示、記録する。これによって、前述の
実施例と同様な効果が得られる。
In Figure 1, the true dtll constant value (El
:], but in the embodiment shown in Fig. 3, in order to be able to measure all wavelengths, the OB memory 12 shown in Fig. 1 is multiplied by 8, and the memory Bss memory B2...Memo IJ B
fi. CPUl0 has an arbitrary wavelength λj
For the stored value E 1 'I'' E 2 of A memory 11
...... -El and the memory value of memory Bj12 1
+AB・・・・・・A fi4 is taken out and the true value [E,
], the results calculated over all wavelength points are displayed on the display section 15.
It is displayed and recorded on the recorder 21. As a result, the same effects as in the previous embodiment can be obtained.

なお、以上の実施例では分光器4の分散子は凹面回折格
子であったが、平面回折格子を用いた分光器やプリズム
分光器であっても実施でき為、ことは明白である。
In the above embodiment, the dispersion element of the spectrometer 4 was a concave diffraction grating, but it is obvious that a spectrometer using a plane diffraction grating or a prism spectrometer can also be used.

また、Bメモリ12の記憶点数はAメモリ11の記憶点
数と同じとしたが、記憶点数を減らして記憶容賛を少7
Z<L、減少分を補間法にて補間することにより処理す
る手段も容易に実施できる。
In addition, the number of memory points in the B memory 12 is the same as the number of memory points in the A memory 11, but the number of memory points is reduced to increase the memory capacity by 7.
If Z<L, a method of processing by interpolating the decreased amount using an interpolation method can also be easily implemented.

更に実施例では真の測光値をそのまま出力表示している
が、演算部13と出力I10回路14の間に乗算、対数
変換などの処理ルーチンを入れ、透過率や吸光度を出力
する手段を採用できることも容易である。
Furthermore, in the embodiment, the true photometric values are output and displayed as they are, but processing routines such as multiplication and logarithmic conversion can be inserted between the arithmetic unit 13 and the output I10 circuit 14 to output transmittance and absorbance. is also easy.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、分光器
の光学的特性が不十分であり、クロス) −クーや迷光
が多い場合でも正しい測光結果を得る′ことができる。
As is clear from the above description, according to the present invention, correct photometry results can be obtained even when the optical characteristics of the spectrometer are insufficient and there are many cross beams or stray lights.

特に、マルチダイオードアレーを用いる分光光度計の最
大の欠点であった迷光とクロストークの影響を除去する
のに効果がある。
In particular, it is effective in eliminating the effects of stray light and crosstalk, which are the biggest drawbacks of spectrophotometers using multi-diode arrays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明の他の実施例を示すブロック図、第3図は本発明
のさらに他の実施例を示すブロック図である。 1・・・光源、2・・・試料部、3・・・試料、4・・
・分光器、5・・・入射スリット、6・・・凹面回折格
子、7・・・フォトダイオードアレー、8・・・走査パ
ルス発生器、9・・・出力A/D変換器、10・・・C
PU、11・・・Aメモリ、12・・・Bメモリ、13
・・・演算部、14・・・出力I10回路、15・・・
表示部、16・・・入射スリット、17・・・検知器、
18・・・回転機構、19・・・波長駆動モータ、20
・・・波長駆動回路、21・・・記録用。 代理人 弁理士 高橋明夫 第2図 !
FIG. 1 is a block diagram showing one embodiment of the invention, FIG. 2 is a block diagram showing another embodiment of the invention, and FIG. 3 is a block diagram showing still another embodiment of the invention. 1...Light source, 2...Sample part, 3...Sample, 4...
・Spectroscope, 5... Input slit, 6... Concave diffraction grating, 7... Photodiode array, 8... Scanning pulse generator, 9... Output A/D converter, 10...・C
PU, 11...A memory, 12...B memory, 13
... Arithmetic unit, 14... Output I10 circuit, 15...
Display section, 16... Incidence slit, 17... Detector,
18... Rotation mechanism, 19... Wavelength drive motor, 20
... Wavelength drive circuit, 21... For recording. Agent Patent Attorney Akio Takahashi Figure 2!

Claims (1)

【特許請求の範囲】 1、光源、分光分散子、試料部、検知器を有し、光源か
ら出射した光を分散子を含む光学系により単色光となし
検知器に照射し、この検知器と光学系との間に置かれた
試料の反射光又は透過光を測定する分光光度計において
、検知器に照射して電気信号に変換された単色光の光強
度を少くとも2点以上の波長に関して測定した結果を各
波長ごとに夫々記憶する第1のメモリと、この第1のメ
モリの波長配列に対応して測光値によって変動しない固
有の強度比を記憶する第2のメモリと、前記2個のメモ
リの記憶データを同一波長に関してとり出し乗算を行な
う乗算器及び加減算器を備えたことを特徴とする分光光
度側。 2、検知器、をフォトダイオードアレーで構成したこと
を特徴とする特許請求の範囲第1項記載の分光光度計。 3、第2のメモリが第1のメモリの波長配列に対応し、
波長配列の数の2乗の数だけ強度比を記憶していること
を特徴とする特許請求の範囲第1項記載の分光光度計。 4、第2のメモリに記憶させた固有の強度比を波長の関
数とすることを特徴とする特許請求の範囲第1項記載の
分光光度計。
[Claims] 1. It has a light source, a spectral dispersion element, a sample part, and a detector, and the light emitted from the light source is converted into monochromatic light by an optical system including the dispersion element and is irradiated onto a monochromatic detector. In a spectrophotometer that measures the reflected light or transmitted light of a sample placed between the optical system, the light intensity of the monochromatic light that is irradiated onto the detector and converted into an electrical signal is measured with respect to at least two wavelengths. a first memory that stores the measured results for each wavelength; a second memory that stores a unique intensity ratio that does not vary depending on the photometric value corresponding to the wavelength array of the first memory; A spectrophotometric side characterized by comprising a multiplier and an adder/subtractor for extracting and multiplying data stored in a memory of the same wavelength with respect to the same wavelength. 2. The spectrophotometer according to claim 1, wherein the detector is constituted by a photodiode array. 3. The second memory corresponds to the wavelength array of the first memory,
2. The spectrophotometer according to claim 1, wherein a number of intensity ratios are stored as many times as the square of the number of wavelength arrays. 4. The spectrophotometer according to claim 1, wherein the unique intensity ratio stored in the second memory is a function of wavelength.
JP18704583A 1983-10-07 1983-10-07 Spectrophotometer Pending JPS6079248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18704583A JPS6079248A (en) 1983-10-07 1983-10-07 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18704583A JPS6079248A (en) 1983-10-07 1983-10-07 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS6079248A true JPS6079248A (en) 1985-05-07

Family

ID=16199206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18704583A Pending JPS6079248A (en) 1983-10-07 1983-10-07 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS6079248A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291946A (en) * 1989-03-22 1990-12-03 Carl Zeiss:Fa Method and apparatus for identifying and evaluating cell colony within capillary optically
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
EP0729017A1 (en) * 1995-02-25 1996-08-28 Hewlett-Packard GmbH Method for measurement and compensation of stray light in a spectrometer
US7859663B2 (en) * 2007-08-27 2010-12-28 Konica Minolta Sensing Inc. Polychrometer and method for correcting stray lights of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
US5305233A (en) * 1986-06-02 1994-04-19 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
JPH02291946A (en) * 1989-03-22 1990-12-03 Carl Zeiss:Fa Method and apparatus for identifying and evaluating cell colony within capillary optically
EP0729017A1 (en) * 1995-02-25 1996-08-28 Hewlett-Packard GmbH Method for measurement and compensation of stray light in a spectrometer
US5801829A (en) * 1995-02-25 1998-09-01 Hewlett-Packard Company Method for measurment and compensation of stray light in a spectrometer
US7859663B2 (en) * 2007-08-27 2010-12-28 Konica Minolta Sensing Inc. Polychrometer and method for correcting stray lights of the same

Similar Documents

Publication Publication Date Title
US8862445B2 (en) Selecting spectral elements and components for optical analysis systems
US7834999B2 (en) Optical analysis system and optical train
US4563090A (en) Grating spectrometer
US4180327A (en) Spectrophotometers with digital processing
US20090033933A1 (en) Novel multivariate optical elements for optical analysis system
US5696580A (en) Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample
JPS6218859B2 (en)
JP2903457B2 (en) Gas analyzer and gas analyzer
JPH07128144A (en) Spectral measuring apparatus
JPH03209149A (en) Spectroscopic measurement method
US4557601A (en) Elimination of ghost component in flow injection analysis method
JPS6079248A (en) Spectrophotometer
JPH043492B2 (en)
JPS6140928B2 (en)
JPH01155221A (en) Wavelength scanning method of spectrophotometer
JPS585669A (en) Correcting method for base line
US5276499A (en) Spectrophotometer
GB2070765A (en) Spectrophotometry
JPS593223A (en) Device for reducing error on measurement resulting from spurious beam in spectrophotometer
JP3230565B2 (en) Optical spectrum analyzer
JPS58102114A (en) Spectrophotometer device
JPH1194735A (en) Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it
JPH03138537A (en) Spectrophotometer
JPS6199825A (en) Fourier transform multiwavelength photometer
SU1044111A1 (en) Double diffraction monochromator