JPH1194735A - Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it - Google Patents

Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it

Info

Publication number
JPH1194735A
JPH1194735A JP9275297A JP27529797A JPH1194735A JP H1194735 A JPH1194735 A JP H1194735A JP 9275297 A JP9275297 A JP 9275297A JP 27529797 A JP27529797 A JP 27529797A JP H1194735 A JPH1194735 A JP H1194735A
Authority
JP
Japan
Prior art keywords
calibration
quantitative
predictive
analysis method
spectrophotometric measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9275297A
Other languages
Japanese (ja)
Inventor
Katsu Inoue
克 井上
Junji Kojima
淳二 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP9275297A priority Critical patent/JPH1194735A/en
Publication of JPH1194735A publication Critical patent/JPH1194735A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a quantitative analyzer for sample characteristic which is modified to simplify calibration work and an analysis method using the analyzer. SOLUTION: A reference instrument 1 for calibration and each predictive quantitative instrument are separately formed and a wavelength shifting means 4 is installed to the spectral optical path 3 of the reference instrument 1 so as to add a waveform shifting condition to spectrophotometry at the time of calibration. The spectral optical path 3 of each predictive quantitative instrument is not provided with the waveform shifting means 4, but designed equally to the reference instrument 1, so that the calibrated matrix obtained by means of the reference instrument 1 can be used as that of each predictive quantitative instrument. Therefore, the original quantitative value difference between each predictive quantitative instrument can be compensated by making the fine wavelength error correspond to a prescribed characteristic item as the instrumental error of each predictive quantitative instrument.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分光光度測定と多
変量解析法とを用いた試料特性の定量分析装置およびそ
の定量分析装置を用いた分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for quantitatively analyzing sample characteristics using spectrophotometry and multivariate analysis, and an analytical method using the apparatus.

【0002】[0002]

【従来の技術】従来の分光光度測定と多変量解析法とを
用いた試料特性の定量分析装置では、与えられた測定条
件に対する特性量既知の分光応答行列を得るための校正
機と、その分光応答行列から解析して求められる校正行
列を用いて特性量を予測する定量装置は同一機体に構成
されていた(図8参照)。
2. Description of the Related Art A conventional quantitative analyzer of sample characteristics using a spectrophotometric measurement and a multivariate analysis method includes a calibrator for obtaining a spectral response matrix with a known characteristic amount for a given measurement condition, and a spectrometer for the same. The quantitative device that predicts the characteristic amount using the calibration matrix obtained by analyzing the response matrix was configured in the same body (see FIG. 8).

【0003】[0003]

【発明が解決しようとする課題】上述のような従来の定
量分析装置では、例えば、予測すべき特性量を溶液中の
複数成分の濃度であるとした場合、濃度未知の溶液試料
の分光吸光度ベクトルを得るための分光光度計(予測定
量装置の)と、濃度既知の分光吸光度応答行列を得るた
めの分光光度計(校正機の)とが共に同一機体となって
いるため、各製品機体毎に校正しなければならなかっ
た。そのため、校正過程で多大な手間を要して、装置の
生産性を低下させ、かつ、コスト高を招いていた。
In the conventional quantitative analyzer as described above, for example, when the characteristic quantity to be predicted is the concentration of a plurality of components in the solution, the spectral absorbance vector of the solution sample whose concentration is unknown is determined. Because the spectrophotometer (of the predictive quantification device) and the spectrophotometer (of the calibration machine) for obtaining the spectral absorbance response matrix whose concentration is known are the same body, I had to calibrate. Therefore, a great deal of labor is required in the calibration process, which reduces the productivity of the apparatus and increases the cost.

【0004】本発明はこのような実情に鑑みてなされ、
校正作業の簡易化を図った試料特性の定量分析装置およ
びその定量分析装置を用いた分析方法を提供することを
目的としている。
[0004] The present invention has been made in view of such circumstances,
It is an object of the present invention to provide an apparatus for quantitatively analyzing sample characteristics and an analysis method using the apparatus for quantitatively analyzing a sample, which facilitates calibration work.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決するための手段を以下のように構成している。すなわ
ち、請求項1に記載の発明では、分光光度測定と多変量
解析法とを用いた試料特性の定量分析装置において、波
長シフト条件を付加した分光光度測定をおこなう校正基
準機を、各予測定量装置とは別体に形成し、その各予測
定量装置個々の機差を、校正時の分光光度測定の前記波
長シフト条件下に集約させてその補償をおこなうように
構成してなることを特徴としている。
According to the present invention, means for solving the above-mentioned problems are constituted as follows. That is, in the invention according to the first aspect, in a quantitative analysis apparatus for sample characteristics using spectrophotometry and multivariate analysis, a calibration reference machine for performing spectrophotometry with a wavelength shift condition is added to each predictive quantitative It is formed separately from the apparatus, and the instrumental differences of each of the predictive quantification devices are configured to be aggregated under the wavelength shift condition of the spectrophotometric measurement at the time of calibration to perform the compensation. I have.

【0006】請求項2に記載の発明では、分光光度測定
と多変量解析法とを用いた試料特性の定量分析装置にお
いて、校正用基準機と各予測定量装置とをそれぞれ別体
に形成し、かつ前記校正用基準機の分光器中には波長シ
フト手段を設け、校正時の分光光度測定に波長シフト条
件を付加する一方、前記各予測定量装置の分光器には、
波長シフト手段を設けることなく、その光学系を前記校
正用基準機の光学系と同一設計とし、前記校正用基準機
で得た校正行列を、前記各予測定量装置の校正行列とす
ることにより、各予測定量装置個々の機差としての微小
波長誤差を所定の特性項目に対応させ、本来の定量値の
機差補償をおこなうことを特徴としている。
According to a second aspect of the present invention, in the apparatus for quantitatively analyzing the characteristics of a sample using spectrophotometry and multivariate analysis, a calibration reference machine and each predictive quantitative apparatus are formed separately. And a wavelength shift means is provided in the spectroscope of the calibration reference device, and a wavelength shift condition is added to the spectrophotometric measurement at the time of calibration, while the spectroscope of each of the predictive quantification devices,
Without providing the wavelength shift means, the optical system and the optical system of the calibration reference device and the same design, the calibration matrix obtained by the calibration reference device, by the calibration matrix of each of the predictive quantitative device, It is characterized in that a minute wavelength error as a machine difference of each prediction and quantification device is made to correspond to a predetermined characteristic item, and machine difference of an original quantitative value is compensated.

【0007】請求項3に記載の発明では、請求項1また
は請求項2に記載の発明の前記各予測定量装置には、前
記波長シフト条件を付加するための波長シフト手段を分
光光路に設定・退避自在または着脱自在に設けてあるこ
とを特徴としている。
According to a third aspect of the present invention, in each of the predicting and quantifying devices according to the first or second aspect of the present invention, a wavelength shift means for adding the wavelength shift condition is set in a spectral optical path. It is characterized by being provided so as to be retractable or detachable.

【0008】請求項4に記載の発明では、請求項1ない
し請求項3のいずれかに記載の発明における分析対象と
なる試料の特性が、多成分水溶液の各成分濃度であるこ
とを特徴としている。
According to a fourth aspect of the invention, the characteristic of the sample to be analyzed in any one of the first to third aspects of the invention is a concentration of each component of the multi-component aqueous solution. .

【0009】請求項5に記載の発明では、請求項1ない
し請求項3のいずれかに記載の発明における前記分光光
度測定が近紫外域から近赤外域に至る分光吸光度データ
を用いることを特徴としている。
According to a fifth aspect of the present invention, the spectrophotometric measurement in any one of the first to third aspects uses spectral absorbance data ranging from a near ultraviolet region to a near infrared region. I have.

【0010】請求項6に記載の発明では、請求項1ない
し請求項5のいずれかに記載の発明における前記校正基
準機の分光器に設けられる波長シフト手段が回折格子軸
と平行な軸まわりに回動可能で分光域内にてほぼ透明な
光学的特性を有する平行平面板よりなり、入射スリット
の後方近傍位置または出射スリットの前方近傍位置の光
路中に配置されることを特徴としている。
According to a sixth aspect of the present invention, the wavelength shift means provided in the spectroscope of the calibration reference device according to any one of the first to fifth aspects of the present invention is arranged around an axis parallel to the diffraction grating axis. It is made of a parallel flat plate that is rotatable and has optical characteristics that are substantially transparent within the spectral range, and is arranged in the optical path at a position near the rear of the entrance slit or near the front of the exit slit.

【0011】請求項7に記載の発明では、校正の対象と
なる各予測定量装置とは別体に形成した校正基準機を用
いて一元的に校正をおこなえるようにした分析方法であ
って、まず、個々の予測定量装置の機差のバラツキ範囲
を考慮した一定の波長シフトを付加した条件下での分光
データを併せて取得し、その結果得られた分光応答行列
から基準となる校正行列を求め、その校正行列を前記各
予測定量装置に共通の校正行列として記憶させた後、前
記各予測定量装置により、未知の特性量を測定し、その
結果得られた分光吸光度ベクトルと、記憶されている前
記校正行列との行列演算をおこなうことにより、各成分
の濃度と使用機体の集約された波長誤差を求め、その結
果、微小波長誤差に集約される機差を補償した各成分の
濃度値を求めることを特徴としている。
According to a seventh aspect of the present invention, there is provided an analysis method in which calibration can be performed unitarily using a calibration reference machine formed separately from each of the predictive quantification devices to be calibrated. In addition, the spectrum data under the condition that a certain wavelength shift is added considering the range of the machine difference of each predictive quantification device is also acquired, and the reference calibration matrix is obtained from the resulting spectral response matrix. After storing the calibration matrix as a calibration matrix common to each of the prediction and quantification devices, each of the prediction and quantification devices measures an unknown characteristic quantity, and the resulting spectral absorbance vector is stored. By performing a matrix operation with the calibration matrix, the concentration of each component and the aggregated wavelength error of the aircraft used are obtained, and as a result, the concentration value of each component that compensates for the instrumental error aggregated into the minute wavelength error is obtained. This It is characterized in.

【0012】校正基準機で波長シフト条件を付加した分
光光度測定をおこなうことにより得た校正行列を、各予
測定量装置における予測用の校正行列とすることによっ
て、各予測定量装置個々の機差としての微小波長誤差を
今一つの特性項目(所定の特性項目)に対応させ、他の
特性項目に対応する定量値の機差補償をおこなうことが
できる。つまり、校正基準機を別個独立に構成したこと
により、校正行列の一元化が可能となり、個々の予測定
量装置毎の校正過程が不要となり、校正作業が大幅に簡
易化される。
A calibration matrix obtained by performing a spectrophotometric measurement to which a wavelength shift condition is added by a calibration reference machine is used as a calibration matrix for prediction in each predictive quantitative device, thereby obtaining a difference between the individual predictive quantitative devices. Can be made to correspond to another characteristic item (predetermined characteristic item), and instrumental difference compensation of quantitative values corresponding to other characteristic items can be performed. In other words, since the calibration reference devices are configured separately and independently, the calibration matrix can be unified, and the calibration process for each prediction and quantification device becomes unnecessary, and the calibration work is greatly simplified.

【0013】[0013]

【発明の実施の形態】以下に本発明の分光光度測定と多
変量解析法とを用いた試料特性の定量分析装置およびそ
の定量分析装置を用いた分析方法の実施形態を詳細に説
明する。本定量分析装置の基本的な概念は、図1に示さ
れるように、校正基準機1を、各予測定量装置2,…と
は別個独立に別体として構成し、その校正基準機1で求
めた校正行列を、各予測定量装置2,…の校正行列とし
て用いることにより、校正行列の一元化を図るものであ
り、その校正基準機1には、特に、分光光路3中に波長
シフト手段4を設け(図2,3参照)、波長シフト条件
を付加した校正時の分光光度測定をおこなうことによ
り、その波長シフト条件下に、各予測定量装置2,…の
個々の機差を集約させて、全ての予測定量装置2,…の
機差補償を単一の校正基準機1によって一元的におこな
えるようにしたことを大きな特徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a quantitative analysis apparatus for sample characteristics using spectrophotometry and multivariate analysis and an analysis method using the quantitative analysis apparatus according to the present invention will be described in detail. The basic concept of this quantitative analyzer is that, as shown in FIG. 1, the calibration reference machine 1 is configured separately and separately from each of the predictive quantification apparatuses 2,. The calibration matrices are used as calibration matrices of the predictive quantification devices 2... To unify the calibration matrices. By performing the spectrophotometric measurement at the time of calibration with the wavelength shift condition added (see FIGS. 2 and 3), the individual machine differences of the respective predictive quantification devices 2 are aggregated under the wavelength shift condition, The main feature is that the machine difference compensation of all the predictive quantitative devices 2,... Can be unitarily performed by a single calibration reference machine 1.

【0014】より詳細には、校正基準機1の構成は、図
2に示されるように、光源11およびレンズ13,入射
スリット15,凹球面鏡20,平面回折格子25,凹球
面鏡30,出射スリット45からなるツェルニ・ターナ
型分光器75,上述の入射スリット15と凹球面鏡20
との間の分光光路3に設けられた波長シフト手段4,切
替え鏡50,液体セル55,セル補償板56,集光鏡6
2,63,検知器70と、増巾及びAD変換器82,記
憶演算手段85,表示器87等よりなる。
More specifically, as shown in FIG. 2, the configuration of the calibration reference device 1 includes a light source 11, a lens 13, an entrance slit 15, a concave spherical mirror 20, a plane diffraction grating 25, a concave spherical mirror 30, and an exit slit 45. Czerny-Turner spectrometer 75 comprising the above-described entrance slit 15 and concave spherical mirror 20
Wavelength shift means 4, switching mirror 50, liquid cell 55, cell compensator 56, condensing mirror 6
2, 63, a detector 70, an amplification and AD converter 82, a storage operation means 85, a display 87 and the like.

【0015】上述の波長シフト手段4は、分光域内にて
ほぼ透明な光学的特性を有する平行平面板41を、平面
回折格子25の軸27(回折格子軸)と平行な軸42ま
わりに回転可能となるように、入射スリット15の後方
近傍位置に立設したものであり、これにより、校正過程
における分光光度測定時に所望の波長シフト条件を付加
することができる。
The above-mentioned wavelength shifting means 4 is capable of rotating a parallel plane plate 41 having substantially transparent optical characteristics in the spectral region around an axis 42 parallel to the axis 27 (diffraction grating axis) of the plane diffraction grating 25. Thus, a desired wavelength shift condition can be added at the time of spectrophotometric measurement in the calibration process.

【0016】一方、校正対象となる各予測定量装置2,
…には、上述の波長シフト手段4のみが含まれず、その
他の光学系の構成が校正基準機1の光学系と同一設計と
なっており、図示は省略する。なお、波長シフト手段4
は予測定量装置2の分光光路中に設定・退避自在または
着脱自在に設けてあってもよい。
On the other hand, each of the predictive quantitative devices 2 to be calibrated,
.. Do not include only the wavelength shifting means 4 described above, the other optical systems have the same design as the optical system of the calibration reference machine 1, and are not shown. Note that the wavelength shifting means 4
May be provided in the spectroscopic optical path of the predictive quantitative device 2 so as to be able to be set / retracted or detached.

【0017】上述のような構成により、光源11から射
出された白色光は入射スリット15を集光通過し球面鏡
20で平行光束となり回折格子25に入射し、その回折
光28は球面鏡30によって反射され、その反射光32
が出射スリット45上に結像する。この時、回折格子2
5は格子溝に平行な軸27のまわりに回転29し、出射
スリット45を通過する光の波長が走査される。
With the above-described configuration, the white light emitted from the light source 11 is condensed and passed through the entrance slit 15, becomes a parallel light beam at the spherical mirror 20, and enters the diffraction grating 25, and the diffracted light 28 is reflected by the spherical mirror 30. , Its reflected light 32
Forms an image on the exit slit 45. At this time, the diffraction grating 2
5 rotates 29 about an axis 27 parallel to the grating groove, and the wavelength of light passing through the exit slit 45 is scanned.

【0018】例えば、定量分析する試料を多成分水溶液
とし、各成分濃度を特性量とすると、従来の各特性量
(図8参照)の他に、波長シフト手段4による波長シフ
ト量を付加した分光光度測定をおこなうことによる測定
条件(図1参照)を設定し、分光吸光度データ群から成
る分光応答行列を得て、既知の特性量の値(各成分濃度
と波長シフト量)を用いて校正行列を算求することがで
きる。
For example, if the sample to be quantitatively analyzed is a multi-component aqueous solution and the concentration of each component is a characteristic amount, the spectral shift obtained by adding the wavelength shift amount by the wavelength shifting means 4 in addition to the conventional characteristic amounts (see FIG. 8). Measurement conditions (see FIG. 1) for performing photometric measurement are set, a spectral response matrix composed of a group of spectral absorbance data is obtained, and a calibration matrix is obtained using known values of characteristic amounts (each component concentration and wavelength shift amount). Can be calculated.

【0019】この時、校正基準機1の液体セル55に
は、特性量既知の標準水溶液が導入され、参照光路中の
セル補償板56と交互に透過比較することにより試料の
透過率が求められ、記憶演算手段85により吸光度に変
換される。
At this time, a standard aqueous solution having a known characteristic amount is introduced into the liquid cell 55 of the calibration reference machine 1, and the transmittance of the sample is obtained by alternately comparing the transmission with the cell compensator 56 in the reference optical path. Is converted into an absorbance by the storage operation means 85.

【0020】一方、予測定量装置2では、校正基準機1
で得られた校正行列を記憶しておき、各分析に対応する
特性量未知の分光(吸光度)ベクトルを測定入手し、演
算記憶手段(CPU)85で校正時とは別の行列演算を
おこなうことによって複数の特性量からなる成分濃度−
波長機差ベクトルを算求し、特性量表示装置87に各成
分濃度を表示する。
On the other hand, in the predictive quantitative device 2, the calibration reference machine 1
To store the calibration matrix obtained in the above, measure and obtain the spectral (absorbance) vector whose characteristic quantity is unknown for each analysis, and perform another matrix operation in the operation storage means (CPU) 85 different from the calibration. Component concentration consisting of multiple characteristic quantities
The wavelength machine difference vector is calculated, and the characteristic amount display device 87 displays each component concentration.

【0021】次いで、分光光度測定の原理について考察
すると、利用される分光データの横軸は抽出波長又は抽
出点番号であり、縦軸は横軸の各点に対応する分光光度
量又は透過率又は吸光度である。多変量解析法で処理さ
れる原データは抽出点番号に対応する吸光度値群であ
り、そこには波長情報は含まれていない。
Next, considering the principle of spectrophotometric measurement, the horizontal axis of the spectral data to be used is an extraction wavelength or an extraction point number, and the vertical axis is a spectral photometric amount or transmittance or a transmittance or a transmittance corresponding to each point on the horizontal axis. Absorbance. The original data processed by the multivariate analysis method is a group of absorbance values corresponding to the extraction point numbers, and does not include wavelength information.

【0022】分光光度計における機差としては、光源強
度や検知器感度、増幅器の直線性などに起因する縦軸誤
差と、分光光学系の機械的精度に起因する真の波長から
のずれ、一般に微小な波長誤差である横軸誤差が考えら
れる。
The instrumental differences in a spectrophotometer include vertical axis errors caused by light source intensity, detector sensitivity, linearity of an amplifier, and deviations from a true wavelength caused by mechanical accuracy of a spectroscopic optical system. A horizontal axis error, which is a minute wavelength error, can be considered.

【0023】上述の前者の縦軸誤差は、試料光と参照光
を用いる二光束分光法と、デジタル的な記憶演算手段で
比較的容易に補正することができ実用されている。一
方、後者の横軸誤差は完全に取り除くことはできない
が、目的とする定量精度に見合った許容範囲内に収める
処置がとられていた。しかし、定量精度の向上には限界
があり、波長精度の向上には常にコスト高が伴ってい
た。
The former vertical axis error can be relatively easily corrected by two-beam spectroscopy using a sample beam and a reference beam, and a digital storage operation means, and is practically used. On the other hand, the latter horizontal axis error cannot be completely removed, but measures have been taken to keep it within an allowable range corresponding to the desired quantitative accuracy. However, there has been a limit to the improvement of the quantitative accuracy, and the improvement of the wavelength accuracy has always been accompanied by high costs.

【0024】そこで、従来の多変量解析法を用いる分光
光度測定では、図8に示すように、同一の分光光度計で
校正と予測をおこない、機差が影響しない状態で使用し
ていた。これ等の装置では、絶対波長精度は不要であ
り、波長再現性のみが確保されれば、かなりの定量精度
も保証されていた。
Therefore, in the conventional spectrophotometric measurement using the multivariate analysis method, as shown in FIG. 8, calibration and prediction are performed by the same spectrophotometer, and the spectrophotometer is used in a state where the instrumental difference does not influence. In these devices, absolute wavelength accuracy is unnecessary, and if only wavelength reproducibility is secured, considerable quantitative accuracy is also guaranteed.

【0025】従って、各機体の抽出波長点は微妙に異な
っており、得られた校正行列の要素の数値も全く異なっ
ていた。そのため、一個の校正行列を各機体に共通使用
することは不可能であり、各機体毎におこなう校正作業
が繁雑で、設備と時間を要し、生産性は高くなかった。
Therefore, the extracted wavelength points of each body were slightly different, and the values of the elements of the obtained calibration matrix were completely different. Therefore, it is impossible to use a single calibration matrix for each machine, and the calibration work performed for each machine is complicated, requires equipment and time, and productivity is not high.

【0026】このような難点を解消するために、本発明
が提案されたのであるが、その多変量解析法において
は、多変量データの中から変量の大きい因子(主成分)
を抽出し、より単純なモデルによってデータを表現しよ
うとする主成分分析(PrincipleComponent Analysis,P
CA) の他に、部分最小2乗法(Partial Least Square
s, PLS) をも適用することができる。また、多成分
水溶液の分光光度測定には近紫外域から近赤外域に至る
分光吸光度データを用いることができる。
The present invention has been proposed in order to solve such difficulties. In the multivariate analysis method, a factor (principal component) having a large variate is selected from the multivariate data.
Principle Component Analysis (Principle Component Analysis, P
CA) and Partial Least Square
s, PLS) can also be applied. For the spectrophotometric measurement of the multi-component aqueous solution, spectral absorbance data from the near ultraviolet region to the near infrared region can be used.

【0027】本発明の分析方法について順を追って判り
やすく説明すると(図4のフローチャート参照)、個
々の機体の波長誤差を、吸光度値の変化をもたらす今一
つの(所定の)特性項目とし、校正基準機1を用いた校
正作業において、他の特性量の既知の組合わせ条件と共
に、個々の予測定量装置の機差のバラツキ範囲を考慮し
た一定の波長シフトを付加した条件(波長シフトなしを
も含む)下での分光データを測定取得する(S1)。
The analysis method of the present invention will be explained in order and easily (see the flowchart of FIG. 4). The wavelength error of each airframe is regarded as another (predetermined) characteristic item which causes a change in the absorbance value. In the calibration work using the machine 1, a condition in which a certain wavelength shift is added in consideration of the variation range of the machine difference between the individual predictive quantification devices together with the known combination conditions of other characteristic amounts (including no wavelength shift). )) To obtain and acquire the spectral data under (S1).

【0028】その結果、得られた分光応答行列から基
準となる校正行列を算求する(S2)。
As a result, a reference calibration matrix is calculated from the obtained spectral response matrix (S2).

【0029】校正基準機1で求めた上記校正行列を、
個々の予測定量装置の記憶手段に、共通の校正行列とし
て記憶させる(S3)。
The calibration matrix obtained by the calibration reference machine 1 is
The storage means of each predictive quantification device is stored as a common calibration matrix (S3).

【0030】各予測定量装置により、未知の特性量、
例えば成分の種類は判っているが、各成分の濃度が不明
の試料を測定し、その結果得られた分光吸光度ベクトル
と、記憶されている共通の校正行列との行列演算によ
り、各成分の濃度と使用機体の波長誤差量に集約された
機差を含む各特性量を求める(S4)。
Each predicting and quantifying device calculates unknown characteristic quantities,
For example, the type of the component is known, but the concentration of each component is unknown, and the concentration of each component is determined by matrix operation of the resulting spectral absorbance vector and the stored common calibration matrix. And each characteristic quantity including the instrumental difference collected into the wavelength error quantity of the used machine (S4).

【0031】その結果、微小波長誤差に集約される機
差を補償して定量精度の高い各成分の濃度値を求めて表
示させることができる(S5)。
As a result, it is possible to obtain and display the concentration value of each component with high quantitative accuracy by compensating for the machine difference gathered in the minute wavelength error (S5).

【0032】以上のように、本発明の分析方法によれ
ば、従来不可能とされていた校正行列の一元化が可能と
なり、個々の予測定量装置毎に校正過程が不要となる。
そのため、生産段階における校正作業が容易となり、生
産性が大きく向上し、また、経年変化による微小の波長
移動等もS5における機差補償内に包含させておくこと
により、ユーザーサイドで再校正を要することなく、自
動的に補償されるようにすることができ、信頼性の維持
向上を図ることができる。
As described above, according to the analysis method of the present invention, it is possible to unify the calibration matrix, which has been impossible in the past, and it is not necessary to perform the calibration process for each predictive quantitative device.
For this reason, the calibration work in the production stage is facilitated, the productivity is greatly improved, and re-calibration is required on the user side by including minute wavelength shifts due to aging in the machine difference compensation in S5. Without compensation, it is possible to automatically compensate and maintain and improve the reliability.

【0033】また、各予測定量装置2毎の波長誤差の程
度を統計的に把握することができ、生産技術の向上に寄
与することができる。さらに、各予測毎に得られる機差
である波長誤差の量を初期値と比較することにより、個
々の測定の信頼性と再調整等のサービス時期の判定が可
能となる。
Further, the degree of the wavelength error of each predictive quantification device 2 can be statistically grasped, which can contribute to the improvement of production technology. Further, by comparing the amount of the wavelength error, which is the machine difference obtained for each prediction, with the initial value, it becomes possible to determine the reliability of each measurement and the service time such as readjustment.

【0034】図5は定量分析装置の異なる実施形態にお
ける校正基準機1の構成を示し、この場合、光源11の
側に集光鏡5,6、液体セル7、セル補償板8、切替鏡
9を設ける一方、出射スリットに代えて多検知器配列4
0を出射側に設けており、回折格子25は一定角度に固
定され、短波長光31,長波長光33と受光面42の面
上に分散して結像する。分光走査は電子的におこなわれ
るが、波長シフト手段4と他の動作は図2のものと同様
である。なお、切替鏡9は波長シフト手段4の軸42と
平行な軸91のまわりに揺動する。一方、各予測定量装
置2は、上述の波長シフト手段4を除いたもの、また
は、その波長シフト手段4を分光光路3中に設定・退避
自在または着脱自在に設けたものとする。
FIG. 5 shows the configuration of the calibration reference device 1 in a different embodiment of the quantitative analyzer. In this case, the condenser mirrors 5 and 6, the liquid cell 7, the cell compensator 8, and the switching mirror 9 are provided on the light source 11 side. While the multi-detector array 4 is used instead of the exit slit.
0 is provided on the output side, the diffraction grating 25 is fixed at a fixed angle, and forms an image dispersedly on the short-wavelength light 31, the long-wavelength light 33 and the light receiving surface 42. Although the spectral scanning is performed electronically, the operation of the wavelength shift means 4 and other operations are the same as those in FIG. The switching mirror 9 swings around an axis 91 parallel to the axis 42 of the wavelength shift means 4. On the other hand, it is assumed that each predictive quantification device 2 excludes the above-described wavelength shift means 4 or that the wavelength shift means 4 is provided in the spectral optical path 3 so as to be settable / retractable or detachable.

【0035】図6は波長シフト手段4を出射スリット4
5の前方近傍位置に設けた場合を示し、その他の構成は
図2と同様である。また、図7は、波長シフト手段4に
代えて、多検知器配列40を直線49方向に摺動させる
摺動手段44に取り付けて、同様の波長シフト条件を付
加できるようにしたものであり、その他の構成は図5と
同様である。
FIG. 6 shows that the wavelength shifting means 4 is
5 shows a case where it is provided in the vicinity of the front, and the other configuration is the same as that of FIG. FIG. 7 shows a multi-detector array 40 attached to a sliding means 44 for sliding in the direction of a straight line 49 instead of the wavelength shifting means 4 so that the same wavelength shifting condition can be added. Other configurations are the same as those in FIG.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
波長シフト条件を付加した分光光度測定をおこなう校正
基準機を、各予測定量装置とは別体に形成し、その各予
測定量装置個々の機差を、校正時の分光光度測定の前記
波長シフト条件下に集約させてその補償をおこなうよう
にしたので、各予測定量装置毎の校正過程が不要とな
り、個々の機差により微小波長誤差が補償され、測定精
度と操作性及び信頼性が向上され、これにより、製品生
産期間の短縮化、生産設備の簡易化が可能となり、コス
トの低減化も可能となる。また、生産過程における機体
毎の微小波長誤差の分布を統計的に分析処理することも
でき、生産技術の向上に反映させることもできる。
As described above, according to the present invention,
A calibration reference machine for performing the spectrophotometric measurement with the wavelength shift condition added is formed separately from each of the predictive and quantitative devices, and the individual machine difference of each of the predictive and quantitative devices is referred to as the wavelength shift condition of the spectrophotometric measurement at the time of calibration. Since it is summarized below and the compensation is performed, the calibration process for each predictive quantification device becomes unnecessary, the minute wavelength error is compensated by each machine difference, the measurement accuracy and operability and reliability are improved, This makes it possible to shorten the product production period, simplify the production equipment, and reduce the cost. Further, the distribution of the minute wavelength error for each machine in the production process can be statistically analyzed and reflected on the improvement of production technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分光光度測定と多変量解析法とを用い
た試料特性の定量分析装置の一実施形態における基本的
な構成を示すブロック図である。
FIG. 1 is a block diagram showing a basic configuration of an embodiment of an apparatus for quantitatively analyzing sample characteristics using spectrophotometry and multivariate analysis according to the present invention.

【図2】同校正基準機の構成図である。FIG. 2 is a configuration diagram of the calibration reference device.

【図3】同波長シフト手段の平面図である。FIG. 3 is a plan view of the wavelength shift means.

【図4】同校正過程の手順を示すフローチャートであ
る。
FIG. 4 is a flowchart showing a procedure of the calibration process.

【図5】同定量分析装置の異なる実施形態における校正
基準機の構成図である。
FIG. 5 is a configuration diagram of a calibration reference machine in different embodiments of the identification amount analyzer.

【図6】同別の校正基準機の要部構成図である。FIG. 6 is a main part configuration diagram of another calibration reference machine;

【図7】同さらに別の校正基準機の要部構成図である。FIG. 7 is a main part configuration diagram of still another calibration reference machine.

【図8】従来の定量分析装置の基本的な構成を示すブロ
ック図である。
FIG. 8 is a block diagram showing a basic configuration of a conventional quantitative analyzer.

【符号の説明】[Explanation of symbols]

1…校正基準機、2…予測定量装置、3…分光光路、4
…波長シフト手段、15…入射スリット、27…回折格
子軸、45…出射スリット。
DESCRIPTION OF SYMBOLS 1 ... Calibration reference machine, 2 ... Predictive quantification device, 3 ... Spectral optical path, 4
... wavelength shift means, 15 ... entrance slit, 27 ... diffraction grating axis, 45 ... exit slit.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 分光光度測定と多変量解析法とを用いた
試料特性の定量分析装置において、波長シフト条件を付
加した分光光度測定をおこなう校正基準機を、各予測定
量装置とは別体に形成し、その各予測定量装置個々の機
差を、校正時の分光光度測定の前記波長シフト条件下に
集約させてその補償をおこなうように構成してなること
を特徴とする分光光度測定と多変量解析法とを用いた試
料特性の定量分析装置。
An apparatus for quantitatively analyzing sample characteristics using spectrophotometry and multivariate analysis, wherein a calibration reference machine for performing spectrophotometry with a wavelength shift condition is provided separately from each predictive quantitative apparatus. The spectrophotometric measurement is characterized in that the instrumental differences between each of the predictive and quantitative measuring devices are formed under the above-mentioned wavelength shift condition of the spectrophotometric measurement at the time of calibration and the compensation is performed. Quantitative analyzer for sample characteristics using a variable analysis method.
【請求項2】 分光光度測定と多変量解析法とを用いた
試料特性の定量分析装置において、校正用基準機と各予
測定量装置とをそれぞれ別体に形成し、かつ、前記校正
用基準機の分光器中には波長シフト手段を設け、校正時
の分光光度測定に波長シフトを付加する一方、前記各予
測定量装置の分光器には、波長シフト手段を設けること
なく、その光学系を前記校正用基準機の光学系と同一設
計とし、前記校正用基準機で得た校正行列を、前記各予
測定量装置の校正行列とすることにより、各予測定量装
置個々の機差としての微小波長誤差を所定の特性項目に
対応させ、本来の定量値の機差補償をおこなうことを特
徴とする分光光度測定と多変量解析法とを用いた試料特
性の定量分析装置。
2. An apparatus for quantitatively analyzing sample characteristics using spectrophotometry and multivariate analysis, wherein a calibration reference machine and each predictive quantitative apparatus are formed separately, and wherein said calibration reference machine is used. In the spectrometer, a wavelength shift means is provided, and a wavelength shift is added to the spectrophotometric measurement at the time of calibration.On the other hand, the spectroscope of each of the predictive quantification devices, the optical system is provided without the wavelength shift means. The same design as the optical system of the calibration reference device, by using the calibration matrix obtained by the calibration reference device as the calibration matrix of each predictive quantitative device, the minute wavelength error as a machine difference of each predictive quantitative device The apparatus for quantitatively analyzing sample characteristics using spectrophotometry and multivariate analysis, wherein the apparatus is adapted to correspond to a predetermined characteristic item and compensates for the mechanical difference of the original quantitative value.
【請求項3】 前記各予測定量装置には、前記波長シフ
ト条件を付加するための波長シフト手段を分光器に設定
・退避自在または着脱自在に設けてあることを特徴とす
る請求項1または請求項2に記載の分光光度測定と多変
量解析法とを用いた試料特性の定量分析装置。
3. The apparatus according to claim 1, wherein each of said prediction and quantification devices is provided with a wavelength shift means for adding said wavelength shift condition to said spectrometer so as to be settable, retractable or detachable. An apparatus for quantitative analysis of sample characteristics using the spectrophotometric measurement and the multivariate analysis method according to item 2.
【請求項4】 分析対象となる試料の特性が、多成分水
溶液の各成分濃度であることを特徴とする請求項1ない
し請求項3のいずれかに記載の分光光度測定と多変量解
析法とを用いた試料特性の定量分析装置。
4. The spectrophotometric measurement and multivariate analysis method according to claim 1, wherein the characteristic of the sample to be analyzed is the concentration of each component of the multicomponent aqueous solution. Quantitative analyzer for sample characteristics using
【請求項5】 前記分光光度測定が近紫外域から近赤外
域に至る分光吸光度データを用いることを特徴とする請
求項1ないし請求項3のいずれかに記載の分光光度測定
と多変量解析法とを用いた試料特性の定量分析装置。
5. The spectrophotometric measurement and multivariate analysis method according to claim 1, wherein said spectrophotometric measurement uses spectral absorbance data ranging from a near ultraviolet region to a near infrared region. Quantitative analyzer for sample characteristics using
【請求項6】 前記校正基準機の分光器に設けられる波
長シフト手段が回折格子軸と平行な軸まわりに回動可能
で分光域内にてほぼ透明な光学的特性を有する平行平面
板よりなり、入射スリットの後方近傍位置または出射ス
リットの前方近傍位置の光路中に配置されることを特徴
とする請求項1ないし請求項5のいずれかに記載の分光
光度測定と多変量解析法とを用いた試料特性の定量分析
装置。
6. A wavelength shift means provided on a spectroscope of the calibration reference device is a parallel flat plate rotatable around an axis parallel to a diffraction grating axis and having substantially transparent optical characteristics in a spectral region, The spectrophotometric measurement and the multivariate analysis method according to any one of claims 1 to 5, wherein the spectrophotometric measurement and the multivariate analysis method are arranged in an optical path at a position near the rear of the entrance slit or at a position near the front of the exit slit. Quantitative analyzer for sample characteristics.
【請求項7】 校正の対象となる各予測定量装置とは別
体に形成した校正基準機を用いて一元的に校正をおこな
えるようにした分析方法であって、まず、個々の予測定
量装置の機差のバラツキ範囲を考慮した一定の波長シフ
トを付加した条件下での分光データを併せて取得し、そ
の結果得られた分光応答行列から基準となる校正行列を
求め、その校正行列を前記各予測定量装置に共通の校正
行列として記憶させた後、前記各予測定量装置により、
未知の特性量を測定し、その結果得られた分光吸光度ベ
クトルと、記憶されている前記校正行列との行列演算を
おこなうことにより、各成分の濃度と使用機体の集約さ
れた波長誤差を求め、その結果、微小波長誤差に集約さ
れる機差を補償した各成分の濃度値を求めることを特徴
とする分光光度測定と多変量解析法とを用いた試料特性
の定量分析装置を用いた分析方法。
7. An analysis method in which calibration can be performed centrally using a calibration reference machine formed separately from each of the prediction and quantification devices to be calibrated. The spectral data under the condition of adding a certain wavelength shift in consideration of the variation range of the machine difference is also acquired, and a reference calibration matrix is obtained from the resulting spectral response matrix. After storing as a common calibration matrix in the predictive quantitative device, by each predictive quantitative device,
By measuring the unknown characteristic amount, and by performing a matrix operation of the resulting spectral absorbance vector and the stored calibration matrix, the concentration of each component and the aggregated wavelength error of the aircraft used are determined, As a result, a method of analyzing the characteristics of a sample using a spectrophotometric measurement and a multivariate analysis method using a spectrophotometric measurement and a multivariate analysis method, wherein a concentration value of each component compensating for an instrumental error aggregated into a minute wavelength error is obtained. .
JP9275297A 1997-09-22 1997-09-22 Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it Pending JPH1194735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9275297A JPH1194735A (en) 1997-09-22 1997-09-22 Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275297A JPH1194735A (en) 1997-09-22 1997-09-22 Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it

Publications (1)

Publication Number Publication Date
JPH1194735A true JPH1194735A (en) 1999-04-09

Family

ID=17553477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275297A Pending JPH1194735A (en) 1997-09-22 1997-09-22 Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it

Country Status (1)

Country Link
JP (1) JPH1194735A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105210A1 (en) * 2002-06-05 2003-12-18 東京エレクトロン株式会社 Processing device multivariate analysis model creation method, processing device multivariate analysis method, processing device control device, processing device control system
US7505879B2 (en) 2002-06-05 2009-03-17 Tokyo Electron Limited Method for generating multivariate analysis model expression for processing apparatus, method for executing multivariate analysis of processing apparatus, control device of processing apparatus and control system for processing apparatus
JP2010526998A (en) * 2007-05-07 2010-08-05 ヴェリティー インストルメンツ,インコーポレイテッド Calibration of a radiometric optical monitoring system used for fault detection and process monitoring
JP2013160555A (en) * 2012-02-02 2013-08-19 Seiko Epson Corp Spectroscopic measurement method and spectrometer
CN113514226A (en) * 2020-04-10 2021-10-19 慧理示先进技术公司 System for analyzing display device and color analysis method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105210A1 (en) * 2002-06-05 2003-12-18 東京エレクトロン株式会社 Processing device multivariate analysis model creation method, processing device multivariate analysis method, processing device control device, processing device control system
CN100426471C (en) * 2002-06-05 2008-10-15 东京毅力科创株式会社 Method for generating multivariate analysis model expression for processing apparatus, method for executing multivariate analysis of processing apparatus, control device of processing apparatus,and c
US7505879B2 (en) 2002-06-05 2009-03-17 Tokyo Electron Limited Method for generating multivariate analysis model expression for processing apparatus, method for executing multivariate analysis of processing apparatus, control device of processing apparatus and control system for processing apparatus
JP2010526998A (en) * 2007-05-07 2010-08-05 ヴェリティー インストルメンツ,インコーポレイテッド Calibration of a radiometric optical monitoring system used for fault detection and process monitoring
JP2013160555A (en) * 2012-02-02 2013-08-19 Seiko Epson Corp Spectroscopic measurement method and spectrometer
CN113514226A (en) * 2020-04-10 2021-10-19 慧理示先进技术公司 System for analyzing display device and color analysis method thereof
JP2021167814A (en) * 2020-04-10 2021-10-21 ビューワークス カンパニー リミテッド Analysis system for display device and color analysis method thereof
US11530981B2 (en) 2020-04-10 2022-12-20 Vieworks Co., Ltd. System for analyzing display device and color analyzing method thereof

Similar Documents

Publication Publication Date Title
EP0800066B1 (en) Precise calibration of wavelengths in a spectrometer
Pilachowski et al. Sodium abundances in field metal-poor stars
US8352205B2 (en) Multivariate optical elements for nonlinear calibration
US5850623A (en) Method for standardizing raman spectrometers to obtain stable and transferable calibrations
US7834999B2 (en) Optical analysis system and optical train
US4822169A (en) Measuring assembly for analyzing electromagnetic radiation
US5777733A (en) Spectrometer with wavelength calibration
JP2008539417A (en) Spectroscopy for determining the amount of analyte in a mixture of analytes.
JPH07167711A (en) System for calibrating self-recording spectrophotometer
US6801309B1 (en) Detector array with scattered light correction
JPH1030982A (en) Method for analysing multicomponent aqueous solution
JPH1194735A (en) Quantitative analyzer for sample characteristic using spectrophotometry and multivariate analysis and analysis method using it
US4944589A (en) Method of reducing the susceptibility to interference of a measuring instrument
Tseng et al. Internet-enabled near-infrared analysis of oilseeds
US8213011B2 (en) Spatial imaging/imaging spectroscopy system and method
WO2023041566A1 (en) Method for calibrating a spectrometer device
Stark et al. NIR instrumentation technology
US11543294B2 (en) Optical technique for material characterization
Jakubek et al. Calibration of Raman bandwidth in large Raman images using a mercury–argon lamp
Landa High‐energy spectrophotometer for rapid constituent analysis in the range of 0.25–2.4 μm
JPH11101692A (en) Spectroscopic colorimeter
Bhargava et al. Fourier Transform Mid‐infrared Spectroscopic Imaging: Microspectroscopy with Multichannel Detectors
JP2004177147A (en) Light emission measuring apparatus
Qiu et al. Evaluation of the color measurement based on a microscopic hyperspectral imaging system
JPH08122246A (en) Spectral analyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20061030

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619