JPS5957123A - Apparatus for measuring surface color of moving object - Google Patents

Apparatus for measuring surface color of moving object

Info

Publication number
JPS5957123A
JPS5957123A JP57111080A JP11108082A JPS5957123A JP S5957123 A JPS5957123 A JP S5957123A JP 57111080 A JP57111080 A JP 57111080A JP 11108082 A JP11108082 A JP 11108082A JP S5957123 A JPS5957123 A JP S5957123A
Authority
JP
Japan
Prior art keywords
light
moving object
light source
analog
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57111080A
Other languages
Japanese (ja)
Inventor
Akira Torao
彰 虎尾
Takeshi Kitagawa
北川 孟
Takeshi Yoshimoto
善本 毅
Kenichiro Nakamura
中村 賢市郎
Shichisaburo Sugita
杉田 七三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOEI DENSHI KOGYO KK
Original Assignee
Kawasaki Steel Corp
TOEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, TOEI DENSHI KOGYO KK filed Critical Kawasaki Steel Corp
Priority to JP57111080A priority Critical patent/JPS5957123A/en
Publication of JPS5957123A publication Critical patent/JPS5957123A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enable remote color measurement good in responsiveness with high accuracy, by a method wherein scattered reflected lights from the surface of the object is received by a converging lens system while the intensities of lights with each wavelengths subjected to spectral diffraction by a spectroscope are simultaneously detected by detecting elements to be converted to electric signals and, after integration, operation treatment is performed. CONSTITUTION:The light from a white light source 4 is irregularily reflected on the surface of moving matter 10 and lights passing the slit 22 of an optical lens system are converted to parallel lights by a colimator lens 24 while lights subjected to spectral diffraction by a diffraction grating 26 are reflected by a concave mirror 28 to be subjected digital conversion by a A/D converter 34 through a circuit 32 for subjecting the electric signal output of a detector 18 in which a photodiode array 30 capable of simultaneously detecting lights with each wave forms is mounted to analogue treatment for a definite integration time. The outputs of the converter 34 are repeatedly subjected to operation treatment by a digital treating circuit 36 comprising a microcomputer to continuously obtain the average chromaticity of a definite area in the running direction of the moving matter or the color difference with a reference sample and the treating result is outputted from an output apparatus 38. As a result, remote color measurement can be performed with high accuracy and it is effective in quality control and yield enhancement.

Description

【発明の詳細な説明】 本発明は、移動物体表面の測色装゛隨に係り、特に、表
面を着色したカラー鋼板等の表面処理鋼板の表面の色調
管理に用いるのに好適な、移動物体表面の色調を連続的
に測定する移動物体表面の測色装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color measurement device for the surface of a moving object, and in particular, it is suitable for controlling the color tone of the surface of a surface-treated steel sheet such as a colored steel sheet. This invention relates to an improvement in a color measuring device for the surface of a moving object that continuously measures the color tone of the surface.

表面を着色したカラー鋼板等の表面処理鋼板や紙等の色
調管理tri′iL要であるが、ライン速度の高速化、
検出すべき色むらや色違いの微妙化に伴い。
It is important to control the color tone of surface-treated steel sheets such as colored steel sheets, paper, etc., but increasing the line speed,
As the color unevenness and color differences that need to be detected become more subtle.

作業者の、肉眼による検出では限界になってきている。Detection by the naked eye of workers is reaching its limits.

これは、多大な労力と熟練を要する上に、個人差や各種
外乱による検出精度に問題があるためである。一方、製
造中にサンプリングを行ってオフラインでの検査も行わ
れているが、応答が遅れるので操業にフィードバックす
ることは難しいという欠点を有する。
This is because it requires a great deal of effort and skill, and there are problems with detection accuracy due to individual differences and various disturbances. On the other hand, off-line inspections are also conducted by sampling during manufacturing, but this has the disadvantage that it is difficult to provide feedback to operations due to the delayed response.

このような問題に鑑みて1種々のオンライン測色装置が
考案され、!1IiJ品化されている。例えば、特開昭
55−95839号は、フィルタを用いて。
In view of these problems, various online color measurement devices have been devised. It has been made into a 1IiJ product. For example, Japanese Patent Application Laid-Open No. 55-95839 uses a filter.

国際照明委員会で勧告された三刺激値xyziそれぞれ
独立して測定する方法であり、処理時間は短縮できるが
、分光分布を得られないために精度が患いという問題点
を有する。父、特公昭54−1196号は1分光光源に
より波長を可変にして、キャビティ、回転セクターを用
いて分光反射率を求めることにより色調を測定するもの
であり、精度は良くなるが、可動部があり、又、光源波
長を変化させるために、測定対象が高速移動すると。
This method is recommended by the International Commission on Illumination and measures each of the tristimulus values xyzi independently, and although the processing time can be shortened, the problem is that accuracy suffers because spectral distribution cannot be obtained. My father, Special Publication No. 1196/1986, measures color tone by varying the wavelength using a 1-minute light source and determining the spectral reflectance using a cavity and rotating sector, which improves accuracy but requires a large number of moving parts. Yes, and when the object to be measured moves at high speed in order to change the light source wavelength.

厳密には連続測定できなくなるという問題点を有する。Strictly speaking, there is a problem in that continuous measurement is no longer possible.

更に、特開昭54−10786号は、白色光を線状に照
射し、その乱反射光を分光して、2次元撮像装M?f−
用いて反射強度を測定することにより、線状の各位置で
の色度を求めるものであるが、この方法でも、受光して
得られる電気信号を取り込んだ後1色度計算に要する時
間が長(、又、線状に照射しているために、撮像装置の
走査を。
Furthermore, JP-A-54-10786 discloses a two-dimensional imaging device M? by irradiating white light in a linear manner and separating the diffusely reflected light. f-
The chromaticity is determined at each position along a line by measuring the reflection intensity using a digital camera, but even with this method, it takes a long time to calculate one chromaticity after capturing the electrical signal obtained by receiving light. (Also, since it is irradiated in a linear manner, the scanning of the imaging device.

波長方向に対してのみ行って、同一地点の各波長のデー
タだけを読み出したとしても、測定対象が高速移動すれ
ば、走行方向では測定点が間欠的になり、又、受光装置
も高価であるという問題点を有する。又、特開昭52−
102780号は、試料物体からの光を同時分散し、複
数の検出器で同時に受光して測色演算を行うものであり
、この方式は、スリット前面に集光用レンズを装着して
いないため、光源の光を有効に利用できる透過物体には
適用できるが、検出器によって得られる電流が極めて微
小であることから、反射物体に対して測色を行5ja合
は、照射強度を上昇させるため、光学系を試料物体に極
端に接近させなければならず、その結果、照明光の照度
むらや測定器と測定対象物の微小な位置変動が、直接測
定データに影響するという問題点を有し、特に、測定対
象が遠方にあり、遠隔測色を行う場合には問題が、あっ
た。
Even if the measurement is carried out only in the wavelength direction and only the data of each wavelength at the same point is read out, if the object to be measured moves at high speed, the measurement points will be intermittent in the traveling direction, and the light receiving device is also expensive. There is a problem. Also, JP-A-52-
No. 102780 simultaneously disperses light from a sample object and receives the light simultaneously with multiple detectors to perform colorimetric calculations. Although it can be applied to transparent objects where the light from the light source can be effectively used, since the current obtained by the detector is extremely small, when performing colorimetry on reflective objects, the irradiation intensity will be increased. The optical system must be brought extremely close to the sample object, and as a result, uneven illumination of the illumination light and minute positional fluctuations between the measuring instrument and the object to be measured directly affect the measurement data. This is particularly problematic when the object to be measured is located far away and remote color measurement is performed.

更に、市販されているフィルタ糺よる3色分解式望遠測
色計は、精度が悪く、応答測度も遅いという問題点を有
していた。
Furthermore, commercially available three-color separation type telephoto colorimeter using filter paste has problems of poor accuracy and slow response measurement.

本発明は、前記従来の欠点を解消するべくなされた。も
ので、移動物体表面の遠隔測色を、高精度で、応答性良
く、且つ、連続的に行うことができる移動物体表面の測
色装置を提供することを目的とする。
The present invention has been made to eliminate the above-mentioned conventional drawbacks. It is an object of the present invention to provide a color measurement device for a surface of a moving object that can perform remote color measurement of the surface of a moving object with high precision, good responsiveness, and continuously.

本発明は、移動物体表面の測色装置を、移動物体の表面
に白色光を照射する光源部と、前記移動物体表面からの
乱反射光の一部を結像する九めの集光レンズ系と、該集
光レンズ系の結像面において測定部位を規定するための
スリット又はピンホールと、該スリット又はピンホール
を通過した光を分光するための分光器と、該分光器によ
って分光された各波長の光の強度を同時に検出可能な光
検出素子と、該光検出素子によって得られる′電気信号
を、後段の信号処理時間に対応づけられた積分時間でア
ナログ積分処理するアナログ処理回路と、該アナログ処
理回路出力のアナログ信号をデジタル信号に変換するア
ナログ−デジタル変換器と、該アナログ−デジタル変換
器出力のデジタル信号を演算処理することによって前記
移動物体表面の色彩情報を得るためのデジタル処理回路
とから構成することにより、前記目的を達成したもので
ある。
The present invention provides a color measurement device for the surface of a moving object, which includes a light source section that irradiates the surface of the moving object with white light, and a ninth condenser lens system that forms an image of a part of the diffusely reflected light from the surface of the moving object. , a slit or pinhole for defining a measurement site on the imaging plane of the condensing lens system, a spectrometer for separating the light that has passed through the slit or pinhole, and each spectrometer separated by the spectrometer. a photodetection element capable of simultaneously detecting the intensity of light of different wavelengths; an analog processing circuit that performs analog integration processing on the electric signal obtained by the photodetection element in an integration time corresponding to a subsequent signal processing time; an analog-to-digital converter that converts an analog signal output from an analog processing circuit into a digital signal; and a digital processing circuit for obtaining color information on the surface of the moving object by processing the digital signal output from the analog-to-digital converter. The above object has been achieved by comprising the following.

又、前記光源部を、移動物体表面に対して同一角度に配
置された複数個の光源から構成し、且つ。
Further, the light source section includes a plurality of light sources arranged at the same angle with respect to the surface of the moving object.

各光源毎に、光源の発光体像を結像照射するための光源
レンズ系を設ける仁とによって、移動物体表面の照射強
度を、安定させ、且つ1強めたものである。
By providing a light source lens system for each light source to form and irradiate the light emitter image of the light source, the irradiation intensity on the surface of the moving object is stabilized and increased by one.

以下、図面を参照して1本発明の実施例を詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

本実施例は、第1図及び第2図に示す如く、移動物体1
0の表面に白色光を照射するための、移動物体表面に対
して同一角度に配置された2個の白色光源14からなり
、且つ、各白色光源14毎に、光源の発光体像を移動物
体lOの表面に結像照射するための光源レンズ系16が
設けられた光源部12と、前記移動物体lOの表面から
の乱反射光の−jolt ’(i:結像するための集光
レンズ系20゜該集光レンズ系20の結像・面において
測定部位を規定するためのスリット22.該スリット2
2を通過した光を平行光線化するためのコリメータレン
ズ24、該コリメータレンズ24によって平行光線化さ
れた光を可視波長領域で同時に分光するための回折格子
26、該回折格子26によって分光された各波長の光を
反射するだめの凹面鏡28、及び、該凹面鏡28により
反射された各波長の光の強度を同時に検出可能なフォト
ダイオードアレイ30が内蔵された検出器18(第2図
)と、該検出器18の前記フォトダイオードアレイ30
によって得られる各波長ごとの電気信号を、後段の信号
処理時間に対応づけられた一定積分時間でアナログ積分
処理するアナログ処理回路32と、該アナログ処理回路
32出力のアナログ信号をデジタル信号に変換するアナ
ログ−デジタル変換器34と、該アナログ−デジタル変
換器34出力のデジタル信号を繰返し演算処理すること
によって。
In this embodiment, as shown in FIGS. 1 and 2, a moving object 1
It consists of two white light sources 14 arranged at the same angle with respect to the surface of a moving object in order to irradiate white light onto the surface of A light source unit 12 is provided with a light source lens system 16 for irradiating an image onto the surface of the moving object IO, and -jolt' (i: a condensing lens system 20 for forming an image) of the diffusely reflected light from the surface of the moving object IO.゜Slit 22 for defining the measurement site on the imaging plane of the condenser lens system 20. The slit 2
A collimator lens 24 for collimating the light that has passed through the collimator lens 24, a diffraction grating 26 for simultaneously dispersing the light parallelized by the collimator lens 24 in the visible wavelength range, and a diffraction grating 26 for collimating the light that has passed through the collimator lens 24; A detector 18 (FIG. 2) includes a concave mirror 28 that reflects light of different wavelengths, and a photodiode array 30 that can simultaneously detect the intensity of light of each wavelength reflected by the concave mirror 28; The photodiode array 30 of the detector 18
an analog processing circuit 32 that performs analog integration processing on the electrical signals for each wavelength obtained by using a constant integration time corresponding to the signal processing time of the subsequent stage, and converts the analog signal output from the analog processing circuit 32 into a digital signal. By repeatedly processing the analog-to-digital converter 34 and the digital signal output from the analog-to-digital converter 34.

前記移動物体表面の走行方向の一定面積の平均的色度或
いは標準試料との色差を連続的に得るための、マイクロ
コンピュータ等からなるデジタル処理回路3Gと、該デ
ジタル処理回路36の処理結果を出力するための出力装
置38とから構成されている。
A digital processing circuit 3G consisting of a microcomputer or the like and outputting the processing results of the digital processing circuit 36 to continuously obtain the average chromaticity of a certain area of the surface of the moving object in the traveling direction or the color difference with a standard sample. and an output device 38 for printing.

前記アナログ処理回路32−アナログ−デジタル変換器
34及びデジタル処理回路36は、第3図に詳細に示す
如(、フォトダイオードアレイ30の各センサ30−1
〜30− nの出力を増幅するための前置増幅器32a
−1〜32a−nと。
The analog processing circuit 32, the analog-to-digital converter 34 and the digital processing circuit 36 are connected to each sensor 30-1 of the photodiode array 30, as shown in detail in FIG.
Preamplifier 32a for amplifying the output of ~30-n
-1 to 32a-n.

該前置増幅器32a−1〜32a−nの出力を積分する
ための積分器32b−1〜32b−nと、該積分器32
b−1〜32b−nの出力を順次取込むためのマルチプ
レクサ34&と、該マルチプレクサ34の出力のアナロ
グ信号をデジタル16号に変換するためのアナログ−デ
ジタル変換器34bと、白色光源14の強度を検出する
光源光量検出器17の出力を増幅するための前置増幅器
32Cと、該前置増幅器32c出力のアナログ信号をデ
ジタル信号に変換するためのアナログ−デジタル変換器
34cと、前記アナログ−デジタル変換器34b及び3
4cの出力゛に応じて各種演算処理を行うための1例え
ばマイクロコンピュータカラなる中央処理装置(以下C
PUと称する)36aと、プログラムや各種定数、及び
、前記CPU36aKおける演算データ等を記憶するた
めのメモリ36bと、プログラムカウンタ36cと、前
記CPU36a出力のデジタル1百号をアナログ信号に
変換して、出力表示器等からなる出力装置38に出力す
るためのデジタル−アナログ変換器36dと、hゝら構
成されている。
integrators 32b-1 to 32b-n for integrating the outputs of the preamplifiers 32a-1 to 32a-n, and the integrator 32
A multiplexer 34& for sequentially taking in the outputs of b-1 to 32b-n, an analog-to-digital converter 34b for converting the analog signal output from the multiplexer 34 to a digital number 16, and a a preamplifier 32C for amplifying the output of the light source light amount detector 17 to be detected; an analog-to-digital converter 34c for converting the analog signal output from the preamplifier 32c into a digital signal; and the analog-to-digital converter. vessels 34b and 3
For example, a central processing unit such as a microcomputer (hereinafter referred to as C
(referred to as PU) 36a, a memory 36b for storing programs, various constants, and calculation data in the CPU 36aK, a program counter 36c, and converting the digital number 100 output from the CPU 36a into an analog signal, It is comprised of a digital-to-analog converter 36d and h for outputting to an output device 38 consisting of an output display or the like.

前記光源部1sI、移動物体lOの表面に対して同一角
度に配置された2個の白色光源14から構成しているの
は、移動物体lOの表−を一様な強度で強く照射するた
めであり、又、各白色光源14毎に、光源の発光体像を
移動物体10の表面に結像照射するための光源レンズ系
16を設けているのは、同一光源、同一供給電圧で、照
射強度を強くするためである。このように構成すること
により、外乱光の影響を少な(できるため、信号のS/
N比が良くなり、供給電圧も下げられるので、ランプ寿
命が長(なると共に、省電力もはがれる。これに対して
、従来の測色装置においては。
The reason why the light source section 1sI is composed of two white light sources 14 arranged at the same angle with respect to the surface of the moving object 1O is to strongly irradiate the surface of the moving object 1O with uniform intensity. In addition, each white light source 14 is provided with a light source lens system 16 for irradiating the light emitting body image of the light source onto the surface of the moving object 10 because the light source is the same, the supply voltage is the same, and the irradiation intensity is the same. This is to make it stronger. By configuring this way, the influence of external light can be reduced (because it is possible to reduce the signal S/
Since the N ratio is improved and the supply voltage is lowered, the lamp life is extended (and power consumption is also reduced).In contrast, in conventional colorimeter devices.

光源の発光体像を照射面に結像させると、それが直接、
測定誤差として影響するため、光源による照射は、散乱
光又は平行光となるよ5に行っていた。本発明の如く、
結像照射と集光レンズ系を使用して集光する分光器を組
み合わせることにより。
When the light emitter image of the light source is formed on the irradiation surface, it directly
In order to prevent this from occurring as a measurement error, the irradiation by the light source was performed as scattered light or parallel light. As in the present invention,
By combining imaging illumination with a spectrometer that focuses the light using a focusing lens system.

測定データは照射面の平均値を常に与えるので、光源結
像による照射むらの影響を避けることができる。前記白
色光源14としては、ハロゲンランプ等の安定した白色
光源を使用し、パイレックス又は石英のような耐熱ガラ
ス等を用いて効果的に照明を行う。又、本実施例におい
ては、光源強度の変at補正するために、光源部12に
光検出器17(第3図)を装着し、その信号を、アナロ
グ−f シfi ル変換器34cを介してデジタル処理
回路36に入力することによって、検出器18によって
得られる信号強度を補正して、光源強度変動に起因する
測定誤差を解消すると共に、光源寿命の監視に利用して
いる。
Since the measurement data always gives the average value of the irradiated surface, the influence of uneven irradiation due to light source imaging can be avoided. As the white light source 14, a stable white light source such as a halogen lamp is used, and heat-resistant glass such as Pyrex or quartz is used to provide effective illumination. Further, in this embodiment, in order to correct the variation at of the light source intensity, a photodetector 17 (FIG. 3) is attached to the light source section 12, and the signal is sent via the analog-f signal converter 34c. By inputting the signal into the digital processing circuit 36, the signal intensity obtained by the detector 18 is corrected to eliminate measurement errors caused by fluctuations in light source intensity, and is used for monitoring the life of the light source.

前記検出器18において、分光器として回折格子26を
用い、スリット22やフォトダイオードアレイ30と組
み合せているのは1回折格子26では分散角が波長と線
形関係にあるため、スリット22と7オトダイオードア
レイ30を組み合わせて用いることにより、スリット2
2で規定された測定面からの反射光が、分光された後、
フォトダイオードアレイ30上で等波長間隔毎に各チャ
ンネルに入射することになり、光学系や信号処理部の回
路設計及び製造上好都合であるからである。
In the detector 18, a diffraction grating 26 is used as a spectrometer, and it is combined with a slit 22 and a photodiode array 30.Since the dispersion angle of the diffraction grating 26 has a linear relationship with the wavelength, the slit 22 and the photodiode array 30 are used as a spectrometer. By using the array 30 in combination, the slit 2
After the reflected light from the measurement surface specified in 2 is spectrally divided,
This is because the light is incident on each channel on the photodiode array 30 at equal wavelength intervals, which is convenient for circuit design and manufacturing of the optical system and signal processing section.

例えば、フォトダイオードアレイ30として。For example, as a photodiode array 30.

35素子のものを用いた場合、光学系の幾何学的配置、
スリット幅等の条件を選定することにより。
When using a 35-element device, the geometrical arrangement of the optical system,
By selecting conditions such as slit width.

全素子のうち31素子を使用して、可視波長領域400
〜700ggの分光強度を、波長10π罵間隔で検出す
ることができ、測色に十分な精度を得ることができる。
Using 31 elements out of all elements, visible wavelength range 400
Spectral intensities of ~700 g can be detected at wavelength intervals of 10π, and sufficient accuracy can be obtained for colorimetry.

前記アナログ処理回路32は、前記検出器18のフォト
ダイオードアレイ30によって得られる、例えば31点
の電気信号を増幅し、積分演算することにより1色度計
算に必要なパラメータの値を電気信号として得る。ここ
で、アナログ積分を行っているのは、演算時間を短縮す
ると共に、測定面を連続的にするためでおる。即ち、デ
ジタル処理回路36で演算及び入出力等に要する時間に
応じて積分時間を設定することにより、積分中にデジタ
ル処理回路36でデジタル処理を行い、デジタル処理に
要する時間を短縮すると共に、積分時間中に移動する測
定対象表面全面からの反射光強度を検出できるため、測
だ而の連続性をほぼ保っことができる。従って、スリッ
ト系等の光学系、測定対象の移動速度、積分時間等によ
って決まる一定面積内の平均的色度が得られることlC
なるが。
The analog processing circuit 32 amplifies, for example, 31-point electrical signals obtained by the photodiode array 30 of the detector 18, and performs an integral operation to obtain the values of parameters necessary for one chromaticity calculation as electrical signals. . The reason why analog integration is performed here is to shorten calculation time and to make the measurement surface continuous. That is, by setting the integration time according to the time required for computation, input/output, etc. in the digital processing circuit 36, the digital processing circuit 36 performs digital processing during integration, shortens the time required for digital processing, and Since it is possible to detect the intensity of reflected light from the entire surface of the object to be measured as it moves over time, it is possible to maintain almost the continuity of the measurement. Therefore, the average chromaticity within a certain area determined by the optical system such as a slit system, the moving speed of the measurement object, the integration time, etc. can be obtained.
Naruga.

安価なマイクロコンピュータを使用したとしても。Even if you use a cheap microcomputer.

処理時間Fi20ms以下にできるので、測定面はそれ
ほど広くなることはない。又、信号強度もがせげるので
、雑音にも強いという利点を有する。
Since the processing time Fi can be reduced to 20 ms or less, the measurement surface does not become so wide. Furthermore, since the signal strength can be reduced, it has the advantage of being resistant to noise.

これに対して1例えば特開昭52−102780号で示
唆されている如(、フォトダイオードアレイ30等から
の信号を、直接マイクロコンピュータに取り込んで1色
度計算に必要な積分計算等の演算処理tすべてマイクロ
コンピュータで行うとすると、演算時間が長くなり、対
象物体が高速移動する場合には連続性が保てなくなると
いう欠点が生じる。又、この欠点を解消するためには、
演算速度の速いミニコンピユータ規模の高価な計算機が
必要となる。
On the other hand, as suggested in JP-A No. 52-102780, for example, the signal from the photodiode array 30 etc. is directly input into a microcomputer to perform arithmetic processing such as integral calculation necessary for one chromaticity calculation. If all the calculations are performed using a microcomputer, there will be a disadvantage that the calculation time will be long and continuity will not be maintained when the target object moves at high speed.In addition, in order to eliminate this disadvantage,
An expensive computer on the scale of a minicomputer with high calculation speed is required.

次に、前記実施例が採用された、カラー鋼板400表面
色調測定装置について説明する。
Next, a description will be given of an apparatus for measuring the surface color tone of a color steel plate 400 in which the above embodiment is adopted.

この装置においては、第4図及び第5図に示す如(、光
源部12と検出器18t−一体とした測色計検出ヘッド
42を、カラー鋼板40の振動が少くなるような、ロー
ル44近傍のカラー鋼板平面部に、表面から一定間隔を
おいて設置する。測定時は光源を点灯させ、検出器18
で得られる信号を処理回路によジ演算処理して、出力装
置に出力させる。又、検出ヘッド42t−移動させて標
準試料を対象に測定を行える標準試料校正装置46を具
備し、その測定結果を処理装部に記憶させておくことに
より、測定カラー鋼板40との色差ti続的に出力する
ことも可能であり、偏差の大きなものについては警報器
を鳴らすこともできる。更に、測色計検出ヘッド42を
板幅方向に遠隔移動させる走査装置48を装備すれば、
カラー鋼板40表面の広範囲にわたる色彩情報を得るこ
とが可能となる。
In this device, as shown in FIG. 4 and FIG. is installed on the flat surface of a colored steel plate at a certain distance from the surface.When measuring, the light source is turned on and the detector 18
A processing circuit performs arithmetic processing on the signal obtained by the processing circuit, and outputs the resultant signal to an output device. In addition, the detection head 42t is equipped with a standard sample calibration device 46 that can be moved to perform measurements on a standard sample, and the measurement results are stored in the processing unit, so that the color difference between the color steel plate 40 and the measurement color steel plate 40 can be maintained. It is also possible to output a standard output, and an alarm can be sounded if there is a large deviation. Furthermore, if a scanning device 48 for remotely moving the colorimeter detection head 42 in the board width direction is installed,
It becomes possible to obtain color information over a wide range of the surface of the color steel plate 40.

@記のような装置を用いて、実際のカラー鋼板の色調を
監視測定した結果について説明する。測定は、クロメー
ト着色処理が施ちれた試料C3T(標準板)及びY S
 A (オンライン鋼板)について、JI88730−
1970の色差表示方法に規定された。 Lab系によ
る色差により行った。本装置によるlQwi毎の鋼板の
分光反射率の直接測定データは、クロメート着色鋼板C
8T及びC8Aで、それぞれ第6図及び第7図に示す如
(とな!l1%又、クリー1ム着色鋼板YET及びYS
Aで。
We will explain the results of monitoring and measuring the color tone of an actual colored steel plate using a device like the one described below. Measurements were made using samples C3T (standard plate) and YS, which were subjected to chromate coloring treatment.
Regarding A (online steel plate), JI88730-
It was specified in the color difference display method of 1970. The color difference was determined using the Lab system. The direct measurement data of the spectral reflectance of the steel plate for each lQwi by this device is the chromate-colored steel plate C
8T and C8A, as shown in Fig. 6 and Fig. 7 respectively.
At A.

それぞれ第8図及び第9図に示す如くとなった。The results were as shown in FIGS. 8 and 9, respectively.

最終的な出力として、下記第1表のような色差が得られ
たが、オンライン監視で色差ΔEの許容判定をΔE=1
.0で行い、両試料(C8A及びY8ム)共、規定値よ
り外れたこと゛が確認された。
As the final output, the color difference as shown in Table 1 below was obtained, but the acceptance judgment of the color difference ΔE was determined by online monitoring when ΔE=1
.. It was confirmed that both samples (C8A and Y8) deviated from the specified value.

第1表 カラー鋼板の測定例 なお前記装置は1本発明を、カラー鋼板の表面色調測定
に適用したものであるが、本発明の適用範囲はこれに限
定されず、圧延工程における、めっき鋼板、ステンレス
鋼板、電磁鋼板等の表面色調測定、製紙工程におlる紙
の白色度検出、印刷工程における色ずれ検出等にも同様
に適用できることは明らかである。
Table 1 Measurement Examples of Colored Steel Sheets The above device is one in which the present invention is applied to the measurement of the surface color tone of colored steel sheets. It is clear that the present invention can be similarly applied to measuring the surface color tone of stainless steel plates, electromagnetic steel plates, etc., detecting the whiteness of paper in the paper manufacturing process, detecting color shift in the printing process, etc.

以上説明した通り、本発明によれば、移動物体表面の遠
隔測色を、高精度で、応答性良く、且つ。
As described above, according to the present invention, remote color measurement of the surface of a moving object can be performed with high precision and good responsiveness.

連続的に行うことが可能となり、製品の品質管理。It is now possible to perform continuous product quality control.

歩留り向上に有効である。又、色調制御への応用も期待
できる等の優れた効果を有する。
Effective for improving yield. Moreover, it has excellent effects such as being expected to be applied to color tone control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る移動物体表面の測色装置の実施
例の全体構成を示すブロック線図、第2図は、前記実施
例における検出器の光学系を示す断面図、第3図は、同
じく、アナログ処理回路、アナログ−デジタル変換器及
びデジタル処理回路の構成を示すブロック線図、第4図
は、前記実施例が採用された。カラー鋼板の表面色調測
定装置の検出ヘッド周辺の構成を示す側面図、第5図は
。 同じく平面図、第6図は、前記装置を用いて測定された
。クロメート着色処理が施された標準板の分光反射率を
示す線図、第7図は、同じく、クロメート着色処理が施
されたオンライン鋼板の分光反射率を示す線図、第8図
は、同じく、クリーム着色塗装が施された標準板の分光
反射率を示す線図、第9図は、同じく、クリーム着色塗
装が施されたオンライン鋼板の分光反射率を示す線図で
ある。 10・・・移動物体、12・・・光源部、14・・・白
色光源、16・・・光源レンズ系、18・・・検出器、
20・・・集光レンズ系、22゛・・・スリット。 26・・・回折格子−30・・・フォトダイオードアレ
イ、32・・・アナログ処理回路、34・・・アナログ
−デジタル変換器、36・・・デジタル処理回路。 38・・・出力装置。 代理人  高 矢   論 (ほか1名) 第 1 図 第3図 第4図 0 第6図 =7畏(nm) 第7図 4004204404604805005205405
6051i+、Q 600 侵06406606a) 
7ω□液長(nm) 第8図 一0浪長(n m)
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the color measuring device for the surface of a moving object according to the present invention, FIG. 2 is a sectional view showing the optical system of the detector in the embodiment, and FIG. Similarly, FIG. 4 is a block diagram showing the configuration of an analog processing circuit, an analog-to-digital converter, and a digital processing circuit, in which the above embodiment is adopted. FIG. 5 is a side view showing the configuration around the detection head of the surface color tone measuring device for color steel plates. FIG. 6, which is also a plan view, was measured using the above device. FIG. 7 is a diagram showing the spectral reflectance of a standard plate that has been subjected to chromate coloring treatment, and FIG. FIG. 9 is a diagram showing the spectral reflectance of a standard plate coated with cream coloring, and FIG. 9 is a diagram showing the spectral reflectance of an online steel plate also coated with cream coloring. DESCRIPTION OF SYMBOLS 10... Moving object, 12... Light source part, 14... White light source, 16... Light source lens system, 18... Detector,
20...Condensing lens system, 22゛...Slit. 26... Diffraction grating-30... Photodiode array, 32... Analog processing circuit, 34... Analog-digital converter, 36... Digital processing circuit. 38...Output device. Agent Takaya Ron (and 1 other person) Figure 1 Figure 3 Figure 4 Figure 0 Figure 6 = 7 (nm) Figure 7 4004204404604805005205405
6051i+, Q 600 invasion 06406606a)
7ω□Liquid length (nm) Fig.8 10L length (nm)

Claims (2)

【特許請求の範囲】[Claims] (1)移動物体の表面に白色光を照射する光源部と、前
記移動物体表面からの乱反射光の一部を結像するための
集光レンズ系と、該集光レンズ系の結像面において測定
部位を規定するためのスリット又はピンホールと、該ス
リット又はピンホールを通過した光を分光するための分
光器と、該分光器によって分光された各波長の光の強度
を同時に検出可能な光検出素子と、該光検出素子によっ
て得られる電気信号を、後段の信号処理時間に対応づけ
られた積分時間でアナログ積分処理するアナログ処理回
路と、該アナログ処理回路出力のアナログ(i号をデジ
タル信号に変換するアナログ−デジタル変換器と、該ア
ナログ−デジタル変換器出力のデジタル信号を演算処理
する仁とによって前記移動物体表面の色彩情報を得るた
めのデジタル処理回路と、全備えたことを特徴とする移
動物体表面の測色装置。
(1) A light source unit that irradiates white light onto the surface of a moving object, a condensing lens system that images a part of the diffusely reflected light from the surface of the moving object, and an imaging plane of the condensing lens system. A slit or pinhole for defining the measurement area, a spectrometer for separating the light that has passed through the slit or pinhole, and a light that can simultaneously detect the intensity of the light of each wavelength separated by the spectrometer. a detection element; an analog processing circuit that performs analog integration processing on the electrical signal obtained by the photodetection element in an integration time corresponding to the signal processing time of the subsequent stage; and a digital processing circuit for obtaining color information on the surface of the moving object by means of an analog-to-digital converter for converting into digital signals, and a digital processing circuit for processing digital signals output from the analog-to-digital converter. A color measurement device for the surface of a moving object.
(2)前記光源部が、移動物体表面に対して、同一角度
に配置された代数4出の光源からなり、且つ、各光源毎
に、光源の発光体像を結像照射するための光源レンズ系
が設けられている特許請求の範囲第1項に記載の移動物
体表面の測色装置。
(2) The light source section is composed of algebraic 4 light sources arranged at the same angle with respect to the surface of the moving object, and a light source lens for forming and irradiating a light emitting body image of the light source for each light source. A color measuring device for the surface of a moving object according to claim 1, further comprising a color measuring system.
JP57111080A 1982-06-28 1982-06-28 Apparatus for measuring surface color of moving object Pending JPS5957123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111080A JPS5957123A (en) 1982-06-28 1982-06-28 Apparatus for measuring surface color of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111080A JPS5957123A (en) 1982-06-28 1982-06-28 Apparatus for measuring surface color of moving object

Publications (1)

Publication Number Publication Date
JPS5957123A true JPS5957123A (en) 1984-04-02

Family

ID=14551872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111080A Pending JPS5957123A (en) 1982-06-28 1982-06-28 Apparatus for measuring surface color of moving object

Country Status (1)

Country Link
JP (1) JPS5957123A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193032A (en) * 1985-02-19 1986-08-27 ザ・パーキン‐エルマー・コーポレイシヨン Instantaneous reading multichannel polychromatic spectrophotometry and device thereof
JPS61202058U (en) * 1985-06-07 1986-12-18
JPS62146633A (en) * 1985-12-10 1987-06-30 ハイデルベルガ− ドルツクマシ−ネン アクチエンゲゼルシヤフト Method and device for controlling inking of printer
JPS63137834U (en) * 1987-03-03 1988-09-12
JPH01201125A (en) * 1988-02-06 1989-08-14 Suga Shikenki Kk Minute surface spectral colorimeter
JPH01263526A (en) * 1988-04-15 1989-10-20 Murakami Shikisai Gijutsu Kenkyusho:Kk Method of calibrating photometric scale in continuous measurement of reflected light and apparatus therefor
JPH02245623A (en) * 1988-12-20 1990-10-01 E I Du Pont De Nemours & Co Portable caloimeter and method for featuring colored surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410786A (en) * 1977-06-25 1979-01-26 Ritsuo Hasumi Continuous inspection device for surface color

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410786A (en) * 1977-06-25 1979-01-26 Ritsuo Hasumi Continuous inspection device for surface color

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193032A (en) * 1985-02-19 1986-08-27 ザ・パーキン‐エルマー・コーポレイシヨン Instantaneous reading multichannel polychromatic spectrophotometry and device thereof
JPS61202058U (en) * 1985-06-07 1986-12-18
JPS62146633A (en) * 1985-12-10 1987-06-30 ハイデルベルガ− ドルツクマシ−ネン アクチエンゲゼルシヤフト Method and device for controlling inking of printer
JPS63137834U (en) * 1987-03-03 1988-09-12
JPH01201125A (en) * 1988-02-06 1989-08-14 Suga Shikenki Kk Minute surface spectral colorimeter
JPH01263526A (en) * 1988-04-15 1989-10-20 Murakami Shikisai Gijutsu Kenkyusho:Kk Method of calibrating photometric scale in continuous measurement of reflected light and apparatus therefor
JPH02245623A (en) * 1988-12-20 1990-10-01 E I Du Pont De Nemours & Co Portable caloimeter and method for featuring colored surface

Similar Documents

Publication Publication Date Title
US8233147B2 (en) Spectrometer and a method for controlling the spectrometer
US4932779A (en) Color measuring instrument with integrating sphere
JPH01227043A (en) Manual apparatus for measuring optical reflection characteristic
JPS5997021A (en) Monitoring device monitoring color, degree of whiteness and opacity
GB2128359A (en) Double-beam spectrophotometer
JPH0427494B2 (en)
US3817633A (en) Spectroradiometric apparatus and method for measuring radiation
JPS5957123A (en) Apparatus for measuring surface color of moving object
US3825762A (en) Apparatus for measuring luminescent radiation
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JPH0781840B2 (en) Optical film thickness measuring device
JPH0546885B2 (en)
JPS6014132A (en) Colorimetric device of surface of moving object
JP2991521B2 (en) Infrared thickness / densitometer
JPS6175203A (en) Apparatus for measuring thickness of film
JPH01132936A (en) Method and apparatus for analyzing film
JPS6242036A (en) Yellowing degree detecting device for leaf tobacco
JPH0540422Y2 (en)
JPH07107499B2 (en) Continuous colorimeter
JPH01295134A (en) Automatic chemical analyzer
JPS6388430A (en) Absolute reflection factor measuring apparatus
JPH03138537A (en) Spectrophotometer
JPS63218828A (en) Colorimetric apparatus
JPS61209339A (en) Optical measuring apparatus
JPH0423738B2 (en)