JPS6014132A - Colorimetric device of surface of moving object - Google Patents

Colorimetric device of surface of moving object

Info

Publication number
JPS6014132A
JPS6014132A JP12219583A JP12219583A JPS6014132A JP S6014132 A JPS6014132 A JP S6014132A JP 12219583 A JP12219583 A JP 12219583A JP 12219583 A JP12219583 A JP 12219583A JP S6014132 A JPS6014132 A JP S6014132A
Authority
JP
Japan
Prior art keywords
light
moving object
light source
slit
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12219583A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Akira Torao
彰 虎尾
Takeshi Yoshimoto
善本 毅
Kenichiro Nakamura
中村 賢市郎
Shichisaburo Sugita
杉田 七三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOEI DENSHI KOGYO KK
Original Assignee
Kawasaki Steel Corp
TOEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, TOEI DENSHI KOGYO KK filed Critical Kawasaki Steel Corp
Priority to JP12219583A priority Critical patent/JPS6014132A/en
Publication of JPS6014132A publication Critical patent/JPS6014132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To perform the remote colorimetry of the surface of a moving object continuously with a high precision and a high responsiveness, by irradiating a white light, which has >=200-fold illuminance of an external light, to the surface of the moving object at 45 deg. to the surface alignment. CONSTITUTION:The white light having >=200-fold illuminance of an external light is irradiated to the surface of a moving object 10 at an angle theta=45 deg. to a furface alignment C from a white light source 14 through a lens 16. A surface alignment component out of the irregularly reflected light from the surface of the object 10 is focused by a condenser lens 20. A slit 22 prescribes a measuring place on the focusing surface of the lens 20. A collimator lens 24 collimates the light transmitted through the slit 22. A diffraction grating 26 subjects the light to spectral diffraction, and spectral components are reflected on a concave mirror 28, and intensities of them having respective wavelengths are detected simultaneously by a photodiode array 30. The electric signal for each wavelength is subjected to an operation processing in an operation processing device 31, and an average chromaticity or a color difference from a standard sample on a certain area in the running direction of the surface of the moving object is attained continuously.

Description

【発明の詳細な説明】 本発明は、移動物体表面の測色装置に係り、特に、表面
を着色したカラー鋼板等の表面処理鋼板の表面の色調管
理に用いたり、或いは、冷延鋼板のテンパー・カラー、
酸洗板の酸洗状況の良否の判定等に用いたりプるのに好
適な、移動物体表面の色調を連続的に測定する移動物体
表面の測色装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color measuring device for the surface of a moving object, and is particularly suitable for use in controlling the color tone of a surface-treated steel sheet such as a colored steel sheet, or for measuring the temperature of a cold-rolled steel sheet. ·Color,
The present invention relates to an improvement in a color measuring device for the surface of a moving object, which continuously measures the color tone of the surface of a moving object, and is suitable for use in determining the quality of pickling of a pickling plate.

表面を着色したカラー鋼板等の表面処理鋼板や組等の色
調管理は重要であるが、ライン速度の高速化、検出すべ
き色むらや色違いの微妙化に伴い、作業者の肉眼による
検出では限界になってきている。これは多大な労力と熟
練を要する上に、個人差や各種外乱による検出精度に問
題があるためである。一方、製造中にサンプリングを行
ってオフラインでの検査も行われているが、応答が遅れ
るので操業にフィードバックづ゛ることが難しいという
欠点を有づる。
It is important to control the color tone of surface-treated steel sheets and assemblies, such as colored steel sheets, but as line speeds increase and the color unevenness and color differences that need to be detected become more subtle, it is difficult to detect them with the naked eye of workers. It's reaching its limit. This is because it requires a great deal of effort and skill, and there are problems with detection accuracy due to individual differences and various disturbances. On the other hand, off-line inspections are also carried out by sampling during manufacturing, but this has the disadvantage that the response is delayed and it is difficult to provide feedback to operations.

このような問題に鑑みて、種々のオンライン測色装置が
考案され、製品化されている。例えば、特開11α55
−95839号は、フィルタを用いて、国際照明委員会
で勧告された三刺激値XYZをそれぞれ独立して測定す
る方法であり、処理時間は短縮C゛きるが、分光分布を
得られない!こめに1度が悲いという問題点を右づる。
In view of these problems, various online color measurement devices have been devised and commercialized. For example, JP11α55
No. 95839 uses a filter to independently measure the tristimulus values X, Y, and Z as recommended by the International Commission on Illumination. Although the processing time can be shortened by C, it is impossible to obtain a spectral distribution! The problem is that once in a while is sad.

又、特公昭54−1196号は、分光光源により波長を
可変にして、キャビディ、回転セクターを用いて分光反
射率をめることにより色調を測定Jるものであり、精度
はよくなるが、可動部があり、又、光源波長を変化させ
るために、測定ヌ′J象が高速移動づると、+Iii!
密には連続測定できなくなるという問題点を有する。更
に、特開昭54−10786号は、白色光を線状に照射
し、その乱反射光を分光して、2次元服像装置を用い(
反射強度を測定でることにより、線状の各位置での色度
をめるもので必るが、この方法[゛も、受光して得られ
る電気信号を取込んだ後、色度計算に要づる時間が長く
、又、線状に照則しくいるために、撮像装置の走査を波
長方向に対してのみ行って、同一地点の各波長のデータ
だりを読出したとしても、測定対象が高速移動すれば、
走行方向では測定点が間欠的になり、又、受光装置も高
価であるという問題点を有づる。
In addition, Japanese Patent Publication No. 1196/1986 measures color tone by varying the wavelength using a spectral light source and measuring the spectral reflectance using a cavity and a rotating sector. Although this method improves accuracy, it requires a large number of moving parts. , and if the measurement object moves at high speed in order to change the light source wavelength, +Iii!
There is a problem that continuous measurement cannot be performed at high density. Furthermore, Japanese Patent Application Laid-Open No. 10786/1986 irradiates white light in a linear manner, spectrally spectrally reflects the diffusely reflected light, and uses a two-dimensional imager (
It is necessary to calculate the chromaticity at each linear position by measuring the reflection intensity, but this method also requires the calculation of chromaticity after capturing the electrical signal obtained by receiving light. It takes a long time to scan, and even if the imaging device scans only in the wavelength direction and reads out data for each wavelength at the same point, the object to be measured is moving at high speed. if,
There are problems in that the measurement points are intermittent in the traveling direction, and the light receiving device is also expensive.

又、特開昭52−102780号は、試料物体からの光
を同時分散し、複数の検出器で同時に受光して測色演算
を行うものであり、この方式は、スリット前面に集光用
レンズを装着していないため、光源の光を有効に利用で
きる透過物体には適用できるが、検出器によって得られ
る電流が極めて微小であることから、反射物体に対して
測色を行う場合は、照射強度を上昇させるため、光学系
を試料物体に極端に接近させなければならず、その結果
、照明光の照度むらや測定器と測定対象物の微小な位置
変動が、直接測定データに影@づるという問題点を有し
、特に、測定対象が遠方にあり、遠隔側色を行う場合に
は問題があった。更に市販されているフィルタによる3
色分解式望遠側色計は、精度が悪く応答速度も遅いとい
う問題点を有していた。又更に、液体の濁度を測定する
のに利用される積分球方式を応用するものにあっては、
積分球のため装置が大型化しCしまう上に、被測定面の
面積の変更や、校正用の標準板を置くことが国t「(゛
あり、又、積分球内部の汚れのため測定(il″iの信
頼性がなく・なるので、しばしば手入れ作業を行う必要
があるという問題があった。
Furthermore, Japanese Patent Application Laid-open No. 52-102780 discloses a method that simultaneously disperses light from a sample object and receives the light simultaneously with multiple detectors to perform colorimetric calculations. This method uses a focusing lens in front of the slit. Since it is not equipped with a light source, it can be applied to transparent objects where the light from the light source can be used effectively.However, since the current obtained by the detector is extremely small, when performing colorimetry on reflective objects, it is necessary to In order to increase the intensity, the optical system must be brought extremely close to the sample object, and as a result, uneven illumination of the illumination light and minute positional fluctuations between the measuring instrument and the object to be measured directly affect the measurement data. There is a problem, particularly when the object to be measured is located far away and remote side coloring is performed. Furthermore, 3 using commercially available filters
The color separation type telephoto color meter has problems of poor accuracy and slow response speed. Furthermore, in those that apply the integrating sphere method used to measure the turbidity of liquids,
The use of an integrating sphere increases the size of the device, and it is also difficult to change the area of the surface to be measured or to place a standard plate for calibration, and the dirt inside the sphere makes measurement difficult. There was a problem in that the reliability of the ``i'' was lost or lost, so maintenance work was often required.

こうした従来の問題を解消ずべく開発されたもの−(あ
り、移動物体表面の遠隔測色を、より合理的に高精度で
、応答性よく、且つ、連続的に行うことかてぎる移動物
体表面の測色装置を提供することをその目的としている
This technology has been developed to solve these conventional problems. The purpose is to provide a color measuring device.

本発明は、移動物体表面の測色装置を、移動物体の表面
に、面法線と45°±10°の角度をなり方向から外部
光の200倍以上の照度を有づる白色光を、結像照射可
能な複数の光源部と、前記移動物体表面からの乱反射光
のうち面法線成分を結像づるための集光レンズ系、該集
光レンズ系の結1に而におい(測定部位を規定Jるため
のスリット、該スリン1〜を通過した光を分光づるため
の分光器、及び該分光器によって分光された各波長の光
の強[9を同時に検出可能な光検出素子が内蔵され、前
記複数の光源部と一体に形成された測色部と、該測色部
の光検出素子によって得られる電気信号を演算処理する
ことによって前記移動物体表面の色彩情報を得るIcめ
の演算処理装置と、から構成することにより、上記目的
を達成したものである。
The present invention provides a color measurement device for the surface of a moving object that emits white light having an illuminance 200 times or more of external light onto the surface of the moving object from a direction at an angle of 45°±10° with the surface normal. A plurality of light source units capable of image irradiation, a condensing lens system for forming an image of the surface normal component of the diffusely reflected light from the surface of the moving object, and an odor (a measurement site It is equipped with a built-in slit for spectroscopic measurement, a spectroscope for separating the light that has passed through the Surins 1 to 1, and a photodetection element that can simultaneously detect the intensity of the light of each wavelength separated by the spectroscope. , a colorimetric unit formed integrally with the plurality of light source units, and an Ic calculation process for obtaining color information on the surface of the moving object by calculating and processing electrical signals obtained by a photodetection element of the colorimetric unit. The above object has been achieved by comprising the following apparatus.

以下、図面を参照して、本発明の一実施例を詳細に説明
づる。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

この測色装置Aは、第1図に示づ如く、移動物体10の
表面に、面方線Cとθ−45°の角度をなJ方向から、
外部光の200倍の照度を右づる白色光を照射するだめ
の2個の白色光源14を内蔵し、且つ、各白色光#A1
4mに、光源の発光体像を移動物体10の表面に結像照
射づるための光源レンズ系16が設(プられた光源部1
2と、前記移動物体10の表面からの乱反射光のうち、
面方線成分を結像づるための集光レンズ系20、該集光
レンズ系20の結像面において測定部位を規定Jるため
のスリン1−22、該スリット22を通過した光を平行
光線化するだめのコリメータレンズ24、該」リメータ
レンズ24によつで平行光線化された光をiIJ視波長
波長領域時に分光するための分光器たる反則型の回折格
子26、該回折格子26によって分光された各波長の光
を反射するための凹面鏡28、及び、該凹面鏡28によ
り反射された各波長の光の強度を同時に検出可能な光検
出素子たるノアIi〜タイオードアレイ30が内蔵され
、前記複数の光源部12と一体に形成された測色部′1
8と、該3111 e部18の7オトダイオードアIノ
イ30によって(ηられる各波長毎の電気信号を演算処
理することによって、移動物体表面の走行方向の一定面
積の平均的色度或いは標準試料との色差をj史続的に1
昇るためのマイクロ」ノビュータ等からなる演算処理装
置31と、から+に構成されζいる。
As shown in FIG. 1, this colorimeter A measures the surface of a moving object 10 at an angle of θ-45° with the plane direction C from the J direction.
It has two built-in white light sources 14 that emit white light with an illuminance 200 times that of external light, and each white light source #A1
4m, a light source lens system 16 is installed for irradiating the light emitting body image of the light source onto the surface of the moving object 10.
2, and diffusely reflected light from the surface of the moving object 10,
A condensing lens system 20 for imaging plane line components, a slit 1-22 for defining a measurement area on the imaging plane of the condensing lens system 20, and converting the light passing through the slit 22 into parallel rays. A collimator lens 24 for converting the light into parallel light by the remeter lens 24, a reciprocal diffraction grating 26 serving as a spectrometer for separating the light into parallel light beams in the iIJ visual wavelength range, A concave mirror 28 for reflecting the light of each wavelength reflected by the concave mirror 28, and a photodetecting element such as Noah II to a diode array 30 capable of simultaneously detecting the intensity of the light of each wavelength reflected by the concave mirror 28 are built-in. Color measurement unit '1 formed integrally with a plurality of light source units 12
8, and the 7-otodiode Inoy 30 of the 3111 e section 18 calculates the average chromaticity of a certain area in the traveling direction of the surface of a moving object or a standard sample by processing the electrical signals for each wavelength (η). The color difference between
ζ consists of an arithmetic processing unit 31 consisting of a micro-nobuter and the like for ascending.

前記光に取部12の白色光源14からの照射角度θを4
5°にしたのは以下の理由による。第2図に、各種カラ
ーサンプルについて、標準色サンプルと色違いの限界サ
ンプルを用意しlこ上で、標準測色条件により1.11
定した色差値をΔE0とし、−プラ、水測色装@Aを用
いて、第1図に示す光学系において面方線Cとのなづ角
度θを、被測定面上で相互に等しい角度となる条件を保
ちながら、変化させた場合の色差測定値を△Eとした場
合に、両口差値の誤差1 (ΔE−△Eo)/△Eol
の角度依存性を調べた結果を示す。この第2図の結果よ
り、照射角度θが45°のときに最も両側定値の差の絶
対値が少なく、45°±10°の範囲であれば596以
内に納まり十分使用可能であること等がわかる。照射角
度θを45°としたのはこの点を考慮したためである。
The irradiation angle θ of the light from the white light source 14 of the handle 12 is set to 4.
The reason for setting the angle to 5° is as follows. Figure 2 shows that for various color samples, standard color samples and limit samples of different colors are prepared.
The determined color difference value is set as ΔE0, and the angle θ with the surface direction line C in the optical system shown in Fig. 1 is set to a mutually equal angle on the surface to be measured using the water colorimeter @A. If △E is the color difference measurement value when the color difference is changed while maintaining the condition that
The results of investigating the angle dependence of are shown. From the results in Figure 2, it can be seen that when the irradiation angle θ is 45°, the absolute value of the difference between the constant values on both sides is the smallest, and within the range of 45° ± 10°, it is within 596 and can be used sufficiently. Recognize. The irradiation angle θ was set to 45° in consideration of this point.

次に前記光源部12を2個で構成でるようにしたのは以
下の理由にJzる。第3図に光源部12が1個の場合と
2個の場合との測定値の経時変動を示す。変動量は、測
定測色1と標準側色値の相対出力強度で表示しである。
Next, the reason why the light source section 12 is made up of two is as follows. FIG. 3 shows changes over time in measured values when there is one light source section 12 and when there are two light source sections 12. The amount of variation is expressed as the relative output intensity of the measured colorimetry 1 and the standard color value.

同図から明らかなように、光l81S12を2個設けた
場合は、殆ど変動はないが、1個用いた場合はより変動
が大きい。これは光源強度の時間的変化が平均化される
こと、及び結像により生じるフィラメント像に起因する
照度むらも、′e数の光源の合成により軽減されるから
であると解き4′える。白色光源14を2個で構成4る
ようにしたのはこの点を考慮し時間的にむらのない光を
iけるためで゛ある。
As is clear from the figure, when two lights 181S12 are provided, there is almost no variation, but when one light is used, the variation is larger. This can be understood to be because the temporal changes in the light source intensity are averaged out, and the illuminance unevenness caused by the filament image caused by imaging is also reduced by the combination of 'e' number of light sources. The reason why the white light source 14 is composed of two is to take this point into account and to provide temporally uniform light.

更に、外部光の200倍の照射強1哀としたのは、以1
;の理由による。この装置Aは、積分球方式等のような
複11な構造の外部遮蔽部がない。従って比較的容易に
どのような場所でも測定することが可能という利点があ
るが、外部光の影響は受ける。
Furthermore, the reason why the irradiation intensity was 200 times that of external light was as follows.
Due to the reason. This apparatus A does not have an external shielding part having a complex structure such as an integrating sphere system. Therefore, it has the advantage that it can be measured at any location with relative ease, but it is affected by external light.

そこ(、照射角度θを45°とし、被測定面に外部光を
照射した場合の、色差測定誤差の照射照度依存性を調べ
たところ、第4図のようになった。
When the irradiation angle θ was 45° and the surface to be measured was irradiated with external light, the dependence of the color difference measurement error on the irradiation illuminance was investigated, and the result was as shown in FIG.

図にd3いてLSIXjは光源照厄、LO[L×1は外
部光照度を表わしでいる。同図より明らかなJ、うに光
源照度LS1.LX]が外部光照度しOIX]の200
倍以上であれば′、水装置Aによる測定値と標JP価と
の差の絶対値は、標準値に対して5%以内であることが
確認できる。従って、この点を考慮し、外部光の200
倍の照射強度としたしのである。光源部12が複数ある
ため、この実現は比較的容易である。
In the figure, LSIXj at d3 represents the illuminance of the light source, and LO[L×1 represents the external light illuminance. It is clear from the figure that J, sea urchin light source illuminance LS1. LX] is the external light illuminance and OIX] is 200
If it is more than twice the standard value, it can be confirmed that the absolute value of the difference between the value measured by Water Apparatus A and the standard JP value is within 5% of the standard value. Therefore, considering this point, 200% of external light
The irradiation intensity was doubled. Since there are a plurality of light source units 12, this realization is relatively easy.

又、光源部12毎に、光源の発光体像を移動物体10の
表面に結像照射覆るだめの光源レンズ系16を設けてい
るのは、同一光源、同一供給電圧で、より強い照射強度
を得る1〔めである。
Furthermore, the reason why each light source unit 12 is provided with a light source lens system 16 to cover the surface of the moving object 10 with a light emitting body image of the light source is to provide stronger irradiation intensity with the same light source and the same supply voltage. It's the first thing I get.

光源部12についで以上のような構成をとることにより
、外乱光の影響を相対的に少なくでき、信号のS/N比
はよくなり、供給電圧も下げられるので、ランプ寿命が
長くなると共に省電力も図れる。なお、前記白色光源1
4としては、具体的にはハロゲンランプ等の安定した白
色光源を使用し、パイレックス又は石英のような耐熱ガ
ラス等を用いて効果的に照明を行うとよい。又、本実施
例にJ3いては、光源強度の変動を補正づるために、光
源部12に光検出器17〈第5図)を装着し、測色部1
8によって得られる信号強度を補正して、光源強度変動
に起因する測定誤差を解潤づると共に、光源寿命の監視
に利用している。
By adopting the above configuration next to the light source section 12, the influence of ambient light can be relatively reduced, the signal S/N ratio is improved, and the supply voltage can be lowered, resulting in longer lamp life and savings. Electricity can also be measured. Note that the white light source 1
As for 4, specifically, it is preferable to use a stable white light source such as a halogen lamp, and to perform effective illumination using heat-resistant glass such as Pyrex or quartz. In addition, in J3 of this embodiment, a photodetector 17 (Fig. 5) is attached to the light source section 12 in order to correct fluctuations in light source intensity, and the colorimeter section 1
The signal intensity obtained by 8 is corrected to eliminate measurement errors caused by fluctuations in light source intensity, and is also used to monitor the life of the light source.

前記測色部18において、分光器とし−C回折格子26
を用い、スリット22やフォトダイオードアレイ30と
紺合わi!りいるのは、回折格子26Cは分散角が波長
と線形関係にあるため、スリン1−22とノ;t l−
ダイオードアレイ30を組合せて用いることにより、ス
リット22で規定された測定面からの反射光が、分光さ
れた後、フォトダイオードアレイ30上で等波長間隔毎
に各チャンネルに入用づることになり、光学系や信号処
理部の回路設計及び製造上好都合であるからである。即
ち例えば、フォトダイ刺−ドアレイ30として、35素
子のものを用いた場合、光学系の幾何学的扉開、スリン
1〜幅等の条件を選定づることにより、全素子のうち3
1素子を使用して、可視波長領域400〜700nmの
分光強度を、波長1Qnll1間隔で検出づることがで
き、測色に十分な精度を得ることがeきる。
In the color measurement section 18, a spectrometer is used as a -C diffraction grating 26.
Using the slit 22 and photodiode array 30, match i! The difference is that the dispersion angle of the diffraction grating 26C has a linear relationship with the wavelength, so the difference between Surin 1-22 and No;t l-
By using the diode array 30 in combination, the reflected light from the measurement surface defined by the slit 22 is separated and then applied to each channel at equal wavelength intervals on the photodiode array 30. This is because it is convenient for circuit design and manufacturing of optical systems and signal processing sections. That is, for example, if a 35-element photo die array 30 is used, by selecting conditions such as the geometric door opening of the optical system, the width of the
Using one element, it is possible to detect the spectral intensity in the visible wavelength range of 400 to 700 nm at intervals of 1Qnll1 wavelengths, and it is possible to obtain sufficient accuracy for colorimetry.

この潤色部18と前記光源部12とを一体に形成したの
は以下の理由による。即ち、上記構造の遠隔測色装置A
を例えば、銅帯、紙等連続的に製造されるラインにで使
用づる場合、対象物の長手力面だ1プでなく、幅方向の
測定が必要となる場合で多くある。その際、光源部12
、及び測色部18を、同時に走査する必要があるが、前
)ホしたように、照度むらを抑えるために複数の光源部
12を結像照射し、相互の像を重ねるためには各光源部
12の相対的な位置が測色部18に対して常に一定であ
ることが必要である。光源部12が複数あっても、これ
らが全て測色部18と一体であれば、こうした位置のず
れは起こらなくなる。又、装置全体としても」ンバクト
になるので、走査をし易くなるという利点も有づる。こ
れが、測色部18と光源部12とを一体とした理由であ
る。
The reason why the embellishing section 18 and the light source section 12 are integrally formed is as follows. That is, remote color measurement device A having the above structure
For example, when used in a line that continuously produces copper strips, paper, etc., it is often necessary to measure the width of the object, not just the longitudinal force. At that time, the light source section 12
, and the colorimeter 18 at the same time. However, as mentioned above, in order to suppress uneven illuminance, multiple light sources 12 are irradiated to form an image, and in order to overlap each other's images, each light source must be scanned simultaneously. It is necessary that the relative position of the section 12 with respect to the colorimetric section 18 is always constant. Even if there are a plurality of light source sections 12, if they are all integrated with the color measurement section 18, such positional deviation will not occur. Furthermore, since the entire device is compact, it also has the advantage of making scanning easier. This is the reason why the color measurement section 18 and the light source section 12 are integrated.

前記演算処理装置31は、第1図に示づ如く、測色部1
8のフォトダイオードアレイ30によって得られる電気
信号を、後段の信号処理時間に対応づ【プられ1.l:
積分時間でアナログ積分処理するアナログ処理回路32
と、該アナログ処理回路32出力のアナログ信号をデジ
タル信号に変換づるアナログ−デジタル変換器34と、
該アナログ−デジタル変換器34出力のデジタル信号を
演算処理することによって前記移動物体表面の色彩情報
を得るためのデジタル処理回路36と、から構成されで
いる。即らこの演鐸処TgA装置31は、第5図に詳9
111に示ず如く、フォトダイオードアレイ30の各セ
ンサ30+〜30nの出力を増幅するだめの前置増幅器
3281〜32anと、該前置増幅器32a1〜32a
nの出力を積分Jるための積分器321] 1〜321
) nと、該積分器321)+〜32bnの出力を順次
取込むための1ルチブレク”j34aと、該ンルチブレ
クサ34aの出力のアナログ信号をデジタル信号に変換
づるためのアナ11グーデジタル変換器34bと、白色
光源14の強度を検出する光源光量検出器17の出力を
増幅するだめの前置増幅器32cと、該前置増幅器32
C出力の^す[]グ信号をデジタル信号に変換Jるため
のアナログ−デジタル変換器34cと、前記アナログ−
デジタル変換器341)および340の出力に応じて各
種演算処理を行うための中央処理装@(以下CPtJと
称する)36aと、プログラムや各種定数、及び、前記
CPU36aにおける演算データ等を記録覆るだめのメ
モリ36bと、プログラムカウンタ360と、前記CP
U36a出力のデジタル信号をアナログ信号に変換して
、出力表示器等からなる出力装置38に出力づるための
デジタル−アナログ変換器36dと、から構成されてい
るものである。
As shown in FIG.
The electrical signals obtained by the photodiode array 30 of 8 are processed according to the signal processing time of the subsequent stage. l:
Analog processing circuit 32 that performs analog integration processing using integration time
and an analog-to-digital converter 34 that converts the analog signal output from the analog processing circuit 32 into a digital signal.
and a digital processing circuit 36 for obtaining color information on the surface of the moving object by processing the digital signal output from the analog-to-digital converter 34. That is, this Entaku TgA device 31 is shown in detail in FIG. 9.
111, preamplifiers 3281 to 32an for amplifying the output of each sensor 30+ to 30n of the photodiode array 30, and preamplifiers 32a1 to 32a.
Integrator 321 for integrating the output of n] 1 to 321
) n, a 1-multiplexer 34a for sequentially taking in the outputs of the integrators 321)+ to 32bn, and an analog-to-digital converter 34b for converting the analog signal output from the multiplexer 34a into a digital signal. , a preamplifier 32c for amplifying the output of the light source light amount detector 17 for detecting the intensity of the white light source 14, and the preamplifier 32
an analog-to-digital converter 34c for converting the C output output signal into a digital signal;
A central processing unit (hereinafter referred to as CPtJ) 36a for performing various calculation processes according to the outputs of the digital converters 341) and 340, and a central processing unit (hereinafter referred to as CPtJ) 36a for recording programs, various constants, and calculation data in the CPU 36a. a memory 36b, a program counter 360, and the CP
It is comprised of a digital-to-analog converter 36d for converting the digital signal output from U36a into an analog signal and outputting it to an output device 38 consisting of an output display or the like.

前記アナログ処理回路32は、前記潤色部18のフォト
ダイオードアレイ30によって得られる例えば31点の
電気信号を増幅し、積分演算することにより色度計算に
必要なパラメータの値を電気信号として得る。ここで、
アナログ積分を行っているのは演算時間を短縮づると共
に、測定面を連続的にするためである。即ち、デジタル
処理回路36で演算及び入出力等に要する時間に応じて
積分時間を設定することにより、積分中にデジタル処理
回路36でデジタル処理を行い、デジタル処理に要する
時間を短縮すると共に、積分時間中に移動覆る測定対象
表面全面からの反射光強度を検出できるため、測定面の
連続性をほぼ保つことができる。往って、スリット系等
の光学系、測定対象の移動速度、積分時間等によって決
まる一定面積的の平均的色度が得られることになるが、
安価なンイクロ」ンビュータを使用したとしても、処理
時間は20m5g、下にできるので、測定面はそれはど
広くなることはない。又、信号強度も稼げるので、雑音
にし強いという利点を有づる。これに対して、例えば特
開昭52−102780号で示唆されでいる如(、)A
トダイオードアレイ30等からの信号を直接lイクロ」
ンビュータに取込ん“C,色度計算に必要な相分計瞳等
の演算処理を全てンイクロ」ンビュータで行うとすると
、演算時間が長くなり、対象物体が高速移動する場合に
は連続性が保てなくなるという欠点が生じ、この欠点を
FN浦りるためには、演算速度の速いミニ」ンビュータ
規模の高価な計算機が必要となる。
The analog processing circuit 32 amplifies, for example, 31 electrical signals obtained by the photodiode array 30 of the color embellishing section 18, and performs an integral calculation to obtain parameter values necessary for chromaticity calculation as electrical signals. here,
Analog integration is performed to shorten calculation time and to make the measurement surface continuous. That is, by setting the integration time according to the time required for computation, input/output, etc. in the digital processing circuit 36, the digital processing circuit 36 performs digital processing during integration, shortens the time required for digital processing, and Since it is possible to detect the intensity of reflected light from the entire surface of the measurement target that moves over time, the continuity of the measurement surface can be almost maintained. Often, an average chromaticity over a certain area is obtained, which is determined by the optical system such as a slit system, the moving speed of the measurement object, the integration time, etc.
Even if an inexpensive micron viewer is used, the processing time can be reduced to less than 20m5g, so the measurement surface will not be that large. Furthermore, since the signal strength can be increased, it has the advantage of being resistant to noise. On the other hand, as suggested in, for example, Japanese Patent Application Laid-Open No. 52-102780,
Directly transmit signals from diode array 30 etc.
If all arithmetic processing such as C, phase separator pupil, etc. required for chromaticity calculation is carried out in a digital camera, the calculation time will be long, and if the target object is moving at high speed, continuity cannot be maintained. However, in order to overcome this drawback, an expensive computer on the scale of a mini-computer with high calculation speed is required.

尚、前置増幅器3281〜32anの増幅特性相互の変
動くバラツキ)は、0.1%以内に抑えておくのが望j
ニジい。この装@Aは、積分球を用いていないので、小
型化が実現され、標準板の挿入が簡)1tに行えるめで
、測定値の校正が容易にできる。又、簡単なスリット操
作により容易に測定面積が変更可能で、装置の保守性も
良好である。
Furthermore, it is desirable to suppress the variation in amplification characteristics of the preamplifiers 3281 to 32an to within 0.1%.
Nijii. Since this device @A does not use an integrating sphere, it can be miniaturized, and the standard plate can be easily inserted in 1 t, making it easy to calibrate measured values. Furthermore, the measurement area can be easily changed by simple slit operation, and the maintainability of the device is also good.

尚、この装置Aの光学系は、日本工業規格(JIS)で
規定している標準測色条件を、そのまま満足している。
Note that the optical system of this apparatus A satisfies the standard colorimetric conditions specified by the Japanese Industrial Standards (JIS) as is.

上記のような装置を用いて、カラー鋼板の色調を実製造
ラインにて測定した結果についで説明する。第6図に示
Jように、本装置Aは、焼付はラインBによってカラー
焼付は処理を施した後、巻取機り前の上方より下方へ垂
直に移動物体10が走行する位置に設置した。移動物体
10と集合レンズ系20との距離は500 in、又、
照射角度θは、夫々451とし、白色光源14としては
、等しい出力(650W)のハロゲンランプを用いた。
Next, the results of measuring the color tone of a colored steel sheet on an actual production line using the above-mentioned apparatus will be explained. As shown in FIG. 6, the device A is installed at a position where the moving object 10 travels vertically from above to below in front of the winding machine, after the color burn-in has been processed by the burn-in line B. . The distance between the moving object 10 and the collective lens system 20 is 500 inches, and
The irradiation angle θ was set to 451 in each case, and a halogen lamp with the same output (650 W) was used as the white light source 14.

本装置のl+11後は、ゴムライニングを施した抑えロ
ールR1、R2を設(プ、移動物体10と装置Aとの間
の距離を一定に保つようにした。
After l+11 of this apparatus, rubber-lined holding rolls R1 and R2 were installed to keep the distance between the moving object 10 and the apparatus A constant.

オンライン測定の際に、外部光を連断した場合の測定値
(ΔE1)と、天井照明及び窓からの自然光が入射した
場合との測定値(ΔE)の関係を確認すると、第7図に
示り結果を得た。これから、両側定値に殆ど差がないこ
とが明らかとなった。
During online measurement, we checked the relationship between the measured value (ΔE1) when external light was continuously connected and the measured value (ΔE) when natural light from ceiling lighting and windows was incident, as shown in Figure 7. We obtained the following results. From this, it became clear that there was almost no difference between the constant values on both sides.

即も、外部光の200倍以上の照明強度を持つ650W
のハロゲンランプを2個用いた奉賀@Aでは、;m常の
工場内1(は明光は測定値に影響を与えないことが確認
された。
Immediately, 650W has illumination intensity more than 200 times that of external light.
At Hoga@A, which used two halogen lamps, it was confirmed that the bright light in the factory did not affect the measured values.

このような確認の下に、工場内照明光が照射され−(い
る環境の下で、Δンライン測定し1〔値(△E)と従来
使用していたオフラインの標準装置による藺(ΔEo)
との関係を示したものが第8図である。同図から明らか
なように、両側定値は、±5%の範囲C一致しCいる。
After confirming this, under the environment where the factory lighting light is irradiated, the Δ-line measurement is performed and the value (ΔE) is 1 [value (ΔE)].
FIG. 8 shows the relationship between As is clear from the figure, the constant values on both sides coincide within a range of ±5%.

尚、前記装置は、本発明を、カラー鋼板の表面色調測定
に適用したものであるが、本発明の適用範囲はこれに限
定されず、例えば冷延鋼板のテンパー・カラー、酸洗ラ
インにおl:lる適正酸洗条件の監視、圧延工程におけ
るめっき鋼板、ステンレス鋼板、電磁鋼板等の表面色調
測定、或いは、製紙、繊維等の分野における紙の白色度
、印刷の色ずれ、又は製品の色調の監視等においても同
様に適用Cきることは明らかである。
In addition, although the present invention is applied to the above-mentioned device for measuring the surface color tone of colored steel sheets, the scope of application of the present invention is not limited thereto. Monitoring of appropriate pickling conditions, measuring the surface color of plated steel sheets, stainless steel sheets, electromagnetic steel sheets, etc. in the rolling process, or measuring the whiteness of paper, color shift in printing, or product color in fields such as paper manufacturing and textiles. It is clear that this method can be similarly applied to color tone monitoring and the like.

以上説明した本発明によれば、移動物体表面の遠隔測色
を、合理的に、高精度で応答性良く、且つ、連続的に行
うことが可能となり、製品の品質管理、歩留り向上に有
効である。又、色調制御への応用も期待できφ等の優れ
た効果を有づる。
According to the present invention described above, it is possible to perform remote color measurement of the surface of a moving object in a rational, highly accurate, highly responsive, and continuous manner, which is effective for product quality control and yield improvement. be. Moreover, it can be expected to be applied to color tone control and has excellent effects such as φ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る移動物体表面の測色装置の一実
施例を示す全体構成概略図、 第2図は、光源入射角が変動し/=場合の測定誤差に対
する影響を示す線図、 第3図は、光源部が1個の場合と2個の場合との光源強
度変動に及ぼす影響を示ず線図、第4図は、外部光強度
と照射強度の比の測定誤差に対する影響を示す線図、 第5図は、演算処理装置の構成を示すブロック線図、 第6図は、上記実施例装置をカラー鋼板製造ラインに適
用した例を示す配置説明図、 第7図は、同ラインでのオンライン測定の際の外部光の
有無の測定値の比較を示す線図、第8図は、11〕jラ
インでのオンライン測定値と標準装置によるオンライン
測定値の比較を示す線図Cある。 10・・・移動物体、12・・・光源部、14・・・白
色光源、16・・・光源レンズ系、18・・・測色器、
 20・・・集光レンズ系、22・・・スリット、26
・・・回折格子(分光器)30・・・ノ、t 1〜タイ
A〜ドアレイ(光検出素子)、31・・・演瞳処理装置
、32・・・アナログ処理回路、34・・・アナ1−1
グーデジタル変換器、3G・・・デジタル処理回路、3
8・・・出力装置、θ・・・照射角瓜。 代理人 高 矢 論 (ばか1名) 第1図 第2図 )t、J、人M方夏動 (deg) 第3図 □r41戸a1 第4図 0 0.5 l 1.5 (Lo/Ls)x200夕)
部尤〃崖と照用強洩q北 第5図 第6図 第7図 (夕)若下貢ジIJシ) 第8図 東京都世田谷区代沢5丁目13番 12号
FIG. 1 is a schematic diagram of the overall configuration of an embodiment of the color measurement device for the surface of a moving object according to the present invention. FIG. 2 is a diagram showing the influence on measurement errors when the incident angle of the light source varies. , Figure 3 is a diagram showing the influence on the light source intensity fluctuation when there is one light source and when there are two light sources, and Figure 4 is a graph showing the influence on the measurement error of the ratio of external light intensity and irradiation intensity. FIG. 5 is a block diagram showing the configuration of the arithmetic processing device; FIG. 6 is an explanatory layout diagram showing an example in which the above embodiment device is applied to a color steel plate manufacturing line; FIG. A diagram showing a comparison of the measured values with and without external light during online measurement on the same line, and Figure 8 is a diagram showing a comparison between the online measured value on the 11]j line and the online measured value using the standard device. There is C. DESCRIPTION OF SYMBOLS 10... Moving object, 12... Light source part, 14... White light source, 16... Light source lens system, 18... Colorimeter,
20... Condensing lens system, 22... Slit, 26
...Diffraction grating (spectroscope) 30..., t1~tie A~door array (photodetection element), 31...pupil processing device, 32...analog processing circuit, 34...ana 1-1
Goo digital converter, 3G...digital processing circuit, 3
8... Output device, θ... Irradiation angle melon. Agent Takaya Lo (1 idiot) Fig. 1 Fig. 2) t, J, person M way summer action (deg) Fig. 3 □ r41 house a1 Fig. 4 0 0.5 l 1.5 (Lo/ Ls) x 200 evenings)
Figure 5, Figure 6, Figure 7 (Evening) Wakashita Koji IJ, Figure 8, 5-13-12 Daisawa, Setagaya-ku, Tokyo.

Claims (1)

【特許請求の範囲】[Claims] (1)移動物体の表面に、面法線と45°±10゜の角
醍をなJ方向から、外部光の200倍以上の照度を右す
る白色光を結像照射可能な複数の光源部と、 前記移動物体表面からの乱反射光のうち面法線成分を結
像づるための集光レンズ系、該集光レンズ系の結像面に
おいて測定部位を規定するためのスリット、該スリット
を通過した光を分光づるための分光器、及び該分光器に
よって分光された各波長の光の強度を同時に検出可能な
光検出素子が内蔵され、前記複数の光源部と一体に形成
された測色部と、 該測色部の光検出素子によって得られる電気信号を演障
処理することによって前記移動物体表面の色彩情報を得
るための演算処理装置と、を1fηえたことを特徴とす
る移動物体表面の測色装置。
(1) Multiple light sources capable of irradiating the surface of a moving object from the J direction at an angle of 45°±10° with the surface normal, in an image form with white light with an illuminance more than 200 times that of external light. and a condensing lens system for forming an image of the surface normal component of the diffusely reflected light from the surface of the moving object, a slit for defining a measurement site on the imaging plane of the condensing lens system, and a slit for defining a measurement site on the imaging plane of the condensing lens system, and a colorimeter unit formed integrally with the plurality of light source units, which includes a spectrometer for separating the light and a photodetection element capable of simultaneously detecting the intensity of the light of each wavelength separated by the spectrometer; and an arithmetic processing device for obtaining color information on the surface of the moving object by performing interference processing on the electric signal obtained by the photodetecting element of the colorimeter. Colorimetric device.
JP12219583A 1983-07-05 1983-07-05 Colorimetric device of surface of moving object Pending JPS6014132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12219583A JPS6014132A (en) 1983-07-05 1983-07-05 Colorimetric device of surface of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12219583A JPS6014132A (en) 1983-07-05 1983-07-05 Colorimetric device of surface of moving object

Publications (1)

Publication Number Publication Date
JPS6014132A true JPS6014132A (en) 1985-01-24

Family

ID=14829914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12219583A Pending JPS6014132A (en) 1983-07-05 1983-07-05 Colorimetric device of surface of moving object

Country Status (1)

Country Link
JP (1) JPS6014132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279191A2 (en) * 1987-01-22 1988-08-24 Firma Carl Zeiss Device for contactless measurement of remission
JPH01201125A (en) * 1988-02-06 1989-08-14 Suga Shikenki Kk Minute surface spectral colorimeter
US9976949B2 (en) 2013-07-18 2018-05-22 Perkinelmer Singapore Pte Limited Diffuse reflectance infrared Fourier transform spectroscopy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138389A (en) * 1977-05-10 1978-12-02 Nippon Kokan Kk Detecting method of surface flaws
JPS547470A (en) * 1977-06-20 1979-01-20 Mitsubishi Mining & Cement Co Light complex article and its manufacture
JPS5410786A (en) * 1977-06-25 1979-01-26 Ritsuo Hasumi Continuous inspection device for surface color
JPS5752806A (en) * 1980-09-16 1982-03-29 Ricoh Co Ltd Method and device for measuring film thickness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138389A (en) * 1977-05-10 1978-12-02 Nippon Kokan Kk Detecting method of surface flaws
JPS547470A (en) * 1977-06-20 1979-01-20 Mitsubishi Mining & Cement Co Light complex article and its manufacture
JPS5410786A (en) * 1977-06-25 1979-01-26 Ritsuo Hasumi Continuous inspection device for surface color
JPS5752806A (en) * 1980-09-16 1982-03-29 Ricoh Co Ltd Method and device for measuring film thickness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279191A2 (en) * 1987-01-22 1988-08-24 Firma Carl Zeiss Device for contactless measurement of remission
JPH01201125A (en) * 1988-02-06 1989-08-14 Suga Shikenki Kk Minute surface spectral colorimeter
US9976949B2 (en) 2013-07-18 2018-05-22 Perkinelmer Singapore Pte Limited Diffuse reflectance infrared Fourier transform spectroscopy
US10473584B2 (en) 2013-07-18 2019-11-12 Perkinelmer Singapore Pte Limited Diffuse reflectance infrared Fourier transform spectroscopy
US11156549B2 (en) 2013-07-18 2021-10-26 Perkinelmer Singapore Pte Limited Diffuse reflectance infrared fourier transform spectroscopy

Similar Documents

Publication Publication Date Title
US8233147B2 (en) Spectrometer and a method for controlling the spectrometer
US10066990B2 (en) Spatially variable filter systems and methods
US7646489B2 (en) Apparatus and method for measuring film thickness
US20180238735A1 (en) Spatially variable light source and spatially variable detector systems and methods
CN105203460A (en) Infrared laser spectrum system for detecting trace quantity of water steam, and detection method thereof
JPS58103604A (en) Method and device for measuring thickness of film
US6495831B1 (en) Method and apparatus for measuring properties of paper
EP0176826A2 (en) Method and apparatus for dual-beam spectral transmission measurements
JPS5957123A (en) Apparatus for measuring surface color of moving object
JPS6014132A (en) Colorimetric device of surface of moving object
JPH07198597A (en) Photoelectric measuring instrument
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
JPH0546885B2 (en)
JPS6175203A (en) Apparatus for measuring thickness of film
JP2702885B2 (en) Optical measuring method and optical measuring device
KR100205532B1 (en) Moisture measuring apparatus
JPH04313007A (en) Film inspecting device
JPS6183922A (en) Spectrometric apparatus of colorimetry
JPH03200027A (en) Radiation thermometer
JPH0540422Y2 (en)
JPS6114528A (en) Measuring method of temperature using optical fiber
JPS6242036A (en) Yellowing degree detecting device for leaf tobacco
Chen et al. Spectrophotometer Design Using Single-Grating, Single-Sensor, Double-Beam Spectroscope
JP2507820B2 (en) Spectrometer
JPH0415408B2 (en)