JPS6230868B2 - - Google Patents

Info

Publication number
JPS6230868B2
JPS6230868B2 JP55121771A JP12177180A JPS6230868B2 JP S6230868 B2 JPS6230868 B2 JP S6230868B2 JP 55121771 A JP55121771 A JP 55121771A JP 12177180 A JP12177180 A JP 12177180A JP S6230868 B2 JPS6230868 B2 JP S6230868B2
Authority
JP
Japan
Prior art keywords
slope
voltage
current
welding
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55121771A
Other languages
Japanese (ja)
Other versions
JPS5747582A (en
Inventor
Takayuki Kashima
Kinji Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP12177180A priority Critical patent/JPS5747582A/en
Publication of JPS5747582A publication Critical patent/JPS5747582A/en
Publication of JPS6230868B2 publication Critical patent/JPS6230868B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 本発明は、溶接電圧または電流をあるレベルか
ら他のレベルへ連続的に所定の時間で移行させる
スロープ制御機能を備えた溶接機出力制御装置の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a welding machine output control device having a slope control function for continuously transitioning a welding voltage or current from one level to another at a predetermined time.

アーク溶接機、特にTIG溶接機においては、溶
接開始時の薄板母材の溶け落ち防止、あるいは溶
接終了時の急激な入熱変化による溶接部のわれや
ブローホールの発生防止のため、溶接開始時アー
クを小電流で発生させた後、溶接電流を定常値ま
で徐々に増加させ、溶接終了時には溶接電流を定
常値からクレータ処理に必要な小電流まで徐々に
減少させるスロープ制御が必要である。第1図A
はその代表的な例を示すタイムチヤートで、IS
はスタート電流、IWは主溶接電流、ICはクレー
タ電流、tuは上昇スロープ時間、tdは下降スロ
ープ時間である。第1図Bは主溶接電流を低周波
(1〜10Hz程度)のパルス状に変化させて溶接の
入熱を制御する、いわゆるローパルス溶接にスロ
ープ制御を適用した場合のタイムチヤートで、I
Pは主溶接電流のピーク電流値、IBはベース電流
値、他の記号は第1図Aと同様である。
Arc welding machines, especially TIG welding machines, use a Slope control is required to generate an arc with a small current, then gradually increase the welding current to a steady-state value, and then gradually decrease the welding current from the steady-state value to the small current required for crater treatment when welding is complete. Figure 1A
is a time chart showing a typical example.
is the start current, I W is the main welding current, I C is the crater current, t u is the upward slope time, and t d is the downward slope time. Figure 1B is a time chart when slope control is applied to so-called low-pulse welding, in which the main welding current is changed in a low-frequency (approximately 1 to 10Hz) pulse to control the welding heat input.
P is the peak current value of the main welding current, I B is the base current value, and other symbols are the same as in FIG. 1A.

従来のスロープ制御機能を備えた溶接機出力制
御装置の構成および作用を第2図について説明す
ると、1は溶接変圧器で、三相△形などに結線さ
れており、その出力は電流制御素子2および電流
検出素子3を通して溶接負荷4へ供給される。電
流制御素子2としては、たとえばサイリスタが使
用され、点弧信号発生回路6によつて位相制御さ
れる。電流検出素子3は溶接電流に比例した出力
を発生し、その出力は増幅器5で電圧信号に変換
され、これがフイードバツク信号となる。この信
号と溶接電流を設定する目標値信号V0との差の
信号を誤差増幅器8により非反転増幅し、その出
力を点弧信号発生回路6に加えて溶接電流を目標
値と一致するようにフイードバツク制御する。し
たがつて、目標値信号V0を変えれば、それに対
応して溶接電流が変化する。7は定電圧直流電
源、9,10,11,12は誤差増幅器8の周辺
抵抗であり、誤差増幅器8は直流電源7の負側を
基準電位として作動する。
The structure and operation of a conventional welding machine output control device with a slope control function will be explained with reference to FIG. and is supplied to the welding load 4 through the current detection element 3. For example, a thyristor is used as the current control element 2, and its phase is controlled by the ignition signal generation circuit 6. The current detection element 3 generates an output proportional to the welding current, and the output is converted into a voltage signal by an amplifier 5, which becomes a feedback signal. The signal of the difference between this signal and the target value signal V 0 for setting the welding current is non-inverted amplified by the error amplifier 8, and its output is applied to the ignition signal generation circuit 6 so that the welding current matches the target value. Feedback control. Therefore, if the target value signal V 0 is changed, the welding current will change accordingly. 7 is a constant voltage DC power supply; 9, 10, 11, and 12 are peripheral resistances of the error amplifier 8; the error amplifier 8 operates with the negative side of the DC power supply 7 as a reference potential.

13は目標値信号発生部、14はその前段のス
ロープ信号発生部、15,16はこれら両部分の
電源となる定電圧直流電源で、両電源の中間接続
点を基準電位0Vとして直流電源15は正電位+
Vを、直流電源16は負電位−Vを供給する。
13 is a target value signal generation section, 14 is a slope signal generation section in the preceding stage, and 15 and 16 are constant voltage DC power supplies that power these two parts. Positive potential +
V, and the DC power supply 16 supplies negative potential -V.

目標値信号発生部13は、溶接電流調整抵抗1
7,18と電流増幅用トランジスタ19,20お
よび抵抗21,22,23,24から構成され、
溶接電流調整抵抗17,18の摺動子間の電圧を
目標値信号V0としている。
The target value signal generating section 13 includes a welding current adjusting resistor 1
7, 18, current amplification transistors 19, 20, and resistors 21, 22, 23, 24,
The voltage between the sliders of the welding current adjusting resistors 17 and 18 is set as the target value signal V 0 .

スロープ信号発生部14はスロープ時間調整抵
抗25、スロープ開始用スイツチ素子26、演算
増幅器27、コンデンサ28を主要素として構成
され、演算増幅器27はコンデンサ28とともに
積分器として働く。演算増幅器27の出力は常時
0Vとなつており、スイツチ素子26が閉じる
と、スロープ時間調整抵抗25から負の電圧を受
けて演算増幅器27の出力電圧は直線的に上昇
し、出力端に0Vから演算増幅器27の正の飽和
電圧(+Vにほぼ等しい)まで達するスロープ信
号が得られる。この時間はスロープ時間調整抵抗
25により変えることができる。29は積分器リ
セツト用スイツチ素子、30〜34は周辺抵抗で
ある。
The slope signal generating section 14 is mainly composed of a slope time adjustment resistor 25, a slope start switch element 26, an operational amplifier 27, and a capacitor 28. The operational amplifier 27 works together with the capacitor 28 as an integrator. The output of the operational amplifier 27 is always 0V, and when the switch element 26 closes, the output voltage of the operational amplifier 27 increases linearly due to the negative voltage from the slope time adjustment resistor 25, and the output voltage from 0V to the output terminal increases. A slope signal is obtained that reaches the positive saturation voltage of operational amplifier 27 (approximately equal to +V). This time can be changed by the slope time adjustment resistor 25. 29 is a switch element for resetting the integrator, and 30 to 34 are peripheral resistors.

目標値信号発生部13のトランジスタ19,2
0は演算増幅器27から抵抗21,22を通して
供給されるスロープ信号の電流増幅を行なう。こ
こで、両トランジスタ19,20の特性が同一
で、エミツタ抵抗23,24の値が等しいと考え
れば、両トランジスタのエミツタ側のa点とb点
は同電位となるので、溶接電流調整抵抗17,1
8は等価的に直流電源15の両端間に直列に接続
され、その中間点であるa点とb点にスロープ信
号が加えられたことになる。したがつて、演算増
幅器27の出力が0であるスロープ開始前の状態
では、溶接電流調整抵抗18にかかる電圧は0
で、溶接電流調整抵抗17に直流電源15の全電
圧が印加され、目標値信号V0はこの抵抗17の
分圧のみによつて決まり、これが、たとえば主溶
接電流〔第1図AのIW〕を設定する目標値信号
となる。
Transistors 19 and 2 of target value signal generation section 13
0 performs current amplification of the slope signal supplied from the operational amplifier 27 through the resistors 21 and 22. Here, if we consider that the characteristics of both transistors 19 and 20 are the same and the values of emitter resistors 23 and 24 are equal, points a and b on the emitter side of both transistors will have the same potential, so welding current adjustment resistor 17 ,1
8 is equivalently connected in series between both ends of the DC power supply 15, and a slope signal is applied to points a and b, which are the intermediate points. Therefore, in the state before the slope starts when the output of the operational amplifier 27 is 0, the voltage applied to the welding current adjustment resistor 18 is 0.
Then, the full voltage of the DC power supply 15 is applied to the welding current adjusting resistor 17, and the target value signal V 0 is determined only by the partial voltage of this resistor 17 . ) becomes the target value signal for setting.

一方、演算増幅器27の出力が飽和状態となつ
たスロープ上昇後には、溶接電流調整抵抗17に
かかる電圧はほぼ0となり、溶接電流調整抵抗1
8に直流電源15のほぼ全電圧が印加されるの
で、目標値信号V0はこの抵抗18の分圧のみに
よつて決まり、これが、たとえばクレータ電流
〔第1図AのIC〕を設定する目標値信号となる。
On the other hand, after the slope rises when the output of the operational amplifier 27 reaches a saturated state, the voltage applied to the welding current adjustment resistor 17 becomes almost 0, and the welding current adjustment resistor 1
Since almost the entire voltage of the DC power source 15 is applied to 8, the setpoint value signal V 0 is determined only by the partial voltage of this resistor 18, which sets, for example, the crater current [I C in FIG. 1A]. This becomes the target value signal.

スロープの途中では、抵抗17による分圧(抵
抗17の摺動子とa点との間の電圧)は徐々に小
さく、抵抗18による分圧(抵抗18の摺動子と
b点との間の電圧)は徐々に大きく変化し、V0
はこの両者の和になる。結局、V0は抵抗17の
みで決まる分圧電圧から抵抗18のみで決まる分
圧電圧へ連続的に変化し、溶接電流もこれに従つ
て主溶接電流からクレータ電流へ連続的に所定の
時間〔第1図Aのtd〕で移行する。
In the middle of the slope, the voltage divided by the resistor 17 (the voltage between the slider of the resistor 17 and point a) gradually decreases, and the voltage divided by the resistor 18 (the voltage between the slider of the resistor 18 and point b) gradually decreases. voltage) gradually changes significantly until V 0
is the sum of these two. In the end, V 0 changes continuously from the divided voltage determined only by the resistor 17 to the divided voltage determined only by the resistor 18, and the welding current also changes continuously from the main welding current to the crater current for a predetermined period of time. t d ] in FIG. 1A.

しかしながら、上述した従来の回路構成では、
溶接電流調整抵抗17,18の摺動子間より目標
値信号V0をとつているため、誤差増幅器8の基
準電位と目標値信号発生部13およびスロープ信
号発生部14の基準電位を共通にすることができ
ず、それぞれの電源を7,15,16のように別
に設ける必要がある。図面には簡略して示した
が、これら電源としては独立した直流安定化電源
が必要であり、電源の数が多くなればそれだけコ
スト高になる。
However, in the conventional circuit configuration described above,
Since the target value signal V 0 is obtained from between the sliders of the welding current adjusting resistors 17 and 18, the reference potential of the error amplifier 8 and the reference potential of the target value signal generator 13 and the slope signal generator 14 are made common. Therefore, it is necessary to provide separate power supplies for each of the power supplies 7, 15, and 16. Although shown in the drawings in a simplified manner, these power supplies require independent DC stabilized power supplies, and the larger the number of power supplies, the higher the cost.

また、スロープ信号の電流増幅用として2個の
トランジスタ19,20を用いているため、目標
値信号V0の精度を上げるためにはこれらトラン
ジスタの温度特性などを合わせる必要があり、図
示の回路以外に温度補償回路などの付加的要素が
必要で、回路が複雑化し、部品点数も多くなる。
In addition, since two transistors 19 and 20 are used for current amplification of the slope signal, it is necessary to match the temperature characteristics of these transistors in order to increase the accuracy of the target value signal V 0 . requires additional elements such as a temperature compensation circuit, which increases the complexity of the circuit and the number of parts.

なお、上記説明では1つのスロープのみについ
て述べたが、溶接開始時の上昇スロープと溶接終
了時の下降スロープの両方を必要とする場合には
上述の目標値信号発生部13とスロープ信号発生
部14をもう1組設けて切換え動作させる必要が
あり、それに加えて第1図Bのように主溶接電流
を周期的に大小に変化させてローパルス溶接など
を行なう場合には回路がさらに複雑になる。
Although only one slope has been described in the above description, if both an upward slope at the start of welding and a downward slope at the end of welding are required, the above-mentioned target value signal generator 13 and slope signal generator 14 are required. It is necessary to provide one more set of welding circuits for switching operation, and in addition, when performing low pulse welding by periodically changing the main welding current in magnitude as shown in FIG. 1B, the circuit becomes even more complicated.

本発明は上記の点にかんがみてなされたもの
で、部品点数の少い簡単で経済的な回路構成によ
り精度の良いスロープ制御ができる溶接機出力制
御装置を提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a welding machine output control device that can perform slope control with high precision using a simple and economical circuit configuration with a small number of parts.

上記目的を達成するため本発明では、基準電位
線と所定の電圧源との間に直列に接続された少く
とも2個の溶接電圧または電流調整抵抗を備え、
上記2個の調整抵抗の中間点を基準電位に対し0
Vから所定の電圧に、またはその逆に連続的に変
化するスロープ信号発生部の出力線に接続し、上
記2個の調整抵抗の摺動子間の電圧を差動増幅器
に入力し、この差動増幅器の出力を目標値信号と
して溶接電圧または電流を制御するようにしたも
のである。
In order to achieve the above object, the present invention includes at least two welding voltage or current regulating resistors connected in series between a reference potential line and a predetermined voltage source,
The midpoint of the above two adjustment resistors is 0 with respect to the reference potential.
Connect to the output line of the slope signal generator that changes continuously from V to a predetermined voltage or vice versa, input the voltage between the sliders of the two adjustment resistors to the differential amplifier, and calculate this difference. The welding voltage or current is controlled using the output of the dynamic amplifier as a target value signal.

以下、本発明の実施例を図面によつて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例の回路構成を示す図
で、溶接変圧器1、電流制御素子2、電流検出素
子3、負荷4、増幅部5、点弧信号発生回路6、
誤差増幅器8、抵抗9〜12により構成されるフ
イードバツク制御系、およびスロープ時間調整抵
抗25、スロープ開始用スイツチ素子26、演算
増幅器27、コンデンサ28、積分器リセツト用
スイツチ素子29、抵抗30〜34により構成さ
れるスロープ信号発生部14の機能は第2図の従
来例と同様であり、その説明を省略する。
FIG. 3 is a diagram showing a circuit configuration of an embodiment of the present invention, which includes a welding transformer 1, a current control element 2, a current detection element 3, a load 4, an amplification section 5, an ignition signal generation circuit 6,
A feedback control system consisting of an error amplifier 8, resistors 9 to 12, a slope time adjustment resistor 25, a slope start switch element 26, an operational amplifier 27, a capacitor 28, an integrator reset switch element 29, and resistors 30 to 34. The function of the constructed slope signal generating section 14 is the same as that of the conventional example shown in FIG. 2, and the explanation thereof will be omitted.

従来例と異なり目標値信号発生部13は、第1
の溶接電流調整抵抗17と第2の溶接電流調整抵
抗18を電源の正電位線+Vと基準電位線0Vと
の間に直列に接続し、両抵抗17,18の中間点
cを前段のスロープ信号発生部14の演算増幅器
27からの出力線に接続し、両抵抗17,18の
摺動子間の電圧V1を差動増幅器35に入力し、
この差動増幅器35の出力電圧V0をフイードバ
ツク制御系の目標値信号とするように構成されて
いる。36〜39は差動増幅器35の周辺抵抗、
40,41は溶接電流調整抵抗17,18に直列
接続された固定抵抗である。
Unlike the conventional example, the target value signal generating section 13
The welding current adjustment resistor 17 and the second welding current adjustment resistor 18 are connected in series between the positive potential line +V of the power supply and the reference potential line 0V, and the midpoint c between both resistors 17 and 18 is connected to the slope signal of the previous stage. It is connected to the output line from the operational amplifier 27 of the generator 14, and the voltage V 1 between the sliders of both resistors 17 and 18 is inputted to the differential amplifier 35.
The output voltage V 0 of the differential amplifier 35 is configured to be used as a target value signal for the feedback control system. 36 to 39 are peripheral resistances of the differential amplifier 35;
Fixed resistors 40 and 41 are connected in series with the welding current adjusting resistors 17 and 18.

この構成によれば、目標値信号V0は基準電位
0Vに対する電圧となるので、誤差増幅器8と目
標値信号発生部13およびスロープ信号発生部1
4の基準電位線を共通とすることができ、したが
つて直流電源15,16も共通に使用できる。
According to this configuration, since the target value signal V 0 is a voltage with respect to the reference potential 0V, the error amplifier 8, the target value signal generator 13 and the slope signal generator 1
The four reference potential lines can be used in common, and therefore the DC power supplies 15 and 16 can also be used in common.

上記構成において、演算増幅器27の出力電圧
V2が0であるスロープ開始前の状態では、第2
の溶接電流調整抵抗18にかかる電圧が0である
ため、差動増幅器35の入力端子間に加わる電圧
V1は第1の溶接電流調整抵抗17の分圧のみに
よつて決まり、このとき差動増幅器35から出力
される電圧V0が、たとえば主溶接電流〔第1図
AのIW〕を設定する目標値信号となる。
In the above configuration, the output voltage of the operational amplifier 27
In the state before the start of the slope when V 2 is 0, the second
Since the voltage applied to the welding current adjustment resistor 18 is 0, the voltage applied between the input terminals of the differential amplifier 35
V 1 is determined only by the partial voltage of the first welding current adjusting resistor 17, and the voltage V 0 output from the differential amplifier 35 at this time sets the main welding current [I W in FIG. 1A], for example. This becomes the target value signal.

一方、演算増幅器27の出力が正の飽和電圧に
達したスロープ上昇後の状態では、c点の電位が
ほぼ+Vとなるため、第1の溶接電流調整抵抗1
7にかかる電圧はほぼ0で、差動増幅器35に入
力される電圧V1は第2の溶接電流調整抵抗18
の分圧のみによつて決まり、このときの差動増幅
器35の出力電圧V0が、たとえばクレータ電流
〔第1図AのIC〕を設定する目標値信号となる。
On the other hand, in the state after the slope rises when the output of the operational amplifier 27 reaches the positive saturation voltage, the potential at point c becomes approximately +V, so the first welding current adjustment resistor 1
7 is approximately 0, and the voltage V1 input to the differential amplifier 35 is applied to the second welding current adjustment resistor 18.
The output voltage V 0 of the differential amplifier 35 at this time becomes a target value signal for setting, for example, the crater current [I C in FIG. 1A].

スロープの途中では、抵抗17による分圧は
徐々に小さく、抵抗18による分圧は徐々に大き
く変化し、この両者の和がV1になるので、V1
抵抗17のみによつて決まる分圧電圧から抵抗1
8のみによつて決まる分圧電圧へ連続的に変化
し、これに対応する目標値信号V0の変化によつ
て溶接電流は主溶接電流からクレータ電流へ連続
的に変化する。スタート電流〔第1図AのIS
から主溶接電流への上昇スロープの目標値信号も
同様の回路によつて得ることができる。
In the middle of the slope, the voltage divided by the resistor 17 gradually becomes smaller, and the voltage divided by the resistor 18 gradually changes to a larger value.The sum of both becomes V1 , so V1 is the divided voltage determined only by the resistor 17. voltage to resistance 1
The welding current changes continuously from the main welding current to the crater current due to the corresponding change in the target value signal V 0 . Starting current [I S in Figure 1 A]
A setpoint signal for the rising slope from to the main welding current can also be obtained by a similar circuit.

第4図は本発明の他の実施例図で、上昇スロー
プ、下降スロープ、およびローパルス溶接に必要
な主溶接電流の周期的変化などの各種電流制御が
1組の回路によつてできるようにしたものであ
る。第4図中、第3図と対応する部分は同一符号
を付して示す。
FIG. 4 shows another embodiment of the present invention, in which various current controls such as ascending slope, descending slope, and periodic variation of the main welding current necessary for low pulse welding can be performed by one set of circuits. It is something. In FIG. 4, parts corresponding to those in FIG. 3 are designated by the same reference numerals.

本実施例では電源の数をさらに減らし、1個の
直流電源15を共用している。
In this embodiment, the number of power supplies is further reduced, and one DC power supply 15 is shared.

目標値信号発生部13は、基本的には第3図の
実施例と同様であるが、上昇スロープ時と下降ス
ロープ時の溶接電流設定値の切換え、およびロー
パルス溶接時のピーク電流値とベース電流値の切
換えを可能とするため、第1、第2の溶接電流調
整抵抗17,18とそれぞれ並列に第3、第4の
溶接電流調整抵抗42,43が接続され、このう
ち抵抗17と抵抗42の摺動子は電流切換信号発
生部48からの信号によりオンオフ動作するアナ
ログスイツチ44,45を介して差動増幅器35
の非反転入力側に切換え接続され、抵抗18と抵
抗43の摺動子は電流切換信号発生部49からの
信号によりオンオフ動作するアナログスイツチ4
6,47を介して差動増幅器35の反転入力側に
切換え接続されるようになつている。これらのア
ナログスイツチ44〜47は抵抗17と抵抗42
の電源側、抵抗18と抵抗43のアース側に接続
してもよい。
The target value signal generating section 13 is basically the same as the embodiment shown in FIG. 3, but it is capable of switching the welding current set value during upward slope and downward slope, and between the peak current value and base current during low pulse welding. To enable switching of values, third and fourth welding current adjusting resistors 42 and 43 are connected in parallel with the first and second welding current adjusting resistors 17 and 18, respectively. The slider is connected to the differential amplifier 35 via analog switches 44 and 45 which are turned on and off by a signal from the current switching signal generator 48.
The analog switch 4 is connected to the non-inverting input side of the analog switch 4, and the sliders of the resistor 18 and the resistor 43 are turned on and off by a signal from the current switching signal generator 49.
6 and 47 to the inverting input side of the differential amplifier 35. These analog switches 44 to 47 are connected to resistors 17 and 42.
It may be connected to the power supply side of the resistor 18 and the ground side of the resistor 43.

スロープ信号は演算増幅器27とコンデンサ2
8から構成される積分器でつくられるが、上昇ス
ロープと下降スロープの切換えのため、演算増幅
器27の反転入力端子にはスロープ時間調整抵抗
50,51とダイオード52,53の直列回路が
逆並列に接続され、また演算増幅器27の非反転
入力端子には電源電圧+Vを抵抗32と抵抗56
で分圧して印加している。ダイオード52のアノ
ード側とダイオード53のカソード側は抵抗3
3,34の中間点に接続され、さらにダイオード
54を介してスロープ開始信号発生部55に接続
されている。
The slope signal is generated by the operational amplifier 27 and the capacitor 2.
However, in order to switch between an upward slope and a downward slope, a series circuit of slope time adjustment resistors 50, 51 and diodes 52, 53 is connected in anti-parallel to the inverting input terminal of the operational amplifier 27. Also, the power supply voltage +V is connected to the non-inverting input terminal of the operational amplifier 27 through the resistors 32 and 56.
The voltage is applied after being divided into parts. The anode side of the diode 52 and the cathode side of the diode 53 are connected to the resistor 3.
3 and 34, and further connected to a slope start signal generating section 55 via a diode 54.

スロープ開始信号発生部55の出力を常時ロー
レベル0Vとすると、ダイオード53がオン、ダ
イオード52がオフとなるため、演算増幅器27
の非反転入力端子を電位が反転入力端子の電位よ
り高くなり、演算増幅器27の出力は正の飽和電
圧に達している。
When the output of the slope start signal generator 55 is always at a low level of 0V, the diode 53 is turned on and the diode 52 is turned off, so that the operational amplifier 27
The potential at the non-inverting input terminal becomes higher than the potential at the inverting input terminal, and the output of the operational amplifier 27 has reached a positive saturation voltage.

演算増幅器57の非反転入力端子は抵抗58を
介して電源の正電位線+Vに接続され、反転入力
端子は抵抗59を介して基準電位線0Vに接続さ
れており、その出力は常に正に飽和している。演
算増幅器27と演算増幅器57の飽和電圧はほぼ
等しく、演算増幅器27の出力線に接続された中
間点cと演算増幅器57の出力線に接続された抵
抗40の電源側端はほぼ同電位となるので、溶接
電流調整抵抗17,42には電圧がほとんどかか
らない。この状態では、溶接電流調整抵抗18,
43にのみ分圧が生じている。この分圧はアナロ
グスイツチ46,47により選択的に取り出すこ
とができ、たとえばアナログスイツチ45,47
をオンにした場合、抵抗17と抵抗18の摺動子
間より取り出された電圧V1が差動増幅器35に
入力され、その出力V0が、たとえばスタート電
流(IS)を設定する目標値信号となる。
The non-inverting input terminal of the operational amplifier 57 is connected to the positive potential line +V of the power supply via a resistor 58, and the inverting input terminal is connected to the reference potential line 0V via a resistor 59, so that its output is always positively saturated. are doing. The saturation voltages of the operational amplifier 27 and the operational amplifier 57 are approximately equal, and the intermediate point c connected to the output line of the operational amplifier 27 and the power supply side end of the resistor 40 connected to the output line of the operational amplifier 57 have approximately the same potential. Therefore, almost no voltage is applied to the welding current adjusting resistors 17 and 42. In this state, welding current adjustment resistor 18,
A partial pressure is generated only at 43. This partial pressure can be selectively taken out by analog switches 46 and 47, for example, by analog switches 45 and 47.
When turned on, the voltage V 1 taken out between the slider of the resistor 17 and the resistor 18 is input to the differential amplifier 35, and its output V 0 is used as the target value for setting the starting current ( IS ), for example. It becomes a signal.

次に、スロープ信号発生部55の出力がハイレ
ベル+Vに変わると、ダイオード52、スロープ
時間調整抵抗50を通じて流れる電流により演算
増幅器27が積分器として動作し、出力V2は正
の飽和電圧から0Vへ徐々に変化する。出力V2
が0Vとなると、抵抗17と抵抗42にのみ演算
増幅器57の飽和電圧が印加され、これら両抵抗
による分圧はアナログスイツチ44,45により
選択的に取り出すことができる。たとえばアナロ
グスイツチ45,47がオンの状態では、抵抗1
7と抵抗18の摺動子間より取り出された電圧
V1が演算増幅器35に入力され、その出力V0
が、たとえば主溶接電流(IW)を設定する目標
値信号となる。
Next, when the output of the slope signal generator 55 changes to a high level +V, the operational amplifier 27 operates as an integrator due to the current flowing through the diode 52 and the slope time adjustment resistor 50, and the output V 2 changes from the positive saturation voltage to 0V. gradually change to Output V2
When becomes 0V, the saturation voltage of the operational amplifier 57 is applied only to the resistor 17 and the resistor 42, and the voltage divided by these two resistors can be selectively taken out by the analog switches 44 and 45. For example, when the analog switches 45 and 47 are on, the resistor 1
Voltage extracted from between the sliders of 7 and resistor 18
V 1 is input to the operational amplifier 35, and its output V 0
becomes a target value signal for setting, for example, the main welding current (I W ).

この演算増幅器27の出力が正の飽和電圧から
0Vに変化する過程を上昇スロープとして、溶接
電流はスタート電流(IS)から主溶接電流(I
W)へ連続的に移行し、その時間(tu)はスロー
プ時間調整抵抗50によつて変えることができ
る。
The welding current changes from the start current (I S ) to the main welding current (I
W ), the time (t u ) of which can be varied by the slope time adjustment resistor 50 .

スロープ開始信号発生部55の出力を再びロー
レベルにし、電流切換信号発生部49によりアナ
ログスイツチ46を閉じ、アナログスイツチ47
を開くと、スロープ時間調整抵抗51とダイオー
ド53を通じてコンデンサ28が放電し、演算増
幅器27の出力電圧V2は0Vから徐々に上昇し
て正の飽和電圧に達する。このとき、差動増幅器
35の入力電圧V1は抵抗17による分圧から抵
抗43による分圧に向つて連続的に変化し、抵抗
43による分圧で差動増幅器35に生じる出力電
圧V0がクレータ電流(IC)を設定する目標値信
号となる。すなわち溶接電流は主溶接電流(I
W)からクレータ電流(IC)へ連続的に変化する
下降スロープとなり、その時間(td)はスロー
プ時間調整抵抗51によつて変えることができ
る。
The output of the slope start signal generator 55 is set to low level again, the analog switch 46 is closed by the current switching signal generator 49, and the analog switch 47 is closed.
When opened, the capacitor 28 is discharged through the slope time adjustment resistor 51 and the diode 53, and the output voltage V 2 of the operational amplifier 27 gradually increases from 0V to reach a positive saturation voltage. At this time, the input voltage V 1 of the differential amplifier 35 changes continuously from the voltage divided by the resistor 17 to the voltage divided by the resistor 43, and the output voltage V 0 generated in the differential amplifier 35 due to the voltage divided by the resistor 43 becomes This becomes a target value signal for setting the crater current (I C ). In other words, the welding current is the main welding current (I
The downward slope continuously changes from W ) to the crater current (I C ), and the time (t d ) can be changed by the slope time adjustment resistor 51.

第5図は以上述べた各部の動作をタイムチヤー
トで示したものである。
FIG. 5 is a time chart showing the operation of each part described above.

第4図の実施例のように、スロープ信号発生部
14の積分器の入力をハイレベルとローレベルに
切換える構成とすれば、1つの積分器により上昇
スロープと下降スロープの両方のスロープ信号が
得られ、回路を大幅に簡略化できるとともに、積
分器入力回路の無接点化が可能となり、信頼性を
高めることができる。
If the input of the integrator of the slope signal generator 14 is switched between high level and low level as in the embodiment shown in FIG. As a result, the circuit can be greatly simplified, and the integrator input circuit can be made contactless, improving reliability.

さらに第4図の実施例では、上昇スロープ終了
後、電流切換信号発生部48の信号レベルを周期
的に変化させ、アナログスイツチ44,45を交
互にオンオフさせることにより、第1図Bに示し
たようなローパルス溶接用の目標値信号を得るこ
ともできる。ここで、たとえば42をピーク電流
値(IP)の調整抵抗、17をベース電流値(I
B)の調整抵抗として用いる。
Furthermore, in the embodiment shown in FIG. 4, after the upward slope ends, the signal level of the current switching signal generator 48 is periodically changed, and the analog switches 44 and 45 are turned on and off alternately. It is also possible to obtain a target value signal for low pulse welding. Here, for example, 42 is the adjustment resistor for the peak current value (I P ), and 17 is the base current value (I P ).
B ) Used as an adjustment resistor.

積分器として用いる演算増幅器27の飽和電圧
は増幅器の内部電圧降下により電源電圧+Vと正
確には一致しない。このため、第4図の実施例で
は演算増幅器27と同一特性を持つ演算増幅器5
7を所定の電圧源として用い、この演算増幅器5
7の飽和電圧を固定抵抗40の電源側端に加える
ことにより、回路の調整をしなくても目標値信号
の精度を上げられるようにしているが、演算増幅
器27の飽和電圧と一致するように電圧調整され
た別の直流電源を所定の電圧源として用いてもよ
く、また電流制御にそれほど精度を必要としない
場合は、第3図の実施例のように直流電源15の
電圧+Vをそのまま固定抵抗40の電源側端に印
加してもよい。
The saturation voltage of the operational amplifier 27 used as an integrator does not exactly match the power supply voltage +V due to the internal voltage drop of the amplifier. Therefore, in the embodiment shown in FIG. 4, the operational amplifier 5 having the same characteristics as the operational amplifier 27 is
7 as a predetermined voltage source, this operational amplifier 5
By applying the saturation voltage of 7 to the power supply side end of the fixed resistor 40, it is possible to improve the accuracy of the target value signal without adjusting the circuit. Another voltage-adjusted DC power supply may be used as the predetermined voltage source, or if current control does not require much precision, the voltage +V of the DC power supply 15 may be fixed as is, as in the embodiment shown in Fig. 3. It may also be applied to the power supply side end of the resistor 40.

上記実施例ではフイードバツク方式によるスロ
ープ制御について述べたが、上記目標値信号を用
いればオープンループでのスロープ制御も可能で
ある。また、本発明は電流制御だけでなく電圧制
御にも同様に適用することができる。
In the above embodiment, slope control using a feedback method has been described, but open-loop slope control is also possible by using the target value signal. Moreover, the present invention can be applied not only to current control but also to voltage control.

以上説明したように本発明では、基準電位線と
所定の電圧源との間に直列接続された少くとも2
個の溶接電圧または電流調整抵抗の中間点にスロ
ープ信号を加え、上記2個の調整抵抗の摺動子間
の電圧を差動増幅器により増幅して目標値信号に
変換するようにしたので、制御回路内の基準電位
線を共通とすることができ、これにより第2図の
従来例では3個必要とした直流電源を第3図の実
施例では2個に、第4図の実施例では1個に減ら
すことが可能となり、回路を簡略化してコストダ
ウンがはかれる。また、スロープ信号の電流増幅
のため各調整抵抗に個々にトランジスタを接続す
ることをせず、1つの部品としてIC化された差
動増幅器をもつて代えることができるので、特別
な温度補償回路などを付加しなくても温度特性の
良い高精度のスロープ制御用目標値信号が得られ
るという効果がある。
As explained above, in the present invention, at least two
A slope signal is applied to the midpoint of the two welding voltage or current adjusting resistors, and the voltage between the sliders of the two adjusting resistors is amplified by a differential amplifier and converted into a target value signal. The reference potential line in the circuit can be shared, and as a result, the conventional example shown in Fig. 2 requires three DC power supplies, but the embodiment shown in Fig. 3 reduces the number to two, and the embodiment shown in Fig. 4 reduces the number to one. This makes it possible to simplify the circuit and reduce costs. In addition, since it is not necessary to connect individual transistors to each adjustment resistor to amplify the current of the slope signal, it can be replaced with a differential amplifier integrated as an IC as a single component, so a special temperature compensation circuit, etc. This has the effect that a highly accurate target value signal for slope control with good temperature characteristics can be obtained without adding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bはスロープ制御の例を示すタイム
チヤート、第2図はスロープ制御機能を備えた溶
接機出力制御装置の従来例の回路図、第3図およ
び第4図は本発明の異なる実施例を示す回路図、
第5図は第4図の各部の動作を示すタイムチヤー
トである。 1……溶接変圧器、2……電流制御素子、3…
…電流検出素子、4……溶接負荷、8……誤差増
幅器、13……目標値信号発生部、14……スロ
ープ信号発生部、17,18,42,43……溶
接電流調整抵抗、35……差動増幅器、27……
積分器を構成する演算増幅器、28……積分用コ
ンデンサ、55……スロープ開始信号発生部、1
5……所定の電圧源の一例である直流電源、57
……所定の電圧源の他の例である演算増幅器、0
V……基準電位線。
Figures 1A and 4 are time charts showing examples of slope control, Figure 2 is a circuit diagram of a conventional example of a welding machine output control device equipped with a slope control function, and Figures 3 and 4 are different diagrams of the present invention. A circuit diagram showing an example,
FIG. 5 is a time chart showing the operation of each part in FIG. 4. 1... Welding transformer, 2... Current control element, 3...
... Current detection element, 4 ... Welding load, 8 ... Error amplifier, 13 ... Target value signal generation section, 14 ... Slope signal generation section, 17, 18, 42, 43 ... Welding current adjustment resistor, 35 ... ...Differential amplifier, 27...
Operational amplifier constituting an integrator, 28... Integrating capacitor, 55... Slope start signal generating section, 1
5... DC power supply which is an example of a predetermined voltage source, 57
...An operational amplifier, which is another example of a predetermined voltage source, 0
V...Reference potential line.

Claims (1)

【特許請求の範囲】 1 溶接電圧または電流をあるレベルから他のレ
ベルへ連続的に所定の時間で移行させるスロープ
制御機能を備えた溶接機出力制御装置において、
基準電位線と所定の電圧源との間に直列に接続さ
れた少くとも2個の溶接電圧または電流調整抵抗
を備え、上記2個の調整抵抗の中間点を基準電位
に対し0Vから所定の電圧に、またはその逆に連
続的に変化するスロープ信号発生部の出力線に接
続し、上記2個の調整抵抗の摺動子間の電圧を差
動増幅器に入力し、この差動増幅器の出力をスロ
ープ制御の目標値信号としたことを特徴とする溶
接機出力制御装置。 2 前記スロープ信号発生部が、積分器と、この
積分器の入力をハイレベルとローレベルに切換え
るスロープ開始信号発生部を備え、上昇スロープ
と下降スロープの両方のスロープ信号を1つの積
分器により選択的に発生し得るように構成されて
いる特許請求の範囲1記載の溶接機出力制御装
置。
[Scope of Claims] 1. A welding machine output control device equipped with a slope control function that continuously shifts welding voltage or current from one level to another in a predetermined time,
At least two welding voltage or current regulating resistors are connected in series between a reference potential line and a predetermined voltage source, and the midpoint of the two regulating resistors is set to a predetermined voltage from 0V to the reference potential. or vice versa, and input the voltage between the sliders of the two adjusting resistors to a differential amplifier, and output the output of this differential amplifier. A welding machine output control device characterized by using a target value signal for slope control. 2. The slope signal generation section includes an integrator and a slope start signal generation section that switches the input of the integrator between a high level and a low level, and selects both the upward slope and downward slope slope signals by one integrator. The welding machine output control device according to claim 1, wherein the welding machine output control device is configured to be able to generate the following.
JP12177180A 1980-09-04 1980-09-04 Output controller for welding machine Granted JPS5747582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12177180A JPS5747582A (en) 1980-09-04 1980-09-04 Output controller for welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12177180A JPS5747582A (en) 1980-09-04 1980-09-04 Output controller for welding machine

Publications (2)

Publication Number Publication Date
JPS5747582A JPS5747582A (en) 1982-03-18
JPS6230868B2 true JPS6230868B2 (en) 1987-07-04

Family

ID=14819473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12177180A Granted JPS5747582A (en) 1980-09-04 1980-09-04 Output controller for welding machine

Country Status (1)

Country Link
JP (1) JPS5747582A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113167U (en) * 1983-12-29 1985-07-31 株式会社 三社電機製作所 Output current control device for arc equipment
JP4848036B2 (en) * 2009-12-17 2011-12-28 株式会社ダイヘン Arc welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038237A (en) * 1983-08-12 1985-02-27 Shintachikawa Koukuuki Kk Turntable for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243706Y2 (en) * 1972-08-23 1977-10-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038237A (en) * 1983-08-12 1985-02-27 Shintachikawa Koukuuki Kk Turntable for vehicle

Also Published As

Publication number Publication date
JPS5747582A (en) 1982-03-18

Similar Documents

Publication Publication Date Title
US6522115B1 (en) Pulse-width-modulated DC-DC converter with a ramp generator
US4835780A (en) Semiconductor laser output control circuit
US6885177B2 (en) Switching regulator and slope correcting circuit
JPH0420238B2 (en)
US5867048A (en) Pulse-width controller for switching regulators
US6957278B1 (en) Reference -switch hysteresis for comparator applications
JPS6230868B2 (en)
JP3312763B2 (en) Voltage applied current measurement circuit
JPS6227627B2 (en)
JPH07202593A (en) Voltage current conversion circuit
JPH0830574B2 (en) Combustion control device
JP3291741B2 (en) Gain control device
JPH089776Y2 (en) Voltage generator
JPH04242808A (en) Output voltage remote control circuit for constant voltage power supply
JP2839293B2 (en) Constant current detection voltage holding circuit
JP2876844B2 (en) Output voltage correction circuit for IC tester driver
JPS6037019A (en) Rush current control circuit of capacitor
JPS5858976A (en) Welding current controlling device
SU1116506A2 (en) Stabilezed d.c.voltage converter
JPH0146884B2 (en)
SU721834A1 (en) Diode function generator
JP3093361B2 (en) Time constant automatic adjustment circuit
JPH04280170A (en) Picture tube driving circuit
JPH054048Y2 (en)
JPH04289799A (en) Constant current driving circuit for step motor