JPS6230708B2 - - Google Patents

Info

Publication number
JPS6230708B2
JPS6230708B2 JP56201236A JP20123681A JPS6230708B2 JP S6230708 B2 JPS6230708 B2 JP S6230708B2 JP 56201236 A JP56201236 A JP 56201236A JP 20123681 A JP20123681 A JP 20123681A JP S6230708 B2 JPS6230708 B2 JP S6230708B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
layer
hydrogenated amorphous
color image
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201236A
Other languages
Japanese (ja)
Other versions
JPS58105568A (en
Inventor
Nobuyoshi Takagi
Kyoshi Ozawa
Satoru Kawai
Toshiro Kodama
Koichi Hiranaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56201236A priority Critical patent/JPS58105568A/en
Publication of JPS58105568A publication Critical patent/JPS58105568A/en
Publication of JPS6230708B2 publication Critical patent/JPS6230708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14667Colour imagers

Description

【発明の詳細な説明】 本発明は多色のカラーイメージを判別すること
を可能とする大形カラーイメージセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large color image sensor that is capable of distinguishing multicolor images.

従来のカラーセンサは、第1図に示すように単
結晶Siにボロン、りん等の不純物を拡散すること
によつてP型、N型、P型の三層構造とし、浅い
方のPN接合PS1の深い方のPN接合PS2の分光感度
が異なることを用いて、色を識別するものであ
る。すなわち、単結晶Siの吸収係数は短波長の光
など大きく、それゆえ入射面に近いPN接合PS1
短波長感度が大となる。一方、内部には長波長の
光しか到達しなくなり、それゆえ内部のPN接合
PS2は長波長感度が大となる。A,Cはp側電
極、Bはn側電極である。
As shown in Figure 1, conventional color sensors have a three-layer structure of P-type, N-type, and P-type by diffusing impurities such as boron and phosphorus into single-crystal Si, and the shallower PN junction PS The difference in spectral sensitivity of the deeper PN junction PS 2 of 1 is used to identify colors. That is, the absorption coefficient of single crystal Si is large for short wavelength light, and therefore the PN junction PS 1 close to the incident surface has high short wavelength sensitivity. On the other hand, only long wavelength light reaches the inside, and therefore the internal PN junction
PS 2 has high long wavelength sensitivity. A and C are p-side electrodes, and B is an n-side electrode.

さて、Siの厚さをフイルタとすることから、分
光感度を大きく異ならせるためにはN型拡散層を
厚くしなければならず、かつプレーナ構造である
ために深い方の接合PS2面が表面に出ており分光
感度の分離を悪くさせている。
Now, since the thickness of Si is used as a filter, the N-type diffusion layer must be thick in order to make a large difference in spectral sensitivity, and since it has a planar structure, the two deeper bonded PS surfaces are This makes the separation of spectral sensitivities worse.

さらに、単結晶を用いていることから、大面積
のカラーイメージを検知するためにはレンズ等に
よる集光が必要であり、素子えのものが高価であ
るとともに導光系が複雑となり安価、小型化は不
可能である。
Furthermore, since a single crystal is used, in order to detect large-area color images, it is necessary to focus the light with a lens, etc., which makes the element expensive and the light guiding system complicated. is impossible.

本発明は以上の欠点を解決するために、水素化
無定形シリコン用い、接合を積層型として構成
し、かつ大面積の密着カラーイメージセンサを提
供するものである。
In order to solve the above-mentioned drawbacks, the present invention provides a large-area contact color image sensor that uses hydrogenated amorphous silicon, has a laminated junction structure, and has a large area.

本発明は、シランガス(S1H4)をグロー放電分
解により容易に局在準位密度の少い良質な無定形
シリコンを作製できること、ならびにボロン、り
ん添加によりP型、N型無定形シリコンが容易に
形成可能なこと、かつP型無定形シリコンと無添
加無定形シリコンとの間に良好な整流性接触が形
成可能なこと、高仕事関数の金属やネサ膜と無添
加無定形シリコンとの間に良好なシヨツトキー接
合が形成可能なこと、高濃度N型無定形シリコン
あるいは低仕事関数の金属と無添加無定形シリコ
ンが良好なオーミツク接触を有することを利用し
て、二つの整流性接触と導電性を積層して連続的
に形成可能とするものである。
The present invention is that high-quality amorphous silicon with low local level density can be easily produced by glow discharge decomposition of silane gas (S 1 H 4 ), and that P-type and N-type amorphous silicon can be produced by adding boron and phosphorus. It is possible to easily form a good rectifying contact between P-type amorphous silicon and additive-free amorphous silicon, and it is possible to form a good rectifying contact between P-type amorphous silicon and additive-free amorphous silicon. By utilizing the fact that a good Schottky junction can be formed between the two and the good ohmic contact between high concentration N-type amorphous silicon or a low work function metal and additive-free amorphous silicon, two rectifying contacts and It is possible to continuously form conductive layers by laminating them.

さらに無定形シリコンは単結晶シリコンに比較
して吸収係数が1桁高いので、素子の厚さが1桁
以上少くてすみ、かつ薄膜であることから大面積
のカラーイメージセンサが作製可能となり、安価
でかつレンズ系の不要なカラーイメージセンサを
提供するものである。
Furthermore, since amorphous silicon has an absorption coefficient that is one order of magnitude higher than that of single crystal silicon, the thickness of the element can be reduced by more than one order of magnitude, and since it is a thin film, it is possible to fabricate large-area color image sensors at low cost. The present invention provides a color image sensor that is large in size and does not require a lens system.

具体的に素子形状ならびに時数を示して説明を
加える。
A detailed explanation will be given by showing the element shape and the number of hours.

第2図に本発明の一つの構造を示す。1は高仕
事関数金属の白金Ptであり、2は真性(無添加)
無定形シリコン、3は高濃度n+無定形シリコ
ン、4は真性(無添加)無定形シリコン、5は高
仕事関数金属Ptであり、6は二つのPt層と一つの
高濃度n+無定形シリコン層とに電気的接続を行
なわしめる電極である。高仕事関数の金属1と真
性無定形シリコン2により形成された光センサを
PS1、真性無定形シリコン4と高仕事関数の金属
5により形成される光センサPS2とし、PS1側か
ら光を射したとする。ここで、高仕事関数の金属
Pt1の層の膜厚を80Å、真性無定形シリコン2の
層の膜厚を3000Å、高濃度n+無定形シリコン3
の層を1000Å真性無定形シリコン4の層を3000Å
高仕事関数金属Pt5の層を200Åとしたときの
PS1,PS2の短絡電流の波長依存性(分光感度)
を第3図に各々曲線Is1,Is2で示す。さて、この
PS2の短絡電流Is2をPS1の短絡電流Is2で割つた値
の対数をとると、第4図に示すように波長に対し
てその出力はほぼ直線となる。第4図で縦軸は
log(Is2/Is1)、横軸は波長である。このことか
ら、このカラーイメージセンサの素子に光が照射
された時Ps1,Ps2のそれぞれの短絡電流を同時に
測定してみて、電流Is2,Is1の比を対数を算出し
て第4図のグラフを使用して入力光の波長が識別
できる。
FIG. 2 shows one structure of the present invention. 1 is platinum Pt, a high work function metal, and 2 is intrinsic (no additives).
Amorphous silicon, 3 is high concentration n + amorphous silicon, 4 is intrinsic (additive-free) amorphous silicon, 5 is high work function metal Pt, 6 is two Pt layers and one high concentration n + amorphous This is an electrode that makes an electrical connection to the silicon layer. An optical sensor made of high work function metal 1 and intrinsic amorphous silicon 2
Assume that PS 1 is an optical sensor PS 2 formed of intrinsic amorphous silicon 4 and high work function metal 5, and that light is emitted from the PS 1 side. Here, high work function metal
The thickness of the Pt1 layer is 80 Å, the thickness of the intrinsic amorphous silicon 2 layer is 3000 Å, and the high concentration n + amorphous silicon 3
A layer of 1000Å and a layer of intrinsic amorphous silicon 4 of 3000Å
When the layer of high work function metal Pt5 is 200Å,
Wavelength dependence of short-circuit current of PS 1 and PS 2 (spectral sensitivity)
are shown as curves Is 1 and Is 2 in Fig. 3, respectively. Now, this
If we take the logarithm of the value obtained by dividing the short-circuit current Is 2 of PS 2 by the short-circuit current Is 2 of PS 1 , the output becomes approximately linear with respect to wavelength, as shown in FIG. In Figure 4, the vertical axis is
log(Is 2 /Is 1 ), the horizontal axis is the wavelength. From this, when the element of this color image sensor is irradiated with light, the short circuit currents of Ps 1 and Ps 2 are simultaneously measured, and the logarithm of the ratio of the currents Is 2 and Is 1 is calculated and the fourth The wavelength of the input light can be identified using the graph in the figure.

例えばIs1,Is2の値が同じなら第4図の例にお
いてはlog(Is2/Is1)→0に対応する約530nmの
波長の光であることがわかる。
For example, if the values of Is 1 and Is 2 are the same, it can be seen that in the example of FIG. 4, the light has a wavelength of about 530 nm, which corresponds to log(Is 2 /Is 1 )→0.

本発明は高仕事関数金属1,5として、Pt、
Au、Pdも使用でき電極6として低仕事関数金属
であるMo、Ta、Al、Crなどが使用できる。
The present invention uses Pt as the high work function metals 1 and 5,
Au and Pd can also be used, and low work function metals such as Mo, Ta, Al, and Cr can be used as the electrode 6.

さらに、本発明は第5図aに示す如く高仕事関
数金属で形成された接合層に代わつてP+無定形
シリコン58を用いることにより、P+無定形シ
リコン58−真性無定形シリコン4−n+無定形シ
リコン3−真性無定形シリコン4−P+無定形シ
リコン58を基板51上に連続的に積層化が容易
に可能となる。
Furthermore, as shown in FIG. 5a, by using P + amorphous silicon 58 instead of the bonding layer formed of a high work function metal, P + amorphous silicon 58 - intrinsic amorphous silicon 4 - n + Amorphous silicon 3-Principle amorphous silicon 4-P + Amorphous silicon 58 can be easily laminated continuously on the substrate 51.

さらに、本発明は第5図bの如く、高仕事関数
金属によつて入射光強度が減少することを除くた
めに、高仕事関数金属1,5よりなる接合層をオ
ーバラツプさせない形で積層化することも可能で
あり、このことより短波長端、長波長端における
測定誤差を小さくすることができる。
Furthermore, as shown in FIG. 5b, in order to eliminate the reduction in incident light intensity caused by the high work function metal, the bonding layers made of the high work function metals 1 and 5 are laminated in a non-overlapping manner. This can also reduce measurement errors at the short wavelength end and long wavelength end.

ここで、活性層ならびに接合層は無定形シリコ
ンに不純物を添加してバンドキヤツプを変化させ
た物も使用可能であり、判別するカラーイメージ
の色種によつて選択もまた可能である。
Here, the active layer and the bonding layer can be made of amorphous silicon with impurities added to change the bandcap, and can be selected depending on the color type of the color image to be discriminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のカラーセンサの断面図aと等価
回路図b、第2図は本発明のカラーセンサの断面
図、第3図は本発明のカラーセンサの分光感度特
性を示す図、第4図は短絡電流の波長依存性を示
す図、第5図は本発明の他の実施例を示す図であ
る。 1,5は高仕事関数の金属、2,4は真性無定
形Si、3は高濃度n+無定形Si、6は電極、51は
基板。
Fig. 1 is a cross-sectional view a and an equivalent circuit diagram b of a conventional color sensor, Fig. 2 is a cross-sectional view of a color sensor of the present invention, Fig. 3 is a diagram showing spectral sensitivity characteristics of the color sensor of the present invention, and Fig. The figure shows the wavelength dependence of short-circuit current, and FIG. 5 is a diagram showing another embodiment of the present invention. 1 and 5 are high work function metals, 2 and 4 are intrinsic amorphous Si, 3 is high concentration n + amorphous Si, 6 is an electrode, and 51 is a substrate.

Claims (1)

【特許請求の範囲】 1 水素化無定形シリコンと整流性接触をする第
1の層と、第1の水素化無定形シリコン層と、水
素化無定形シリコンとオーミツク接触をする導電
層と、第2の水素化無定形シリコン層と、水素化
無定形シリコンと整流性接触をする第2の層を順
次積層し、該第1、2の層および導電層に電気的
に接続する手段を具備したことを特徴とするカラ
ーイメージセンサ。 2 第1および第2の層がP型の水素化無定形シ
リコンよりなる特許請求の範囲第1項記載のカラ
ーイメージセンサ。 3 第1および第2の層が半透明な高仕事関数の
金属又は金属サーメツトよりなる特許請求の範囲
第1項記載のカラーイメージセンサ。 4 第1および第2の層がIn2O3、SnO2、In2O3
−SnO2の透明電極よりなる特許請求の範囲第1
項記載のカラーイメージセンサ。 5 導電層がn+型の水素化無定形シリコンより
なる特許請求の範囲第1項記載のカラーイメージ
センサ。 6 導電層が半透明な低仕事関数の金属よりなる
特許請求の範囲第1項記載のカラーイメージセン
サ。
[Scope of Claims] 1. A first layer in rectifying contact with hydrogenated amorphous silicon, a first hydrogenated amorphous silicon layer, a conductive layer in ohmic contact with hydrogenated amorphous silicon, and a first layer in rectifying contact with hydrogenated amorphous silicon; A second layer of hydrogenated amorphous silicon and a second layer that is in rectifying contact with the hydrogenated amorphous silicon are sequentially laminated, and a means for electrically connecting the first and second layers and the conductive layer is provided. A color image sensor characterized by: 2. The color image sensor according to claim 1, wherein the first and second layers are made of P-type hydrogenated amorphous silicon. 3. The color image sensor according to claim 1, wherein the first and second layers are made of a translucent high work function metal or metal cermet. 4 The first and second layers are In 2 O 3 , SnO 2 , In 2 O 3
-Claim 1 consisting of a transparent electrode of SnO 2
Color image sensor described in section. 5. The color image sensor according to claim 1, wherein the conductive layer is made of n + type hydrogenated amorphous silicon. 6. The color image sensor according to claim 1, wherein the conductive layer is made of a translucent low work function metal.
JP56201236A 1981-12-14 1981-12-14 Long length sensor for color image Granted JPS58105568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201236A JPS58105568A (en) 1981-12-14 1981-12-14 Long length sensor for color image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201236A JPS58105568A (en) 1981-12-14 1981-12-14 Long length sensor for color image

Publications (2)

Publication Number Publication Date
JPS58105568A JPS58105568A (en) 1983-06-23
JPS6230708B2 true JPS6230708B2 (en) 1987-07-03

Family

ID=16437590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201236A Granted JPS58105568A (en) 1981-12-14 1981-12-14 Long length sensor for color image

Country Status (1)

Country Link
JP (1) JPS58105568A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239055A (en) * 1984-05-11 1985-11-27 Sanyo Electric Co Ltd Amorphous silicon photosensor
JPH0797631B2 (en) * 1986-07-07 1995-10-18 日本板硝子株式会社 Image sensor

Also Published As

Publication number Publication date
JPS58105568A (en) 1983-06-23

Similar Documents

Publication Publication Date Title
US4581625A (en) Vertically integrated solid state color imager
JP5973149B2 (en) Photodetector
US5130775A (en) Amorphous photo-detecting element with spatial filter
US4698658A (en) Amorphous semiconductor device
EP0307484A1 (en) Color sensor
US4804833A (en) Color sensing method and device therefor
JPS6230708B2 (en)
JPS6173033A (en) Color exposure device
WO1989003593A1 (en) Low noise photodetection and photodetector therefor
JPH03202732A (en) Color sensor
JPH03268369A (en) Color sensor
US7053457B2 (en) Opto-electronic component
JPH0453003Y2 (en)
JP3159386B2 (en) Optical sensor
JPS6177375A (en) Color sensor
JPH01140676A (en) Semi-transparent solar cell
JP2016174163A (en) Optical filter
JPS6222543B2 (en)
JP3469061B2 (en) Solar cell
JPS6269568A (en) Semiconductor color sensor
JPH02238676A (en) Color sensor
JP2596419B2 (en) Position detection device
JPH021865Y2 (en)
JP2764297B2 (en) Photoelectric conversion device
Kato et al. Integrated transducer for color distinction