JPS6230566B2 - - Google Patents

Info

Publication number
JPS6230566B2
JPS6230566B2 JP16817281A JP16817281A JPS6230566B2 JP S6230566 B2 JPS6230566 B2 JP S6230566B2 JP 16817281 A JP16817281 A JP 16817281A JP 16817281 A JP16817281 A JP 16817281A JP S6230566 B2 JPS6230566 B2 JP S6230566B2
Authority
JP
Japan
Prior art keywords
light
detection system
scattered
optical path
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16817281A
Other languages
Japanese (ja)
Other versions
JPS5870109A (en
Inventor
Akira Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16817281A priority Critical patent/JPS5870109A/en
Publication of JPS5870109A publication Critical patent/JPS5870109A/en
Publication of JPS6230566B2 publication Critical patent/JPS6230566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (1) 発明の分野 この発明は回転体の周方向に沿つて取り付けら
れる複数の物体の取付け精度を測定する組立精度
測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to an assembly accuracy measuring device for measuring the attachment accuracy of a plurality of objects attached along the circumferential direction of a rotating body.

(2) 従来技術 たとえばVTRにおいては、回転体であるとこ
ろのデイスクに物体としての2つのヘツドが180
度ずれて取り付けられていて、これらヘツドを磁
気テープ上に走行させることによつて画面信号を
取り出すようになつている。したがつて、デイス
クの周方向に精密に180度の角度で取り付けられ
ていなければ、TV画面上の像にずれが生じてし
まうから、VTRの組立工程においては、そのデ
イスクに対するヘツドの組立精度の検査が極めて
重要となる。
(2) Prior art For example, in a VTR, two heads (objects) are mounted on a disk (rotating body) at an angle of 180 degrees.
They are mounted at different angles, and the screen signals are extracted by running these heads over the magnetic tape. Therefore, if the head is not attached precisely at a 180 degree angle in the circumferential direction of the disk, the image on the TV screen will be misaligned. Inspection is extremely important.

従来、デイスクに対するヘツドの組立精度を検
査するには、一対の顕微鏡をデイスクの回転軸に
対して正確に180度の対向角度で配置し、これら
各顕微鏡で拡大される各ヘツドの端面に設けられ
たスリツト部が各顕微鏡における視野の中心に位
置するか、否かによつて上記各ヘツドがデイスク
に精密に180度の角度で組立てられているかどう
かを測定していた。しかしながら、このような測
定手段によると、一対の顕微鏡の光軸をデイスク
の回転軸の中心に正確に合せることや180度の対
向角度で配置することに多大な労力を要するばか
りか誤差も生じやすく、また測定に際してはピン
ト調整を行なつたり、一対の顕微鏡をそれぞれ覗
かなければならないなどのことにより、作業性が
極めて悪い。しかも、顕微鏡による測定は測定者
が目で見て判断するから、判断基準にばらつきが
生じ、測定精度の向上には限界があつた。
Conventionally, in order to inspect the assembly accuracy of the head relative to the disk, a pair of microscopes is placed at exactly 180 degrees to the rotation axis of the disk, and a pair of microscopes is placed on the end face of each head to be magnified by each microscope. Whether each head was assembled to the disk at a precise angle of 180 degrees was determined by whether the slit section was located at the center of the field of view of each microscope. However, with such measurement methods, it not only takes a great deal of effort to accurately align the optical axes of the pair of microscopes with the center of the rotational axis of the disk and to arrange them at opposing angles of 180 degrees, but it is also prone to errors. Furthermore, when making measurements, it is necessary to adjust the focus and look through a pair of microscopes, making the work extremely difficult. Moreover, since measurements made using a microscope are made by the person measuring them visually, there are variations in the criteria for judgment, and there is a limit to the improvement of measurement accuracy.

そこで、一定速度でデイスクとともに回転する
ヘツドにレーザ光を入射させ、ヘツド端面のスリ
ツト部で散乱回折したレーザ光をセンサで受光し
て、その受光タイミングから各ヘツドの取付け角
を求めるようにした装置が考えられている。
Therefore, a device was developed in which a laser beam is incident on a head that rotates with the disk at a constant speed, the laser beam is scattered and diffracted by a slit on the end face of the head, and the laser beam is received by a sensor, and the mounting angle of each head is determined from the timing of the reception of the laser beam. is being considered.

(3) 従来技術の問題点 このようなレーザ光を採用した測定手段は、確
かにヘツドの組立精度を高精度に測定できるが、
その反面、ヘツドの端面上に汚れが付着していた
り、傷がついていたりしてもレーザ光は散乱回折
される問題があり、重大な測定ミスを生じさせる
おそれがある。
(3) Problems with the conventional technology Although it is true that the measuring means employing such a laser beam can measure the assembly accuracy of the head with high precision,
On the other hand, if there is dirt or scratches on the end face of the head, there is a problem that the laser light will be scattered and diffracted, which may cause a serious measurement error.

(4) 発明の目的 この発明は、レーザ光を測定媒体として用いて
高精度に、かつ汚れ、傷などがあつたようなとき
でも測定ミスなく安定した物体の取付け角度を測
定することができる組立精度測定装置を提供する
ことにある。
(4) Purpose of the Invention The present invention provides an assembly that uses laser light as a measuring medium to stably measure the mounting angle of an object with high precision and without measurement errors even when there is dirt or scratches. The purpose of the present invention is to provide an accuracy measuring device.

(5) 発明の要点 回転体とともに回転する散乱部を備えた複数の
物体にレーザ光を照射して組立精度を測定すると
きに、物体の散乱部で散乱回折されるレーザ光と
汚れや傷で散乱回折されるレーザ光とを区別し
て、散乱部で散乱回折されたレーザ光のみで各物
体の取付け角度を求めることにある。
(5) Key points of the invention When measuring assembly accuracy by irradiating laser light onto multiple objects equipped with scattering parts that rotate together with the rotating body, the laser light scattered and diffracted by the scattering parts of the objects and dirt and scratches The purpose is to distinguish between the laser beam that is scattered and diffracted and to determine the mounting angle of each object using only the laser beam that is scattered and diffracted at the scattering section.

(6) 発明の一実施例 第1図中1は円板状をなした回転体としての
VTRのデイスクであり、このデイスク1の中心
部には回転軸2が設けられる。またデイスク1の
上面周辺部には物体としての2つのヘツド3a,
3bがデイスク1の周方向に180度の角度となる
ように取り付けられている。これら一対のヘツド
3a,3bは第2図に示すように一端面が湾曲し
たほぼかまぼこ形をなしていて、デイスク1の外
周面から突出した湾曲面3cには厚さ方向に沿つ
て散乱部としてのスリツト部4が設けられてい
る。そして、このようにヘツド3a,3bが組み
付けられたデイスク1は、回転軸2が支持体(図
示しない)に回転自在に支持されて一定速度で回
転駆動されるようになつている。
(6) An embodiment of the invention 1 in Fig. 1 is a disc-shaped rotating body.
This is a VTR disk, and a rotating shaft 2 is provided at the center of the disk 1. Also, on the upper surface of the disk 1, there are two heads 3a as objects,
3b is attached to the disk 1 at an angle of 180 degrees in the circumferential direction. As shown in FIG. 2, these pair of heads 3a and 3b have a substantially semicylindrical shape with one end surface curved, and a curved surface 3c protruding from the outer peripheral surface of the disk 1 has a scattering portion along the thickness direction. A slit portion 4 is provided. The disk 1 with the heads 3a and 3b assembled in this manner is configured such that the rotating shaft 2 is rotatably supported by a support (not shown) and is driven to rotate at a constant speed.

そして、一対のヘツド3a,3bがデイスク1
の周方向に180度で精密に設けられているか、否
かが、測定装置5によつて測定される。この測定
装置5について説明すれば、図中6はレーザ発振
器で、このレーザ発振器6からは直線偏光特性を
有したレーザ光7が発振できるようになつてい
る。そして、このレーザ光7は第1の集光レンズ
8で集束され、ヘツド3a,3bの湾曲面3c,
3cに所定の入射角度を有して入射(照射)する
ようになつていて、湾曲面3cでは正反射が行な
われ、スリツト部4では散乱して特定の散乱回折
が行なわれるようになつている。また、レーザ光
7の反射方向には、遮光板9が配置され、さらに
散乱回折方向には第2の集光レンズ10および上
記スリツト部4と直交する方向に細長い透孔11
aを穿設した空間フイルタ11が順次設けられて
いる。したがつて、反射光7aは遮光板9で遮光
され、ヘツド3a,3bの端面以外の偏光したレ
ーザ光は空間フイルタ11で除去され、スリツト
部4からの散乱光7bのみ空間フイルタ11を通
過して光路12に沿つて導びかれるようになつて
いる。また散乱光7bがスリツト部4の像を結像
する光路12の位置には、第1のセンサ13およ
び第2のセンサ14が設けられている。これらセ
ンサ13,14は2つのフオトデイテクタを並ん
だ状態で接合してなり、デイスク1の回転に伴つ
て移動するスリツト部4の結像を第1のセンサ1
3で検知してから、つづいて第2のセンサ14で
検知するようになつている。そして、これらセン
サ13,14のうち、第1のセンサ13は差動ア
ンプ15の非反転入力端子に接続され、また第2
のセンサ14は反転入力端子にそれぞれ接続さ
れ、第1の検出系23を構成している。さらに差
動アンプ15は、制御回路としてのゲート回路1
6を介して信号処理装置17に接続される。
A pair of heads 3a and 3b are connected to the disk 1.
The measuring device 5 measures whether or not it is precisely provided at 180 degrees in the circumferential direction. To explain this measuring device 5, 6 in the figure is a laser oscillator, and this laser oscillator 6 can oscillate a laser beam 7 having linear polarization characteristics. Then, this laser beam 7 is focused by a first condensing lens 8, and the curved surfaces 3c of the heads 3a, 3b,
The light is incident (irradiated) on the curved surface 3c at a predetermined angle of incidence, and is specularly reflected on the curved surface 3c, and scattered on the slit portion 4 to perform a specific scattering diffraction. . Further, a light shielding plate 9 is disposed in the direction of reflection of the laser beam 7, and a second condenser lens 10 and a thin through hole 11 are arranged in the direction perpendicular to the slit portion 4 in the direction of scattering and diffraction.
Spatial filters 11 having holes a are provided in sequence. Therefore, the reflected light 7a is blocked by the light shielding plate 9, the polarized laser light other than the end faces of the heads 3a and 3b is removed by the spatial filter 11, and only the scattered light 7b from the slit portion 4 passes through the spatial filter 11. and is guided along an optical path 12. Further, a first sensor 13 and a second sensor 14 are provided at a position on the optical path 12 where the scattered light 7b forms an image of the slit portion 4. These sensors 13 and 14 are formed by joining two photodetectors side by side, and the first sensor 1 detects the image of the slit portion 4 that moves as the disk 1 rotates.
3, and then the second sensor 14 detects it. Of these sensors 13 and 14, the first sensor 13 is connected to the non-inverting input terminal of the differential amplifier 15, and the second sensor 13 is connected to the non-inverting input terminal of the differential amplifier 15.
The sensors 14 are each connected to an inverting input terminal, and constitute a first detection system 23. Further, the differential amplifier 15 includes a gate circuit 1 as a control circuit.
It is connected to the signal processing device 17 via 6.

一方、図中18は空間フイルタ11の後段に位
置して光路12上に設けたビームスプリツタであ
る。このビームスプリツタ18は、ビームスプリ
ツタ18に入射する光のうちレーザ光7と同一偏
光特性をもつ光をセンサ13,14側に通過さ
せ、それ以外の光を光路12と直角方向に反射さ
せて分離する機能を有している。したがつて、ス
リツト部4で散乱した散乱光7bの偏光特性と異
なる散乱光7cは散乱光7bと区別されるように
なつている。そして、散乱光7cの分離方向に
は、フオトデイクタで構成される第3のセンサー
19とフオトアンプ20で構成された第2の検知
系21が設けられ、その分離された散乱光7cを
検知することができるようになつている。また検
知系21を構成するフオトアンプ20は、上記ゲ
ート回路16に接続され、そのゲート回路16を
検知信号で制御動作させている。すなわち、ゲー
ト回路16では、第3のセンサ19、フオトアン
プ20を通してゲート回路16に検知信号が出力
されることにより、上記差動アンプ15の出力を
遮断、ゲート回路16に検知信号が出力されてい
ないときには差動アンプ15の出力を信号処理装
置17側へ導く動作が行なわれるようになつてい
る。そして、信号処理装置17で、ゲート回路1
6を通して入力された差動アンプ15の第1のセ
ンサ13の出力と第2のセンサ14の出力との差
の信号のゼロクロス点の周期が演算されるように
なつている。
On the other hand, numeral 18 in the figure is a beam splitter that is located after the spatial filter 11 and is provided on the optical path 12. This beam splitter 18 allows light having the same polarization characteristics as the laser light 7 to pass to the sensors 13 and 14 among the light incident on the beam splitter 18, and reflects the other light in a direction perpendicular to the optical path 12. It has the function of separating the Therefore, the scattered light 7c, which has a polarization characteristic different from that of the scattered light 7b scattered by the slit portion 4, is distinguished from the scattered light 7b. A second detection system 21 composed of a third sensor 19 composed of a photodetector and a photoamplifier 20 is provided in the direction in which the scattered light 7c is separated, and is capable of detecting the separated scattered light 7c. I'm starting to be able to do it. Further, the photoamplifier 20 constituting the detection system 21 is connected to the gate circuit 16, and controls and operates the gate circuit 16 using a detection signal. That is, in the gate circuit 16, a detection signal is output to the gate circuit 16 through the third sensor 19 and the photoamplifier 20, thereby blocking the output of the differential amplifier 15, and no detection signal is output to the gate circuit 16. At times, an operation is performed in which the output of the differential amplifier 15 is guided to the signal processing device 17 side. Then, in the signal processing device 17, the gate circuit 1
The period of the zero-crossing point of the signal of the difference between the output of the first sensor 13 and the output of the second sensor 14 of the differential amplifier 15 input through the differential amplifier 6 is calculated.

つぎにこのように構成された測定装置5の作用
について説明する。デイスク1を一定速度で回転
するとともにレーザ発振器6を作動させてレーザ
光7を出力する。これにより、レーザ光7はデイ
スク1とともに回転するヘツド3aを照射する。
そして、レーザ光7がスリツト部4を除くヘツド
3aの湾曲面3cを照射して生じる反射光7aは
遮光板9で遮光される。またスリツト部4を照射
して生じる散乱孔7bは、特定に散乱回折されて
集束レンズ10および空間フイルタ11を通じて
第1のセンサ13の面上に結像され、さらにこの
結像が第2のセンサ14に移行してゆく。そし
て、スリツト部4の像が第1のセンサー13と第
2のセンサー14との接合部に達した瞬間のとき
の差動アンプ15の出力がゼロ(第1のセンサー
13と第2センサー14の出力が等しい)となる
ゼロクロス点を演算する。つづいて、デイスク1
の回転に伴い、同様にヘツド3bのスリツト部4
からの散乱孔7bが検知され、このときのゼロク
ロス点が先程と同じように差動アンプ15で演算
される。そして、このときのヘツド3aからヘツ
ド3bを検出するまでの時間が周期T1として信
号処理装置17に記憶される。
Next, the operation of the measuring device 5 configured as described above will be explained. While the disk 1 is rotated at a constant speed, the laser oscillator 6 is activated to output a laser beam 7. As a result, the laser beam 7 irradiates the head 3a rotating together with the disk 1.
Reflected light 7a generated by the laser beam 7 irradiating the curved surface 3c of the head 3a excluding the slit portion 4 is blocked by the light shielding plate 9. Further, the scattering hole 7b generated by irradiating the slit portion 4 is specifically scattered and diffracted, and an image is formed on the surface of the first sensor 13 through the focusing lens 10 and the spatial filter 11, and this image is further transferred to the second sensor. Moving on to 14. Then, the output of the differential amplifier 15 at the moment when the image of the slit portion 4 reaches the junction between the first sensor 13 and the second sensor 14 is zero (the output of the first sensor 13 and the second sensor 14 is zero). Calculate the zero crossing point where the outputs are equal). Next, disk 1
As the slit portion 4 of the head 3b rotates, the slit portion 4 of the head 3b also rotates.
The scattering hole 7b is detected, and the zero-crossing point at this time is calculated by the differential amplifier 15 in the same way as before. Then, the time from head 3a to head 3b being detected at this time is stored in the signal processing device 17 as a period T1.

また同じようにヘツド3bのスリツト部4から
ヘツド3aのスリツト部4を検出するまでの時間
が周期T2として信号処理装置17に記憶され、
信号処理装置17で周期T1と周期T2の受光タ
イミングが比較演算される。しかして、デイスク
1に組み付けられた一対のヘツド3a,3bが正
確に180度の角度で取り付けられているならば、
周期T1=周期T2となるから、周期T1と周期
T2とを比較演算することにより、一対のヘツド
3a,3bの組立精度が求まる。
Similarly, the time from the slit section 4 of the head 3b to the detection of the slit section 4 of the head 3a is stored in the signal processing device 17 as a period T2.
The signal processing device 17 compares and calculates the light reception timings of period T1 and period T2. Therefore, if the pair of heads 3a and 3b assembled to the disk 1 are attached at an angle of exactly 180 degrees,
Since the period T1 is equal to the period T2, the assembly accuracy of the pair of heads 3a and 3b can be determined by comparing and calculating the period T1 and the period T2.

また、この組立精度の測定に際し、ヘツド3a
あるいはヘツド3bの湾曲面3cに誤動作(測定
ミス)をまねく汚れ22が付着していたような場
合には、汚れ22にレーザ光7が入射した瞬間、
レーザ光7の一部は散乱回折される。しかしなが
ら、この散乱光は、特定の形状、溝深、その他寸
法的なものを有して形成されたスリツト部4の散
乱光7bとは異なつて、乱れた散乱回折を示し、
ビームスプリツタ18に入射すると、第3のセン
サ19側へ反射され、光路12から分離される。
一方、汚れ22で散乱した散乱光のうちスリツト
部4の散乱光7bと同一特性を有する第1のセン
サ13に入射することになるが、第3のセンサ1
9の検知動作によるフオトアンプ20の出力で、
ゲート回路16は閉じ、差動アンプ15からの信
号は出力されないことになる。かくして、信号処
理装置17に入力される信号は区別されてスリツ
ト部4の検知信号のみが入力されることになる。
In addition, when measuring the assembly accuracy, the head 3a
Alternatively, if there is dirt 22 on the curved surface 3c of the head 3b that causes malfunction (measurement error), the moment the laser beam 7 is incident on the dirt 22,
A portion of the laser beam 7 is scattered and diffracted. However, unlike the scattered light 7b of the slit portion 4 formed with a specific shape, groove depth, and other dimensions, this scattered light exhibits disordered scattered diffraction,
When the beam enters the beam splitter 18, it is reflected toward the third sensor 19 and separated from the optical path 12.
On the other hand, among the scattered light scattered by the dirt 22, the scattered light 7b from the slit portion 4 enters the first sensor 13 having the same characteristics as the scattered light 7b, but the third sensor 1
With the output of the photoamplifier 20 due to the detection operation of 9,
The gate circuit 16 is closed and no signal is output from the differential amplifier 15. In this way, the signals input to the signal processing device 17 are distinguished, and only the detection signal from the slit section 4 is input.

したがつて、汚れ22によつて散乱回折された
レーザ光を検出し、測定に誤動作を生じさせると
いつたことはなく、安定、かつ高精度な一対のヘ
ツド3a,3bの組立精度が約束される。なお、
汚れ22に限らず、ヘツド3a,3bの湾曲面3
c上の傷についても同様のことがいえる。
Therefore, the laser beam scattered and diffracted by the dirt 22 will not be detected and cause a malfunction in measurement, and stable and highly accurate assembly of the pair of heads 3a and 3b is guaranteed. Ru. In addition,
Not only the dirt 22 but also the curved surfaces 3 of the heads 3a and 3b.
The same can be said about the scratches on c.

(7) 発明の他の実施例 上述した一実施例では、回転体であるデイスク
に物体として2つのヘツドが組立てられた場合に
ついて述べたが、回転体に組立てられる物体は2
つに限定されず、3つあるいはそれ以上であつて
もよい。
(7) Other Embodiments of the Invention In the embodiment described above, a case was described in which two heads were assembled as objects on a disk which was a rotating body, but two heads were assembled on a rotating body.
The number is not limited to three, and may be three or more.

(8) 発明の効果 第2の検知系および制御回路で、第1の検知系
に入射される散乱光をスリツト部からの特定の散
乱光とそれ以外の偏光特性の異なる散乱光に分離
して、信号処理装置でスリツト部からの散乱光の
受光タイミングのみをもとに物体の回転体に対す
る取付け角度を求めるようにしたから、物体に汚
れ、傷などがたとえあつても測定にミスを伴うこ
となく安定かつ高精度な物体の組立精度を得るこ
とができる。
(8) Effects of the invention The second detection system and control circuit separate the scattered light incident on the first detection system into specific scattered light from the slit portion and other scattered light with different polarization characteristics. Since the signal processing device calculates the mounting angle of the object relative to the rotating body only based on the timing of the reception of scattered light from the slit, there is no possibility of measurement errors even if the object is dirty or scratched. It is possible to obtain stable and highly accurate assembly of objects without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示し、第1図は測
定装置の全体を示す概略構成図、第2図は物体で
あるヘツドを示す斜視図である。 1′……デイスク(回転体)、3a,3b……ヘ
ツド(物体)、6……レーザ発振器、12……光
路、16……ゲート回路(制御回路)、17……
信号処理装置、18……ビームスプリツタ、21
……第2の検知系、23……第1の検知系。
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic diagram showing the entire measuring device, and FIG. 2 is a perspective view showing the head as an object. 1'... Disk (rotating body), 3a, 3b... Head (object), 6... Laser oscillator, 12... Optical path, 16... Gate circuit (control circuit), 17...
Signal processing device, 18...beam splitter, 21
...Second detection system, 23...First detection system.

Claims (1)

【特許請求の範囲】[Claims] 1 光が特定に散乱する散乱部を備える複数の物
体を周方向に沿つて取り付けた回転体の回転とと
もに回転する前記物体に直線偏光特性のレーザ光
を照射するレーザ発振器と、各物体の散乱部で散
乱回析した散乱光を光路を通して受ける第1の検
知系と、この第1の検知系の検知信号を入力して
受光タイミングにより、物体の回転体の周方向に
取付角度を演算する信号処理装置と、上記物体か
ら第1の検知系に至る光路上に設けられ入射する
物体の散乱部で散乱した散乱光とは異なる偏光特
性の光を光路から分離するビームスプリツタと、
このビームスプリツタで分離された光を検知する
第2の検知系と、この第2の検知系の検知信号を
受けて上記第1の検知系の出力を検知信号が入力
されるときには遮断、検知信号が入力されないと
きには通過制御する制御回路とを具備したことを
特徴とする組立精度測定装置。
1. A laser oscillator that irradiates a laser beam with a linear polarization characteristic to a plurality of objects that rotate with the rotation of a rotating body that has a plurality of objects equipped with scattering parts that scatter light in a specific manner along the circumferential direction, and a scattering part of each object. a first detection system that receives the scattered light scattered and diffracted through the optical path; and signal processing that inputs the detection signal of this first detection system and calculates the mounting angle in the circumferential direction of the rotating body of the object based on the light reception timing. a beam splitter that is provided on the optical path from the object to the first detection system and separates light with polarization characteristics different from the scattered light scattered by the scattering part of the incident object from the optical path;
A second detection system detects the light separated by the beam splitter, and upon receiving the detection signal of the second detection system, the output of the first detection system is blocked and detected when the detection signal is input. An assembly accuracy measuring device comprising: a control circuit that controls passing when no signal is input.
JP16817281A 1981-10-21 1981-10-21 Measuring device for assembling accuracy Granted JPS5870109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16817281A JPS5870109A (en) 1981-10-21 1981-10-21 Measuring device for assembling accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16817281A JPS5870109A (en) 1981-10-21 1981-10-21 Measuring device for assembling accuracy

Publications (2)

Publication Number Publication Date
JPS5870109A JPS5870109A (en) 1983-04-26
JPS6230566B2 true JPS6230566B2 (en) 1987-07-03

Family

ID=15863130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16817281A Granted JPS5870109A (en) 1981-10-21 1981-10-21 Measuring device for assembling accuracy

Country Status (1)

Country Link
JP (1) JPS5870109A (en)

Also Published As

Publication number Publication date
JPS5870109A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
US3989385A (en) Part locating, mask alignment and mask alignment verification system
JPH036460B2 (en)
US4874246A (en) Arrangement for optically measuring a distance between a surface and a reference plane
US4886362A (en) Appratus for measuring the profile of an aspherical surface
EP1336095B1 (en) Measurement of surface defects
JPH05232035A (en) System for monitoring space filter and surface structure
JPH0256604B2 (en)
JPS6230566B2 (en)
US4597668A (en) Device for checking positional accuracy
JPS5833104A (en) Device for measuring assembling accuracy
JPH0224843A (en) Optical pickup device
JP3326645B2 (en) Detecting head flying height measuring device and measuring method
JPS6071903A (en) Device for inspecting optical disc
JPH1083580A (en) Optical disk measuring instrument
JPS6360324B2 (en)
JPH0128403Y2 (en)
JP3365881B2 (en) Lens refractive index inspection device
JP2591143B2 (en) 3D shape measuring device
JPH0331367B2 (en)
JPH03252513A (en) Parabolic antenna surface measuring instrument
JPS6217607A (en) Optical clinometer
JPS63289429A (en) Double refraction measuring device
JPH03251708A (en) Shape measuring apparatus for parabolic antenna surface
JPH0829664A (en) Method for detecting position of measured object
JPS6371608A (en) Eccentricity measuring instrument