JPH03251708A - Shape measuring apparatus for parabolic antenna surface - Google Patents

Shape measuring apparatus for parabolic antenna surface

Info

Publication number
JPH03251708A
JPH03251708A JP5002490A JP5002490A JPH03251708A JP H03251708 A JPH03251708 A JP H03251708A JP 5002490 A JP5002490 A JP 5002490A JP 5002490 A JP5002490 A JP 5002490A JP H03251708 A JPH03251708 A JP H03251708A
Authority
JP
Japan
Prior art keywords
measured
lens
laser beam
converging lens
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5002490A
Other languages
Japanese (ja)
Inventor
Tamayasu Yoshikawa
吉川 玉容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5002490A priority Critical patent/JPH03251708A/en
Publication of JPH03251708A publication Critical patent/JPH03251708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a surface shape from values of moving mechanism as given when a difference between outputs of two CCDs in down to zero by a method wherein a laser light is made parallel to be focused onto the surface to be measured and the reflected light thereof is divided in two to be incident into the two CCDs, the one arranged roughly before the focus of one lens and the other roughly after the focus of the other lens. CONSTITUTION:A laser light is made incident onto a surface to be measured through a converging lens 5 and the reflected laser light thereof is divided in two to be incident into two CCD sensors 9 and 10 through lenses 7 and 8. Here, the CCD sensors 9 and 10 are so arranged that the one thereof is before a focal length of one lens and the other after the focal length of the other lens. Then, outputs of output circuits 11 and 12 are inputted into a differential amplifier 13. Now, when a moving mechanism 21 of a detector section is moved and a distance between the converging lens 5 and the surface to be measured reaches the focal length, an output of a differential amplification circuit 13 is down to zero. In this manner, a moving mechanism 19 and a rotation mechanism 20 are moved with a control section 21 thereby enabling the measuring of a shape of the surface to be measured from a moving value thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パラボラアンテナ面形状測定装置に関し、特
にパラボラアンテナの組立時や検査時にパラボラアンテ
ナの面形状を非接触で測定するパラボラアンテナ面形状
測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a parabolic antenna surface shape measuring device, and particularly to a parabolic antenna surface shape measuring device for measuring the surface shape of a parabolic antenna in a non-contact manner during assembly or inspection of the parabolic antenna. Concerning a measuring device.

〔従来の技術〕[Conventional technology]

数個の電気マイクロメータ25をパラボラアンテナ1の
パラボラ面に当たる向きにこのパラボラアンテナ1の面
の理論上の放物曲線上に配置した測定用治具26と、こ
の測定用治具26を基準軸方向に移動させる治具移動機
構27と、測定用治具を基準軸を回転軸として回転させ
る回転機構28と、パラボラアンテナ1のパラボラ面を
保持しその姿勢を手動で調整できるセット用治具24と
を含んで構成される。
A measurement jig 26 has several electric micrometers 25 arranged on the theoretical parabolic curve of the plane of the parabolic antenna 1 in a direction that hits the parabolic surface of the parabolic antenna 1, and this measurement jig 26 is set as a reference axis. a jig moving mechanism 27 that moves the measurement jig in the direction; a rotation mechanism 28 that rotates the measurement jig about the reference axis; and a setting jig 24 that holds the parabolic surface of the parabolic antenna 1 and can manually adjust its posture. It consists of:

パラボラアンテナ1はパラボラ面を上にしてセット用治
具24にセットされる。電気マイクロメータ25はパラ
ボラアンテナ1のパラボラ面形状に合わせた外形をした
半片型の測定用治具26の外側に先端がパラボラアンテ
ナ1の理論上の放物曲線上に並ぶように等間隔に複数個
、放物曲線の接線方向と直角外向きに配置されている。
The parabolic antenna 1 is set on the setting jig 24 with the parabolic surface facing upward. A plurality of electric micrometers 25 are arranged at equal intervals on the outside of a half-piece type measuring jig 26 whose outer shape matches the shape of the parabolic surface of the parabolic antenna 1 so that the tips are aligned on the theoretical parabolic curve of the parabolic antenna 1. , are placed outward at right angles to the tangent direction of the parabolic curve.

この測定用治具26を治具移動機構27により移動させ
て電気マイクロメータ25をパラボラアンテナ1に当て
てその複数個の電気マイクロメータ25のうちの両端の
2個の測定値が0になるようにパラボラアンテナ1の姿
勢を手動で調整し残りの電気マイクロメータの値を読み
それを記録する。
The measuring jig 26 is moved by the jig moving mechanism 27 and the electric micrometer 25 is applied to the parabolic antenna 1 so that the measured values of two at both ends of the plurality of electric micrometers 25 become 0. Manually adjust the attitude of the parabolic antenna 1, read the remaining electric micrometer value, and record it.

次に回転機構28により測定用治具26を回転させて複
数の回転位置で電気マイクロメータ25の値を読み測定
を行っていた。
Next, the measuring jig 26 was rotated by the rotating mechanism 28, and the values of the electric micrometer 25 were read at a plurality of rotational positions to perform measurements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のパラボラアンテナ面形状測定装置はパラ
ボラアンテナ面の形状と電気マイクロメータのプローブ
の形状とによっては第8図に示すようにプローブの接触
点が測定したい点と異なってしまうことがあり測定値の
誤差が大きくなってしまう。
With the conventional parabolic antenna surface shape measuring device described above, depending on the shape of the parabolic antenna surface and the shape of the electric micrometer probe, the contact point of the probe may differ from the point to be measured, as shown in Figure 8. The error in the value becomes large.

また測定値は電気マイクロメータの測定可能な方向成分
の変位量のみであり各測定点での傾きの値が測定できな
い。
Moreover, the measured value is only the displacement amount of the directional component that can be measured by the electric micrometer, and the value of the inclination at each measurement point cannot be measured.

また測定するパラボラアンテナの大きさや形状が異なる
場合にはそれに合わせた測定用治具がパラボラアンテナ
の種類数だけ必要になり、測定用治具の製作、保管、精
度管理が大変であるという欠点があった。
In addition, if the size or shape of the parabolic antennas to be measured differs, measurement jigs for each type will be required for each type of parabolic antenna, making it difficult to manufacture, store, and control the accuracy of the measurement jigs. there were.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のパラボラアンテナ面形状測定装置は光源である
レーザと、そのレーザより出射するレーザ光を平行光に
近くするコリメータレンズと、平行光に近くされた出射
レーザ光を被測定面上収束させる第1の収束レンズと、
出射レーザ光を2つに分割しかつ被測定面で反射し前記
第1の収束レンズを通った反射レーザ光を出射レーザ光
と分離する第1のミラーと、分離された反射レーザ光と
2つに分離するビームスプリッタ−と、その2つに分け
られたレーザ光をそれぞれ収束させる第2、第3の収束
レンズと、収束したレーザ光の焦点の一方は直前に、他
方は直後に位置し、かつ光軸に垂直に配置された2つの
1次元CCDセンサと、それぞれの1次元CCDセンサ
上のスポット径に比例した出力を出す2つの出力回路と
、前記出力回路の出力の差を検出する差動増幅回路とか
ら構成される距離検出部と、前記第1のミラーで分割さ
れかつ第1の収束レンズと通過しない出射レーザ光を被
測定面に斜めに照射し反射させる第2のミラーと、該第
2のミラーで被測定面に照射され反射する反射レーザ光
の位置を検出する位置検出器とから構成される角度検出
部と、被測定物であるパラボラアンテナを保持するアン
テナ保持部と、そのアンテナ保持部で規定される面に対
する基準軸と、前記距離検出部を保持しそれを基準軸に
平行な方向に移動する機能を持つ検出部移動機能と、そ
の検出部移動機能を前記基準軸を中心に前記基準軸と直
角な平面上で回転させる回転機能と、前記各部を制御す
る制御部とを含んで構成される。
The parabolic antenna surface shape measuring device of the present invention includes a laser as a light source, a collimator lens that makes the laser light emitted from the laser nearly parallel light, and a collimator lens that converges the emitted laser light that is made nearly parallel light on the surface to be measured. 1 converging lens,
a first mirror that divides the emitted laser beam into two, reflects the reflected laser beam on the surface to be measured, and separates the reflected laser beam that passes through the first converging lens from the emitted laser beam; and the separated reflected laser beam; a beam splitter that separates the laser beam into two, second and third converging lenses that respectively converge the two divided laser beams, one of the focal points of the converged laser beam is located immediately before, and the other is located immediately after, and two one-dimensional CCD sensors arranged perpendicular to the optical axis, two output circuits that output an output proportional to the spot diameter on each one-dimensional CCD sensor, and a difference between the outputs of the output circuits. a distance detecting section composed of a dynamic amplification circuit; a second mirror that obliquely irradiates and reflects the emitted laser light that is divided by the first mirror and does not pass through the first converging lens onto the surface to be measured; an angle detecting section that includes a position detector that detects the position of the reflected laser beam that is irradiated onto the surface to be measured and reflected by the second mirror; and an antenna holding section that holds a parabolic antenna that is the object to be measured; A reference axis with respect to the plane defined by the antenna holding section, a detection section movement function that holds the distance detection section and moves it in a direction parallel to the reference axis, and a detection section movement function that has the function of holding the distance detection section and moving it in a direction parallel to the reference axis. It is configured to include a rotation function for rotating on a plane perpendicular to the reference axis around the reference axis, and a control section for controlling each of the sections.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す構成図である。第2図
は第1図の距離検出機構14の詳細図である。第1図、
第2図において、本発明の一実施例はパラボラアンテナ
の面形状を測定するパラボラアンテナ面形状測定装置で
、光源であるレーザ2と、コリメータレンズ3と、ハー
フミラ−4ど、収束レンズ5と、ビームスプリッタ−6
と、収束レンズ7および8と、収束したレーザ光の焦点
の一方は直前に、他方は直後に位置し、かつ光軸に垂直
に配置された2つの1次元CCDセンサ9および10と
、それぞれの1次元CCDセンサ上のスポット径に比例
した出力を出す2つの出力回路11および12と、出力
回路11.12の出力の差を検出する差動増幅回路13
とから構成される距離検出部14と、ミラー15と、収
束レンズ16と、位置検出器17とから構成される角度
検出部18と、被測定物であるパラボラアンテナを保持
するアンテナ保持部19と、そのアンテナ保持部で規定
される面に対する基準軸20と、距離検出部14を保持
しそれを基準軸に平行な方向に移動する機能を持つ検出
部移動機能21と、その検出部移動機能を基準軸を中心
に基準軸と直角な平面上で回転させる回転機能22と、
各部を制御する制御部23とから構成される。
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a detailed diagram of the distance detection mechanism 14 of FIG. 1. Figure 1,
In FIG. 2, one embodiment of the present invention is a parabolic antenna surface shape measuring device for measuring the surface shape of a parabolic antenna, which includes a laser 2 as a light source, a collimator lens 3, a half mirror 4, etc., a converging lens 5, Beam splitter 6
, converging lenses 7 and 8, and two one-dimensional CCD sensors 9 and 10, one of which is located immediately in front of the converged laser beam and the other is located immediately after, and which are arranged perpendicular to the optical axis. Two output circuits 11 and 12 that output an output proportional to the spot diameter on the one-dimensional CCD sensor, and a differential amplifier circuit 13 that detects the difference between the outputs of the output circuits 11 and 12.
An angle detection section 18 consisting of a mirror 15, a converging lens 16, and a position detector 17, and an antenna holding section 19 that holds a parabolic antenna as an object to be measured. , a reference axis 20 for the plane defined by the antenna holding part, a detection part movement function 21 having a function of holding the distance detection part 14 and moving it in a direction parallel to the reference axis, and the detection part movement function. a rotation function 22 that rotates around a reference axis on a plane perpendicular to the reference axis;
It is composed of a control section 23 that controls each section.

光源であるレーザ2とコリメータレンズ3との間の距離
をコリメータレンズ3の焦点距離に等しくしておくと、
レーザ2より出射した出射レーザ光はコリメータレンズ
3を通過して平行光となる。平行光にされた出射レーザ
光は、ハーフミラ−4で2つに分割し直進し通過した出
射レーザ光は収束レンズ5で被測定面上に収束され被測
定面上で反射する。
If the distance between the light source laser 2 and the collimator lens 3 is set equal to the focal length of the collimator lens 3, then
The emitted laser light emitted from the laser 2 passes through the collimator lens 3 and becomes parallel light. The output laser beam, which has been made into a parallel beam, is split into two by a half mirror 4, and the output laser beam that has passed through the parallel beam is converged onto the surface to be measured by the converging lens 5, and is reflected on the surface to be measured.

被測定面上で反射した反射レーザ光は再び収束レンズ5
を通過し、ハーフミラ−4に入射し2つに分割される。
The reflected laser beam reflected on the surface to be measured passes through the converging lens 5 again.
The beam passes through the beam, enters the half mirror 4, and is split into two.

ハーフミラ−4で反射レーザ光は入射レーザ光と分離さ
れビームスプリッタ−6に入射し2つに分けられる。ビ
ームスプリッタ−6を通過し直進した反射レーザ光は収
束レンズ7を通過し収束される。収束された反射レーザ
光は反射レーザ光の光軸に垂直に置かれた1次元CCD
センサ9に入射し、入射した反射レーザ光のスポット径
に比例した出力が出力回路11から出力される。ここで
収束レンズ7の第2主点から1次元CCDセンサ9まで
の距離をAとする。
The reflected laser beam is separated from the incident laser beam by the half mirror 4, enters the beam splitter 6, and is split into two beams. The reflected laser light that has passed through the beam splitter 6 and gone straight passes through a converging lens 7 and is converged. The focused reflected laser beam is passed through a one-dimensional CCD placed perpendicular to the optical axis of the reflected laser beam.
The output circuit 11 outputs an output proportional to the spot diameter of the reflected laser beam that is incident on the sensor 9 . Here, let A be the distance from the second principal point of the converging lens 7 to the one-dimensional CCD sensor 9.

ビームスプリッタ−6を通過し光軸の変えられた反射レ
ーザ光は直進した反射レーザ光と同じく収束レンズ7を
通過し収束される。収束した反射レーザ光は反射レーザ
光の光軸に垂直に置かれた1次元CCDセンサ10に入
射し、入射したレーザ光のスポット径に比例した出力が
出力回路12からが出力される。差動増幅回路13は出
力回路11と出力回路12の出力の差を増幅して出力す
る。ここで収束レンズ8から1次元CCDセンサ10ま
での距離をBとする。
The reflected laser light whose optical axis has been changed after passing through the beam splitter 6 passes through the converging lens 7 and is converged in the same way as the reflected laser light that has traveled straight. The converged reflected laser beam enters a one-dimensional CCD sensor 10 placed perpendicular to the optical axis of the reflected laser beam, and an output circuit 12 outputs an output proportional to the spot diameter of the incident laser beam. The differential amplifier circuit 13 amplifies and outputs the difference between the outputs of the output circuit 11 and the output circuit 12. Here, the distance from the converging lens 8 to the one-dimensional CCD sensor 10 is assumed to be B.

収束レンズ5と収束レンズ7と収束レンズ8は、同じレ
ンズを使用し、またその後側焦点距離をFとする。
The same lens is used for the converging lens 5, the converging lens 7, and the converging lens 8, and the focal length of the rear side is F.

ここで距離A、Hの関係を次のように設定する。Here, the relationship between distances A and H is set as follows.

A=F+dX   (a)式 B=F−dX   (b)式 いま収束レンズ5と被測定面との距離をSとし、距離検
出部14を検出部移動機120で基準軸19に平行に移
動して行くとS=Fとなったとき、収束レンズ5で収束
される出射レーザ光は被測定面上で焦点を結ぶ。このと
き被測定面で反射した反射レーザ光は収束レンズ7を通
過した後平行光となる。
A=F+dX (a) Equation B=F-dX (b) Equation Now let the distance between the converging lens 5 and the surface to be measured be S, and move the distance detection section 14 parallel to the reference axis 19 using the detection section moving device 120. When S=F, the emitted laser beam converged by the converging lens 5 is focused on the surface to be measured. At this time, the reflected laser light reflected from the surface to be measured becomes parallel light after passing through the converging lens 7.

平行光となった反射レーザ光が収束レンズ7と、収束レ
ンズ8に入射するとそれぞれの後側焦点距離Fの位置に
焦点を結ぶ。この時出力回路11の出力を縦軸、検出部
移動機構21の移動距離りを横軸にとりグラフ化すると
第4図になり、出力回路12の出力を縦軸、検出部移動
機構21の移動距離りを横軸にとりグラフ化すると第5
図になる。差動増幅回路13の出力を縦軸、検出部移動
機構21の移動距離りを横軸にとりグラフ化すると、第
6図のような曲線になり、これは第4図と第5図の差に
相当する。
When the reflected laser light that has become parallel light enters the converging lens 7 and the converging lens 8, it is focused at the position of the rear focal length F of each. At this time, if the output of the output circuit 11 is plotted on the vertical axis and the moving distance of the detecting section moving mechanism 21 is plotted on the horizontal axis, it becomes a graph as shown in FIG. When plotted on the horizontal axis and graphed, the fifth
It becomes a diagram. If you plot the output of the differential amplifier circuit 13 on the vertical axis and the moving distance of the detection unit moving mechanism 21 on the horizontal axis, you will get a curve like that shown in Figure 6, which is the difference between Figures 4 and 5. Equivalent to.

レーザ光の形状は焦点で対称となっているので検出部移
動機構21を移動させると、収束レンズ5と被測定面と
の距離がFと等しくなったとき1次元ラインセンサー9
と1次元ラインセンサー10とに入射する反射レーザ光
の径は等しくなる。
Since the shape of the laser beam is symmetrical at the focal point, when the detection unit moving mechanism 21 is moved, when the distance between the converging lens 5 and the surface to be measured becomes equal to F, the one-dimensional line sensor 9
The diameters of the reflected laser beams incident on the one-dimensional line sensor 10 and the one-dimensional line sensor 10 are equal.

つまり、第3図、第4図の縦軸の値が等しいときの横軸
の値は収束レンズ5と被測定面との距離がFに等しいと
きに相当する。第6図は第4図と第5図の差に相当して
いるので、このとき差動増幅回路の出力はゼロとなる。
In other words, the value on the horizontal axis when the values on the vertical axis in FIGS. 3 and 4 are equal corresponds to when the distance between the converging lens 5 and the surface to be measured is equal to F. Since FIG. 6 corresponds to the difference between FIG. 4 and FIG. 5, the output of the differential amplifier circuit becomes zero at this time.

このように差動増幅回路14の出力の値がOとなる時は
収束レンズ5と被測定面との距離が収束レンズ5の焦点
距離Fに等しい。
In this way, when the value of the output of the differential amplifier circuit 14 is O, the distance between the converging lens 5 and the surface to be measured is equal to the focal length F of the converging lens 5.

このとき収束レンズ5を通過した出射レーザ光が被測定
面上で反射する位置が測定点である。ミラー15の位置
はミラー15で反射した出射レーザ光が被測定点に来る
ようにしておく、ミラー15で反射し収束レンズ16で
収束され、被測定面上の測定点で反射した反射レーザ光
は位置検出器17に入射する。
At this time, the position where the emitted laser beam that has passed through the converging lens 5 is reflected on the surface to be measured is the measurement point. The position of the mirror 15 is set so that the output laser beam reflected by the mirror 15 comes to the measurement point.The reflected laser beam is reflected by the mirror 15 and converged by the converging lens 16, and the reflected laser beam reflected by the measurement point on the measurement surface is The light enters the position detector 17.

位置検出器17の入射位置がわかると、位置検出部各部
品間の距離は検知であり、収束レンズ5と測定点との距
離は収束レンズ5の焦点距離であるので、被測定面の測
定点の傾きを検出できる。
When the incident position of the position detector 17 is known, the distance between each component of the position detection unit is detected, and the distance between the converging lens 5 and the measurement point is the focal length of the convergence lens 5, so the measurement point on the surface to be measured is determined. can detect the inclination of

以上の手順で、各測定点で差動増幅回路14の出力の値
が0となるように検出部移動機構19、回転機構20、
とを制御部21で移動し、その移動距離から被側面の形
状を測定する。
With the above procedure, the detection unit moving mechanism 19, rotation mechanism 20,
is moved by the control unit 21, and the shape of the surface to be covered is measured from the moving distance.

〔発明の効果〕〔Effect of the invention〕

本発明のパラボラアンテナ面形状測定装置は、従来の装
置のように電気マイクロメータの値を読みながら作業者
位1合わせを行い、電気マイクロメータの値を読み取り
測定を行う代わりに、レーザからレーザ光を出射させ、
その出射レーザ光をコリメータレンズで平行光にし、そ
の平行光になった出射レーザ光を分割しそれを被測定面
上に第1の収束レンズで収束させ被測定面で反射し、こ
の収束レンズを通った反射レーザ光を出射レーザ光と分
離し、分離された反射レーザ光を反射レーザ光をビーム
スプリッタ−で2分割し、それぞれの反射レーザ光を第
2.第3の収束レンズで収束し、その収束レンズの後側
焦点から等距離だけレンズから近くに置かれた1次元ラ
インセンサーと遠くに置かれた1次元CCDセンサとの
出力の差がゼロになったとき第1の収束レンズと被測定
面との距離がこの第1の収束レンズの焦点距離Fと等し
くなることを利用し、パラボラアンテナ面の形状を測定
するため、パラボラアンテナ面と距離検出部の出射レー
ザ光とのなす角度が90度ではなくても、またパラボラ
アンテナの大きさや形状が異なっても、パラボラアンテ
ナ面の形状を非接触で正確に測定でき、また多数の測定
用治具の製作、保管、精度管理が不要となる効果がある
The parabolic antenna surface shape measuring device of the present invention uses a laser beam from a laser instead of adjusting the worker's position while reading the value of an electric micrometer and measuring by reading the value of the electric micrometer as in the conventional device. Emits the
The emitted laser beam is made into parallel light by a collimator lens, and the parallel emitted laser beam is split and converged onto the surface to be measured by a first converging lens and reflected by the surface to be measured. The reflected laser beam that has passed is separated from the emitted laser beam, the separated reflected laser beam is split into two by a beam splitter, and each reflected laser beam is split into two. The third converging lens converges, and the difference in output between the one-dimensional line sensor placed close to the lens and the one-dimensional CCD sensor placed far away from the lens by an equal distance from the rear focal point of the converging lens becomes zero. In order to measure the shape of the parabolic antenna surface by utilizing the fact that the distance between the first converging lens and the surface to be measured is equal to the focal length F of this first converging lens, Even if the angle with the emitted laser beam is not 90 degrees, or the size or shape of the parabolic antenna is different, the shape of the parabolic antenna surface can be accurately measured without contact, and it is possible to use a large number of measurement jigs. This has the effect of eliminating the need for production, storage, and quality control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の距離検出部15の検出検出原理と角度検出部17の
角度検出原理を示す図、第3図はパラボラアンテナ面の
反射状態を示す図、第4図は第1図に示す1次元CCD
センサ9の出力電流波形を示す図、第5図は第1図に示
す1次元CCDセンサ10の出力電流波形を示す図、第
8図は第1図に示す差動増幅回路13の出力波形を示す
図、第7図は従来のパラボラアンテナ測定装置を示す図
、第8図はプローブとパラボラアンテナ面との接触の様
子を示す図である。 1・・・パラボラアンテナ、2・・・レーザ、3・・・
コリメータレンズ、4・・・ハーフミラ−5,7,8゜
16・・・収束レンズ、6・・・ビームスプリッタ−9
,10・・・1次元CCDセンサ、11.12・・・出
力回路、13・・・差動増幅回路、14・・・距離検出
部、15・・・ミラー、17・・・位置検出器、18・
・・角度検出部、19・・・アンテナ保持部、20・・
・基準軸、21・・・検出部移動機構、22.28・・
・回転機構、23・・・制御部、24・・・セット用治
具、25・・・電気マイクロメータ、26・・・測定用
治具、27・・・治具移動機構。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
3 is a diagram showing the reflection state of the parabolic antenna surface, and FIG. 4 is a one-dimensional CCD shown in FIG. 1.
5 is a diagram showing the output current waveform of the sensor 9, FIG. 5 is a diagram showing the output current waveform of the one-dimensional CCD sensor 10 shown in FIG. 1, and FIG. 8 is a diagram showing the output current waveform of the differential amplifier circuit 13 shown in FIG. FIG. 7 is a diagram showing a conventional parabolic antenna measuring device, and FIG. 8 is a diagram showing the state of contact between the probe and the parabolic antenna surface. 1... Parabolic antenna, 2... Laser, 3...
Collimator lens, 4...Half mirror-5, 7, 8゜16...Converging lens, 6...Beam splitter-9
, 10... One-dimensional CCD sensor, 11.12... Output circuit, 13... Differential amplifier circuit, 14... Distance detection section, 15... Mirror, 17... Position detector, 18・
...Angle detection section, 19...Antenna holding section, 20...
・Reference axis, 21...Detection unit moving mechanism, 22.28...
- Rotating mechanism, 23... Control unit, 24... Setting jig, 25... Electric micrometer, 26... Measuring jig, 27... Jig moving mechanism.

Claims (1)

【特許請求の範囲】[Claims] 光源であるレーザと、そのレーザより出射するレーザ光
を平行光に近くするコリメータレンズと、平行にされた
出射レーザ光を被測定面に収束させる第1の収束レンズ
と、出射レーザ光を2つに分割しかつ、前記収束レンズ
を通った反射レーザ光を出射レーザ光と分離する第1の
ミラーと、分離された反射レーザ光を2つに分離するビ
ームスプリッターと、その2つに分けられた反射レーザ
光をそれぞれ収束させる第2、第3の収束レンズと、収
束したレーザ光の焦点の一方は直前に、他方は直後に位
置し、かつ光軸に垂直に配置された2つの1次元CCD
センサと、それぞれの1次元CCDセンサ上のスポット
径に比例した出力を出す2つの出力回路と、前記出力回
路の出力の差を検出する差動増幅回路とから構成される
距離検出部と、前記第1のミラーで分割されかつ第1の
収束レンズと通過しない出射レーザ光を被測定面に斜め
に照射し反射させる第2のミラーと、該第2のミラーで
被測定面に照射され反射する反射レーザ光の位置を検出
する位置検出器とから構成される角度検出部と、被測定
物であるパラボラアンテナを保持するアンテナ保持部と
、そのアンテナ保持部で規定される面に対する基準軸と
、前記距離検出部を保持しそれを基準軸に平行な方向に
移動する機能を持つ検出部移動機能と、その検出部移動
機能を前記基準軸を中心に前記基準軸と直角な平面上で
回転させる回転機能と、前記各部を制御する制御部とを
含むことを特徴とするパラボラアンテナ面形状測定装置
A laser as a light source, a collimator lens that makes the laser light emitted from the laser nearly parallel light, a first converging lens that converges the collimated emitted laser light onto the surface to be measured, and two emitted laser lights. a first mirror that separates the reflected laser beam that has passed through the converging lens from the emitted laser beam; and a beam splitter that separates the separated reflected laser beam into two; second and third converging lenses that respectively converge the reflected laser beams; one of the focal points of the converged laser beams is located immediately before, and the other is located immediately after, and two one-dimensional CCDs are arranged perpendicular to the optical axis.
a distance detection section comprising a sensor, two output circuits that output an output proportional to the spot diameter on each one-dimensional CCD sensor, and a differential amplifier circuit that detects a difference in the outputs of the output circuits; A second mirror that obliquely irradiates and reflects the emitted laser light that is split by the first mirror and does not pass through the first converging lens onto the surface to be measured; and a second mirror that irradiates the surface to be measured and reflects it. an angle detection section including a position detector that detects the position of the reflected laser beam; an antenna holding section that holds a parabolic antenna as a measurement object; a reference axis relative to a plane defined by the antenna holding section; a detection unit movement function that holds the distance detection unit and moves it in a direction parallel to the reference axis; and a detection unit movement function that rotates the detection unit movement function about the reference axis on a plane perpendicular to the reference axis. A parabolic antenna surface shape measuring device comprising a rotation function and a control section that controls each of the sections.
JP5002490A 1990-02-28 1990-02-28 Shape measuring apparatus for parabolic antenna surface Pending JPH03251708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002490A JPH03251708A (en) 1990-02-28 1990-02-28 Shape measuring apparatus for parabolic antenna surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002490A JPH03251708A (en) 1990-02-28 1990-02-28 Shape measuring apparatus for parabolic antenna surface

Publications (1)

Publication Number Publication Date
JPH03251708A true JPH03251708A (en) 1991-11-11

Family

ID=12847432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002490A Pending JPH03251708A (en) 1990-02-28 1990-02-28 Shape measuring apparatus for parabolic antenna surface

Country Status (1)

Country Link
JP (1) JPH03251708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059805A (en) * 2018-08-22 2018-12-21 西安空间无线电技术研究所 A kind of day line style face precision method for fast measuring
RU2725030C1 (en) * 2020-01-09 2020-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Device for measuring shape of arbitrary reflecting surface of antenna system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059805A (en) * 2018-08-22 2018-12-21 西安空间无线电技术研究所 A kind of day line style face precision method for fast measuring
RU2725030C1 (en) * 2020-01-09 2020-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Device for measuring shape of arbitrary reflecting surface of antenna system

Similar Documents

Publication Publication Date Title
US5608530A (en) Inspection device for measuring a geometric dimension of a part
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
US4483618A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
US4204772A (en) Optical measuring system
US4088408A (en) Device for measuring the contour of a surface
US4390277A (en) Flat sheet scatterometer
JPH04504762A (en) Method and apparatus for inspecting optical elements or systems
JPH02165029A (en) Method and apparatus for checking position
US6759669B2 (en) Multi-point distance measurement device
JPH03251708A (en) Shape measuring apparatus for parabolic antenna surface
JPH03252513A (en) Parabolic antenna surface measuring instrument
JPS62144014A (en) Photoelectric position detector
JP2001165629A (en) Shape measuring device and shape measuring method
GB2135150A (en) Optical inspection system
JPH0479522B2 (en)
JP3192461B2 (en) Optical measuring device
JPH02140608A (en) Measuring instrument for surface shape
JPH0439522Y2 (en)
JPS6266111A (en) Optical distance detecting device
JP2003161610A (en) Optical measurement device
JPH0471453B2 (en)
JPH0534120A (en) Method and apparatus for measuring shape of surface
JP2024029719A (en) Shape measurement device, and shape measurement method
Lane et al. High-speed volume measurement system
JPH03186709A (en) Optical shape measuring method