JPS62299905A - Two-wavelength separation filter - Google Patents

Two-wavelength separation filter

Info

Publication number
JPS62299905A
JPS62299905A JP14512186A JP14512186A JPS62299905A JP S62299905 A JPS62299905 A JP S62299905A JP 14512186 A JP14512186 A JP 14512186A JP 14512186 A JP14512186 A JP 14512186A JP S62299905 A JPS62299905 A JP S62299905A
Authority
JP
Japan
Prior art keywords
layer
wavelength
refractive index
transmittance
index material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14512186A
Other languages
Japanese (ja)
Inventor
Shinji Uchida
真司 内田
Takaaki Tomita
孝明 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14512186A priority Critical patent/JPS62299905A/en
Publication of JPS62299905A publication Critical patent/JPS62299905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To steepen the rise of a transmittance characteristics and to remarkably improve the transmittance in a transmission band and reflectivity in a reflection band by forming a titled filter into a 40-layered structure by using a high refractive index material and low refractive index material and forming a specific film constitution. CONSTITUTION:A substrate material is one of flint glass and has about 1.66 refractive index. The 40-layered 2-wavelength sepn. filter consisting of the high refractive index material TiO2 and the low refractive index material SiO2 is formed on said substrate. The TiO2 is formed as the layers of the odd numbers counted from the substrate and the SiO2 as the layers of the even numbers in the film constitution. The optical film thicknesses of the respective layers are so determined that the optical film thicknesses of the 3rd layer, 8th layer, 14th layer, 20th layer, 26th layer, 32nd layer and 37th layer are about lambda0/2 and the rest are lambda0/4 when the design wavelength is designated as lambda0. The rise characteristic is thereby steeped and the two-wavelength sepn. filter which is improved in the reflectivity and transmittance in the use wavelength band is obtd.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、光デイスクファイル装置などに使用される2
波長分離フィルターに関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention is used for optical disk file devices, etc.
This relates to wavelength separation filters.

従来の技術 近年、静止画ディスクファイル装置2交書ファイル装置
など、大容量の情報記憶装置として光デイスク装置の開
発、商品化が活発化している。な2 ・\−7′ かても、消去書き換え機能を有する光デイスク装置の光
学ヘッドの開発が活発化しており、光学ヘッドを更に小
型化、高性能化する試みが種々なされている。
2. Description of the Related Art In recent years, optical disk devices have been actively developed and commercialized as large-capacity information storage devices, such as still image disk file devices and correspondence file devices. 2.\-7' The development of optical heads for optical disk devices having an erasing/rewriting function is becoming more active, and various attempts are being made to further reduce the size and improve the performance of optical heads.

係る光学ヘッドを実現するためには、波長λ1=780
 nmのレーザービームと、波長λ2=830nmのレ
ーザービームとを分離する光学素子が必要不可欠とされ
ている。
In order to realize such an optical head, the wavelength λ1=780
An optical element that separates a laser beam with wavelength λ2=830 nm from a laser beam with wavelength λ2=830 nm is essential.

以後このような機能を有する光学素子を2波長分離フィ
ルターと呼ぶことにする。
Hereinafter, an optical element having such a function will be referred to as a two-wavelength separation filter.

従来より誘電体多層膜を用いて、2波長分離フィルター
を実現してきた。例えば、高屈折率材料としてT * 
02 、低屈折率材料としてS iO2を交互に積層し
て所望の特性を得ようとするものである。
Conventionally, two-wavelength separation filters have been realized using dielectric multilayer films. For example, T* as a high refractive index material
02, attempts to obtain desired characteristics by alternately stacking SiO2 as a low refractive index material.

膜層数を23層とした場合の従来の膜構成を第7図に示
す。基盤から数えて1層目はTiO2,2層目はS 1
02.3層目はT 102というように交互に積層され
ている。
FIG. 7 shows a conventional film structure in which the number of film layers is 23. Counting from the base, the first layer is TiO2, the second layer is S1
02. The third layer is T102, which are alternately laminated.

中心波長をλOとすると、光学的膜厚は、第4層、第1
2層、第20層が約λO/2その他が3 ぺ−7 λO/4となっている。
If the center wavelength is λO, the optical film thickness is the 4th layer, the 1st layer,
The second layer and the 20th layer are approximately λO/2, and the other layers are 3 P7 λO/4.

T z O2の屈折率をn−2,20、S 102の屈
折率をn=1.46.中心波長をλO=830nmとし
た場合の透過率特性の一例を第8図に示す。
The refractive index of T z O2 is n-2.20, and the refractive index of S 102 is n=1.46. FIG. 8 shows an example of transmittance characteristics when the center wavelength is λO=830 nm.

ここで、縦軸が透過率(単位%)であり、横軸が波長(
単位:nm)である。図中左側の点線はλ1=780n
mであり、右側の点線はλ22−830nを表わす。
Here, the vertical axis is the transmittance (unit: %), and the horizontal axis is the wavelength (unit: %).
Unit: nm). The dotted line on the left side of the figure is λ1 = 780n
m, and the dotted line on the right side represents λ22-830n.

発明が解決しようとする問題点 このような膜構成の2波長分離フィルターを光学ヘッド
に用いた際、問題になる点を説明する。
Problems to be Solved by the Invention Problems that arise when a two-wavelength separation filter having such a film configuration is used in an optical head will be explained.

本2波長分離フィルターは、波長λ、=780nmの光
を反射させ、波長λ22−830nの光を透過させたり
、波長λ、=780nmの光を透過させ、波長λ2−8
30 n mの光を反射させたりするものである。
This two-wavelength separation filter reflects light with a wavelength λ = 780nm and transmits light with a wavelength λ22-830n, or transmits light with a wavelength λ = 780nm, and transmits light with a wavelength λ2-830n.
It reflects light of 30 nm.

この際、透過すべき光が反射したり、反射すべき光が透
過したりすると、それらの光が光学ヘッドの検出系に到
達し悪影響を与える。
At this time, if light that should be transmitted is reflected or light that should be reflected is transmitted, these lights will reach the detection system of the optical head and have an adverse effect.

従って、透過波長領域では反射率が、反射波長領域では
透過率ができる限り小さくすることが、強く要望されて
いる。
Therefore, it is strongly desired that the reflectance be as small as possible in the transmission wavelength region and the transmittance as small as possible in the reflection wavelength region.

一般に半導レーザーの製造波長ばらつきは±1゜nmで
ある。また、誘電体多層膜は形成後、経時変化等により
透過率特性が長波長側または短波長側にシフトすること
が知られている。我々の実験によるとシフト量は約±8
nmであった。
Generally, the manufacturing wavelength variation of semiconductor lasers is ±1° nm. Furthermore, it is known that after the dielectric multilayer film is formed, the transmittance characteristics shift toward longer wavelengths or shorter wavelengths due to changes over time. According to our experiments, the shift amount is approximately ±8
It was nm.

従って、量産性という観点から薄膜系の設計段階からλ
1=780nm±18nm、λ2=:830nm+18
nmの波長範囲にわたって特性を満足していることが望
ましい。
Therefore, from the point of view of mass production, from the design stage of the thin film system, λ
1=780nm±18nm, λ2=:830nm+18
It is desirable that the characteristics be satisfied over a wavelength range of nm.

しかし、従来の膜構成ではλ1=780nm±18nm
では、約30チの光が透過し、λ2=83onm±18
nmでは約8−の光が反射してしまう。反射域から透過
域にかけての透過率特性の立上りを急峻にしてやること
により、前記波長域の特性を向上させてやることができ
るが、従来の膜構成では更に急峻にすることは困難であ
った。
However, in the conventional film configuration, λ1=780nm±18nm
Then, about 30 inches of light passes through, and λ2=83onm±18
At nm, about 8 - of light is reflected. By making the rise of the transmittance characteristic steeper from the reflection region to the transmission region, the characteristics in the wavelength region can be improved, but with conventional film configurations, it has been difficult to make the rise even steeper.

本発明はかかる点に鑑みてなされたもので、反射域から
透過域にかけての透過率特性、すなわち立上り特性を急
峻にしてやり、λ、=780nm±18nm6 ベー、
′ では反射率(透過率ンが、λ2= 830 n m±1
8nmでは透過率(反射率)が最大となるような膜構成
を提供することを目的としている。
The present invention was made in view of this point, and the transmittance characteristic from the reflection region to the transmission region, that is, the rise characteristic, is made steep, λ, = 780 nm ± 18 nm 6 b,
′, the reflectance (transmittance n) is λ2=830 nm±1
The objective is to provide a film configuration that maximizes transmittance (reflectance) at 8 nm.

問題点を解決するための手段 上記問題点を解決する本発明の技術的な手段は、高屈折
率物質、低屈折率物質とを用いた40層構造とし、基盤
より数えて奇数番目の層を高屈折率物質層、偶数番目の
層を低屈折率物質層とし、第3層、第8層、第14層、
第20層、第26層。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to have a 40-layer structure using a high refractive index material and a low refractive index material, with odd-numbered layers counting from the base. a high refractive index material layer, an even-numbered layer is a low refractive index material layer, a third layer, an eighth layer, a fourteenth layer,
20th layer, 26th layer.

第32層、第37層の光学的膜厚を設計波長をλOうし
て約λO/2とし、前記以外の光学的膜厚を約λO/4
という膜構成とすることである。
The optical thickness of the 32nd layer and the 37th layer is approximately λO/2, which is the design wavelength of λO, and the optical thickness of the other layers is approximately λO/4.
The membrane structure is as follows.

作  用 本発明は、上記膜構成を用いることにより、立上り特性
が急峻となり、使用波長帯での反射率。
Effect: By using the above-mentioned film structure, the present invention has a steep rise characteristic and a low reflectance in the used wavelength band.

透過率が改善された2波長分離フィルターを得ることが
できるものである。
A two-wavelength separation filter with improved transmittance can be obtained.

実施例 本発明の実施例を第1図に示す。基盤材料はフリントガ
ラスの1つであるBaFlo(商標9であ8  t(−
; す、屈折率は約1.66である。
EXAMPLE An example of the present invention is shown in FIG. The base material is BaFlo (trademark 9 and 8t(-
; The refractive index is approximately 1.66.

この基盤上に、高屈折率物質T z 02 、低屈折率
物質S 102からなる40層2波長分離フィルターが
形成されている。
On this base, a 40-layer two-wavelength separation filter consisting of a high refractive index material T z 02 and a low refractive index material S 102 is formed.

膜構成は、基盤から数えて奇数番目の層はTiO2゜偶
数番目の層はS to2が形成されている。各層の光学
的膜厚は設計波長をλOとすると、第3層。
The film structure is such that the odd-numbered layers counting from the substrate are TiO2°, and the even-numbered layers are Sto2. The optical thickness of each layer is the third layer, assuming the design wavelength is λO.

第8層、第14層、第20層、第26層、第32層、第
37層の光学的膜厚は約λO/2、それ以外はλO/4
となっている。
The optical thickness of the 8th layer, 14th layer, 20th layer, 26th layer, 32nd layer, and 37th layer is approximately λO/2, and the others are λO/4
It becomes.

光が本多層膜に垂直に入射した場合の透過率特性を第2
図aに示す。縦軸が透過率で横軸が波長である。なお設
計波長をλO=855nm、Tio2の屈折率をn =
 2−22 、 S 102の屈折率を1.46にして
いる。
The transmittance characteristics when light is perpendicularly incident on this multilayer film are
Shown in Figure a. The vertical axis is transmittance and the horizontal axis is wavelength. Note that the design wavelength is λO = 855 nm, and the refractive index of Tio2 is n =
2-22, the refractive index of S102 is set to 1.46.

λ、=780nm土18nmにおいては、透過率は低く
なり、λ2=830nm±18nmにおいては、透過率
が高くなり特性が著しく改善されている。
When λ=780 nm and 18 nm, the transmittance becomes low, and when λ2=830 nm±18 nm, the transmittance increases and the characteristics are significantly improved.

第2図すに、基盤ガラスとしてBK7を用いた場合の透
過率特性を示す。BaFloの場合と同様7 べ一 良好な結果が得られている。
Figure 2 shows the transmittance characteristics when BK7 is used as the base glass. Similar to the case of BaFlo, 7 better results were obtained.

第3図に、設fi−1波長λO−750nmの場合を示
す。
FIG. 3 shows a case where the setting fi-1 wavelength λO-750 nm.

第2図の場合は、長波長側(λ2−2−830nが透過
し、短波長側(λ1−=ysonm)が反射していたの
に対し、短波長側が透過し、長波長側が反射する逆の特
性になっている。
In the case of Figure 2, the long wavelength side (λ2-2-830n) was transmitted and the short wavelength side (λ1-=ysonm) was reflected, whereas the short wavelength side was transmitted and the long wavelength side was reflected. It has become a characteristic of

本膜構成は、設計波長を変えるだけでこのような、逆の
効果をも簡単に得ることができ、かつ良好な特性も実現
できる。
With this film configuration, such an opposite effect can be easily obtained by simply changing the design wavelength, and good characteristics can also be achieved.

次に、光が多層膜に対して21° の角度で入射(入射
角−21°)した時の特性fCついて説明する。
Next, the characteristic fC when light is incident on the multilayer film at an angle of 21° (incident angle -21°) will be described.

第4図がその透過率特性である。なおこのときの設計波
長はλO−855nmである。入射角21゜においても
λ1=780nm±18nmでの反射率は高く、λ22
−830n±18nmでの透過率も高くなっでおり良好
な特性が得られている。
Figure 4 shows its transmittance characteristics. Note that the design wavelength at this time is λO-855 nm. Even at an incident angle of 21°, the reflectance at λ1=780nm±18nm is high, and λ22
The transmittance at -830n±18nm is also high, and good characteristics are obtained.

前述の透過率特性は、薄膜系の設計波長の値によって決
定される。従って、設計波長の値によって、特性値が変
わるわけであるが、なかでもλ =780nm+18n
m=798nm、λ2= 830nm−18nm=81
2nmでの値が大きく影響をうける。これら波長での透
過率は、各種検出系に大きく影響を与えるため、これら
の影響を十分に考慮した上で設計波長を決定しなければ
ならない。
The transmittance characteristics described above are determined by the value of the design wavelength of the thin film system. Therefore, the characteristic values change depending on the value of the design wavelength, especially λ = 780nm + 18n
m=798nm, λ2=830nm-18nm=81
The value at 2 nm is greatly affected. Since the transmittance at these wavelengths greatly affects various detection systems, the design wavelength must be determined after fully considering these effects.

近年、上記λ、=798nm、λ2 = 812 n 
m での特性劣化が、非常に検出系に悪影響を与えると
して、半導体レーザーの波長を変更しようとする動向が
ある。すなわち、λ1=780nmの半導体レーザーを
より短波長側へ、λ2=83onmの半導体レーザーを
より長波長側へシフトする動きである。
In recent years, the above λ = 798 nm, λ2 = 812 n
There is a trend to change the wavelength of semiconductor lasers because the deterioration of characteristics at m2 has a very negative effect on the detection system. That is, the movement is to shift the semiconductor laser with λ1 = 780 nm to the shorter wavelength side and the semiconductor laser with λ2 = 83 onm to the longer wavelength side.

これにより、半導体レーザー、薄膜系の経時変化等によ
り、透過率特性が変化したとしても、十分に特性が実現
できるようにするものである。しかしこのときに問題と
なるのは、透過帯域の幅であるが、本膜構成の透過帯域
は約1100nもあり、これら半導体レーザー使用波長
変更にも十分に対応できるものである。
Thereby, even if the transmittance characteristics change due to aging of the semiconductor laser or thin film system, the characteristics can be sufficiently realized. However, the problem at this time is the width of the transmission band, and the transmission band of this film configuration is approximately 1100 nm, which is sufficient to accommodate changes in the wavelength used by these semiconductor lasers.

第6図に、その−例として、λ、=760nm 。In FIG. 6, as an example, λ = 760 nm.

λ=860nm、設計波長λO=863nmとした時の
透過率特性を示す。
The transmittance characteristics are shown when λ=860 nm and the design wavelength λO=863 nm.

9 ベーン 半導本レーザーの波長ばらつき、薄膜系の経時変化等に
よる波長シフトに対しても十分な余裕が生じ、これによ
り、薄膜系の製造においても、歩留りを著しく、向上で
きることが期待できる。
9. There is sufficient margin for wavelength shifts due to wavelength variations in vane semiconductor lasers, changes in thin film systems over time, etc., and it is therefore expected that yields can be significantly improved even in the production of thin film systems.

第6図に、高屈折率物質としてT * 02 、低屈折
率物質としてMgF2を用いた場合の透過率特性を示す
。TiOの屈折率を2.22 、 M(JF2の屈折率
を1.36.設計波長を876nm、入射角度を21°
 としている。立上りが急峻で、透過帯域幅が広く、か
つリップルが少ない特性を示している。
FIG. 6 shows transmittance characteristics when T*02 is used as the high refractive index material and MgF2 is used as the low refractive index material. The refractive index of TiO is 2.22, the refractive index of M (JF2 is 1.36), the design wavelength is 876 nm, and the incident angle is 21°.
It is said that It exhibits characteristics such as a steep rise, a wide transmission band width, and little ripple.

発明の効果 以上述べてきたように、本膜構成を用いることにより透
過率特性の立上りが、急峻となり、透過帯域での透過率
1反射帯域での反射率が著しく向上した高性能2波長分
離フィルターが実現でき、実用的にもきわめて有用であ
る。
Effects of the Invention As mentioned above, by using this film structure, the rise of the transmittance characteristics becomes steeper, and the transmittance in the transmission band and the reflectance in the reflection band are significantly improved, resulting in a high-performance two-wavelength separation filter. can be realized and is extremely useful from a practical standpoint.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における2波長分離フィルタ
ーの構成を示す図、第2図aは同2波長分離フィルター
の基盤にBaFloを用い設計波長10  t=−> がλO=865nmの場合のその透過率特性を示す特性
図、第2図すは同基盤にBK7を用いた場合の透過率特
性を示す特性図、第3図は同設計波長がλO=750n
mでの透過率特性を示す特性図、第4図は同人射角が2
10 の場合の透過率特性を示す特性図、第5図は同設
計波長λO−853nmでの透過率特性を示す特性図、
第6図は高屈折率物質としてT * 02 、低屈折率
物質としてMgF2を用いた場合の透過率特性を示す特
性図、第7図は同従来の2波長分離フィルターの構成を
示す図、第8図はその透過率特性を示す特性図である。 1〜40・・・・・・層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 No、         xが) ! °      1 37    Ti0z   2 ! 32   5tCh   2 Ti       / 26    Sing   2 20    δ1o22 7  ′  ′ /      。 /4   5i(k   2 7.3 /       ’       / &    SiO22 J   T’+022 第2図 1    宜      故     1第4図 第5図 WAVELENGTH(77U 第6図 誹WELENGTH(71り 第7図 第8図
Fig. 1 is a diagram showing the configuration of a two-wavelength separation filter in an embodiment of the present invention, and Fig. 2a shows the case where BaFlo is used as the base of the same two-wavelength separation filter and the design wavelength 10 t = -> is λO = 865 nm. Figure 2 is a characteristic diagram showing the transmittance characteristics when BK7 is used on the same substrate, and Figure 3 is a characteristic diagram showing the transmittance characteristics when the same design wavelength is λO = 750n.
Figure 4 is a characteristic diagram showing the transmittance characteristics at m.
10. Figure 5 is a characteristic diagram showing the transmittance characteristics at the same design wavelength λO-853 nm.
Fig. 6 is a characteristic diagram showing the transmittance characteristics when T*02 is used as the high refractive index material and MgF2 is used as the low refractive index material. Fig. 7 is a diagram showing the configuration of the same conventional two-wavelength separation filter. FIG. 8 is a characteristic diagram showing the transmittance characteristics. 1 to 40...layers. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure No. x)! ° 1 37 Ti0z 2 ! 32 5tCh 2 Ti / 26 Sing 2 20 δ1o22 7 ′ ′ / . /4 5i(k 2 7.3 / ' / & SiO22 J T'+022

Claims (1)

【特許請求の範囲】[Claims] 誘電体薄膜を基盤上に交互に積層した多層膜からなる薄
膜系において、全層数が40層であり、基盤より数えて
奇数番目の層を高屈折率物質、偶数番目の層を低屈折率
物質とし、第3層、第8層、第14層、第20層、第2
6層、第32層、第37層の光学的膜厚を設計波長をλ
_Oとして約λ_O/2とし、前記以外の光学的膜厚を
約λ_O/4とした2波長分離フィルター。
In a thin film system consisting of a multilayer film in which dielectric thin films are alternately laminated on a substrate, the total number of layers is 40, and the odd-numbered layers counting from the substrate are made of a high refractive index material and the even-numbered layers are made of a low refractive index material. material, 3rd layer, 8th layer, 14th layer, 20th layer, 2nd layer
The optical thickness of the 6th layer, the 32nd layer, and the 37th layer is determined by setting the design wavelength to λ.
A two-wavelength separation filter in which _O is about λ_O/2 and the optical film thickness other than the above is about λ_O/4.
JP14512186A 1986-06-20 1986-06-20 Two-wavelength separation filter Pending JPS62299905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14512186A JPS62299905A (en) 1986-06-20 1986-06-20 Two-wavelength separation filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14512186A JPS62299905A (en) 1986-06-20 1986-06-20 Two-wavelength separation filter

Publications (1)

Publication Number Publication Date
JPS62299905A true JPS62299905A (en) 1987-12-26

Family

ID=15377882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14512186A Pending JPS62299905A (en) 1986-06-20 1986-06-20 Two-wavelength separation filter

Country Status (1)

Country Link
JP (1) JPS62299905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400174A (en) * 1991-07-02 1995-03-21 El-Op Electro-Optics Industries Ltd. Optical notch or minus filter
US5410431A (en) * 1993-06-01 1995-04-25 Rockwell International Corporation Multi-line narrowband-pass filters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400174A (en) * 1991-07-02 1995-03-21 El-Op Electro-Optics Industries Ltd. Optical notch or minus filter
US5410431A (en) * 1993-06-01 1995-04-25 Rockwell International Corporation Multi-line narrowband-pass filters

Similar Documents

Publication Publication Date Title
JP4457913B2 (en) Aperture filter, optical pickup, and aperture filter manufacturing method
JPS62299905A (en) Two-wavelength separation filter
JP3584257B2 (en) Polarizing beam splitter
JP2002279685A (en) Diaphragm filter for optical pickup device
JP3224316B2 (en) Two-wavelength anti-reflection coating
JP2003043245A (en) Optical filter
JPS62148904A (en) Two wavelength separating filter
JPS6318304A (en) Band-pass filter for two-wavelength separation
JPS62284304A (en) Two wavelength separation filter
JP3976919B2 (en) Reflection mirror
JPH0242201B2 (en)
JPS63147108A (en) Two-wavelength separation filter
JPH0619482B2 (en) Prism beam splitter
JPS6250896B2 (en)
JPS6315562B2 (en)
JPH08160220A (en) Optical multilayer film filter
JP2606826B2 (en) 2-wavelength optical head
JPH0690327B2 (en) Dual wavelength optical head
JPS62148905A (en) Polarizing beam splitter
JPS63116105A (en) Polarized beam splitter and two wavelength separating filter
JP2001013308A (en) Prism type beam splitter
JPS638702A (en) Unpolarization beam splitter
JP2022053623A (en) Optical member and method for manufacturing the same
JPS6242101A (en) Antireflection film
JP3344022B2 (en) Optical device and optical pickup