JPS62299080A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62299080A
JPS62299080A JP14194886A JP14194886A JPS62299080A JP S62299080 A JPS62299080 A JP S62299080A JP 14194886 A JP14194886 A JP 14194886A JP 14194886 A JP14194886 A JP 14194886A JP S62299080 A JPS62299080 A JP S62299080A
Authority
JP
Japan
Prior art keywords
glass substrate
amorphous silicon
silicon nitride
tpt
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14194886A
Other languages
Japanese (ja)
Other versions
JP2687959B2 (en
Inventor
Ikunori Kobayashi
郁典 小林
Sadakichi Hotta
定吉 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61141948A priority Critical patent/JP2687959B2/en
Publication of JPS62299080A publication Critical patent/JPS62299080A/en
Application granted granted Critical
Publication of JP2687959B2 publication Critical patent/JP2687959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To ensure uniformity in thin-film transistor characteristics produced in a simplified process by a method wherein several thin-film transistors, with their semiconductor layers composed mainly of amorphous silicon, are formed and wired on a glass substrate and then the glass substrate is heated to and kept at a specified temperature. CONSTITUTION:A gate electrode 2 is selectively attached to a glass substrate 1, and then silicon nitride to serve as a gate insulating film 3, amorphous silicon 4 to serve as a semiconductor layer, and silicon nitride 5 for passivation are formed by plasma CVD, in that order. Next, the silicon nitride 5 and amorphous silicon 4 are selectively removed, after which phosphorus-added amorphous silicon 6a and 6b, molybdenum silicide 7a and 7b, aluminum 8a and 8b are selectively attached, in that order. Source electrodes 6a, 7a, and 8a and drain electrodes 6b, 7b, and 8b are formed. Next, the glass substrate 1 is subjected to heat treatment at 160-300 deg.C. This technique ensures uniformity in thin-film transistor characteristics.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は液晶等と組合せて画像表示装置を構成するため
の非晶質シリコン半導体よりなる薄膜トランジスタ(以
後TPTと呼ぶ)をガラス基板上にマトリックス状に形
成した半導体装置の製造方法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Field of Application The present invention relates to a thin film transistor (hereinafter referred to as TPT) made of an amorphous silicon semiconductor for constructing an image display device in combination with a liquid crystal or the like. The present invention relates to a method of manufacturing a semiconductor device formed in a matrix on a glass substrate.

従来の技術 第3図にTPTの断面構造の一例であり、液晶等と組合
せて画像表示装置を構成する半導体装置はこのTPTを
マトリックス状に多数配置したものである。
BACKGROUND OF THE INVENTION FIG. 3 shows an example of the cross-sectional structure of a TPT. A semiconductor device that is combined with a liquid crystal or the like to form an image display device has a large number of TPTs arranged in a matrix.

従来このような半導体装置の各場所の代表のTPT%性
〔ドレイン電流(Id)−ゲート電圧(Vg)特性〕を
測定すると第2図に示す特性が得られた。
Conventionally, when representative TPT % characteristics (drain current (Id)-gate voltage (Vg) characteristics) at each location of such a semiconductor device were measured, the characteristics shown in FIG. 2 were obtained.

この図に示されるように各場所により特性に差を生じ、
特にオフ電流(本説明ではゲート電圧がOVの時のドレ
イン電流を指す)が著しく異なり不均一であった。
As shown in this figure, there are differences in characteristics depending on the location,
In particular, the off-state current (in this description, refers to the drain current when the gate voltage is OV) was significantly different and non-uniform.

発明が解決しようとする問題点 上述したような各TPT特性が不均一である半導体装置
を使用して液晶画像表示装置を構成した場合、画面の輝
度むら等の画質の劣化が発生する。
Problems to be Solved by the Invention When a liquid crystal image display device is constructed using semiconductor devices having non-uniform TPT characteristics as described above, deterioration of image quality such as uneven brightness of the screen occurs.

一方TPT特性が不均一になる原因として、TPTの表
面に存在する水分等による漏れ電流。
On the other hand, one of the causes of non-uniform TPT characteristics is leakage current due to moisture etc. existing on the surface of TPT.

TFTの主材料となっている半導体層と絶縁体層との界
面に不安定な不純物準位が存在することなどが考えられ
る。
It is conceivable that unstable impurity levels exist at the interface between the semiconductor layer, which is the main material of the TFT, and the insulator layer.

本発明はかかる問題点に鑑みなされたもので、簡易な工
程により半導体装置の各TPT特性を均一化することを
目的とする。
The present invention was made in view of such problems, and an object of the present invention is to make each TPT characteristic of a semiconductor device uniform through a simple process.

問題点を解決するための手段 上記問題点を解決するための本発明の技術的手段はTF
Tを形成し配線した後に160〜300℃の基板温度に
加熱保持する工程を実施することである。
Means for solving the problems The technical means of the present invention for solving the above problems is TF
After forming the T and wiring, a step of heating and holding the substrate at a temperature of 160 to 300° C. is carried out.

作用 本発明は上述した技術的手段により、TPTの−表面に
存在する水分等の不純物を除去し、さらに半導体層と絶
縁体層との界面に存在する不安定な不純物準位を消失せ
しめてTPTのオフ電流を安定化して各TPT特性を均
一化して、輝度むら等画質の劣化のない液晶画像表示装
置を構成できる半導体装置が得られる。
Operation The present invention uses the above-mentioned technical means to remove impurities such as moisture existing on the surface of TPT, and further eliminates unstable impurity levels existing at the interface between the semiconductor layer and the insulator layer. By stabilizing the off-state current and making each TPT characteristic uniform, it is possible to obtain a semiconductor device that can constitute a liquid crystal image display device without deterioration of image quality such as uneven brightness.

実施例 以下、本発明の一実施例について第3図とともに説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIG.

ガラス基板1上にゲート電極2を選択的に被着形成した
後、ゲート絶縁膜3となる窒化シリコン。
After selectively depositing a gate electrode 2 on a glass substrate 1, silicon nitride is deposited to become a gate insulating film 3.

半導体層となる非晶質シリコン4.パッシベーション用
窒化シリコン6をプラズマCVD法により順次被着する
。次に前記パッシベーション用窒化シリコン、非晶質シ
リコンを選択的に除去した後、リンを添加した非晶質シ
リコン6a 、6b、モリフ゛デンシリサイド了a、7
b1アルミニウム82L。
Amorphous silicon that becomes the semiconductor layer 4. Passivation silicon nitride 6 is sequentially deposited by plasma CVD. Next, after selectively removing the passivation silicon nitride and amorphous silicon, phosphorus-doped amorphous silicon 6a, 6b, molybdenum silicide a, 7
b1 aluminum 82L.

8bを順次選択的に被着し、6a、7a、8aよりなる
ソース電極、6b 、7b 、8bよりなるドレイン電
極を形成する。
8b is sequentially and selectively deposited to form a source electrode consisting of 6a, 7a, and 8a, and a drain electrode consisting of 6b, 7b, and 8b.

次に前記基板を熱処理オープンを使用してたとえば基板
温度200℃で30分間保持する。
Next, the substrate is held at a substrate temperature of 200° C. for 30 minutes using an open heat treatment.

上述のように作製したTPTの特性を第1図に示す。図
に示すように、基板の各場所に形成されたTPTの特性
は均一であった。
The characteristics of the TPT produced as described above are shown in FIG. As shown in the figure, the characteristics of the TPT formed at each location on the substrate were uniform.

次に種々の温度で熱処理を行ないそのTPT特性を測定
した場合、上述と同様の効果が160°C以上で見られ
たが、300℃以上で熱処理した場合、オフ電流が大き
くなり、かつオン電流が小さくなってTPTが劣化した
Next, when we performed heat treatment at various temperatures and measured the TPT characteristics, we found that the same effect as described above was seen at temperatures above 160°C, but when heat treated at temperatures above 300°C, the off-state current increased and the on-state current increased. became smaller and TPT deteriorated.

従って、熱処理の温度は160℃〜300℃が最適であ
る。
Therefore, the optimum temperature for heat treatment is 160°C to 300°C.

他の実施例について説明する。Other embodiments will be described.

前述した工程によりソース・ドレイン電極を形成した後
、液晶画像表示装置を組立てるために配向膜を塗布し、
その後160℃〜300℃の温度で熱処理を行なう。こ
のような工程によっても前記第1の実施例と同様な効果
が得られた。
After forming the source and drain electrodes through the steps described above, an alignment film is applied to assemble the liquid crystal image display device.
Thereafter, heat treatment is performed at a temperature of 160°C to 300°C. Even through such a process, the same effects as in the first embodiment were obtained.

発明の効果 以上述べてきたように本発明はガラス基板上に多数TP
Tを形成した後、160℃〜300°Cで熱処理を行な
うことにより、そのTPT特性を均一化する効果を有し
、画質の劣化のない液晶画像表示装置を構成する半導体
装置を製造できる。
Effects of the Invention As described above, the present invention provides a large number of TPs on a glass substrate.
After forming the T, heat treatment at 160° C. to 300° C. has the effect of making the TPT characteristics uniform, and it is possible to manufacture a semiconductor device constituting a liquid crystal image display device with no deterioration in image quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるTPT特性を示す図
、第2図は従来のTPT特性を示す図、第3図はTPT
の構造断面の一例を示す図である。 1・・・・・・ガラス基板、2・・・・・・ゲート電極
、3・・・・・・ゲート絶縁膜、4・・・・・・非晶質
シリコン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 一、51’  0 5 10 15  Zt)す(v) 第2図 一δ 0 5 10 15 2θ リ (V) / −−一力゛ラス1ミ反 2−−−ゲート篭不i 3−−−ゲート洲乞判に膠、 4−一井西貢シリコン 第3図
FIG. 1 is a diagram showing TPT characteristics in an embodiment of the present invention, FIG. 2 is a diagram showing conventional TPT characteristics, and FIG. 3 is a diagram showing TPT characteristics in an embodiment of the present invention.
It is a figure showing an example of a structural cross section of. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Gate electrode, 3... Gate insulating film, 4... Amorphous silicon. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 1, 51' 0 5 10 15 Zt) (v) Fig. 2 - δ 0 5 10 15 2θ li (V) / --One force = 1 min. 2---Gate cage failure i 3-- -Glue at the gate, 4-Ichii Saikung Silicon Diagram 3

Claims (1)

【特許請求の範囲】[Claims] ガラス基板上に、非晶質シリコンを半導体層の主材料と
する薄膜トランジスタを複数形成し配線した後に、前記
ガラス基板を160℃〜300℃の温度に加熱保持する
工程を有する半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising the steps of forming and wiring a plurality of thin film transistors whose semiconductor layers are mainly made of amorphous silicon on a glass substrate, and then heating and holding the glass substrate at a temperature of 160° C. to 300° C.
JP61141948A 1986-06-18 1986-06-18 Method for stabilizing thin film transistor characteristics Expired - Lifetime JP2687959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141948A JP2687959B2 (en) 1986-06-18 1986-06-18 Method for stabilizing thin film transistor characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141948A JP2687959B2 (en) 1986-06-18 1986-06-18 Method for stabilizing thin film transistor characteristics

Publications (2)

Publication Number Publication Date
JPS62299080A true JPS62299080A (en) 1987-12-26
JP2687959B2 JP2687959B2 (en) 1997-12-08

Family

ID=15303858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141948A Expired - Lifetime JP2687959B2 (en) 1986-06-18 1986-06-18 Method for stabilizing thin film transistor characteristics

Country Status (1)

Country Link
JP (1) JP2687959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253965A (en) * 1988-04-01 1989-10-11 Toppan Printing Co Ltd Manufacture of thin film transistor array
US6338874B1 (en) * 1993-01-28 2002-01-15 Applied Materials, Inc. Method for multilayer CVD processing in a single chamber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968975A (en) * 1982-10-12 1984-04-19 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968975A (en) * 1982-10-12 1984-04-19 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253965A (en) * 1988-04-01 1989-10-11 Toppan Printing Co Ltd Manufacture of thin film transistor array
US6338874B1 (en) * 1993-01-28 2002-01-15 Applied Materials, Inc. Method for multilayer CVD processing in a single chamber

Also Published As

Publication number Publication date
JP2687959B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
KR100378259B1 (en) Method and apparatus for fabricating a thin film transistor including crystalline active layer
JP4095074B2 (en) Semiconductor device manufacturing method
WO2018000478A1 (en) Method of manufacturing thin film transistor and method of manufacturing array panel
JPH0555570A (en) Thin film semiconductor device and manufacture thereof
JP3591242B2 (en) Thin film transistor, pixel matrix and liquid crystal display device
JPH1195256A (en) Active matrix substrate
JPS62299080A (en) Manufacture of semiconductor device
KR20050068164A (en) Fabrication method of polycrystalline liquid crystal display device
KR0155306B1 (en) Thin film transistor with double gate and method thereof
JP4901020B2 (en) Method for manufacturing polysilicon thin film transistor
JPS62172761A (en) Amorphous silicon thin film transistor and manufacture thereof
JPS58192375A (en) Manufacture of thin film transistor
KR100398591B1 (en) Method for manufacturing liquid crystal display device
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
KR100325068B1 (en) Manufacturing Method of Thin Film Transistor
JPH0279027A (en) Polycrystalline silicon thin film transistor
KR100205521B1 (en) Thin film transistor and its fabrication method
KR100593267B1 (en) Method for fabricating crystalline silicon thin film transistor
JPH02199842A (en) Manufacture of thin-film field-effect transistor element
JPH0330296B2 (en)
JP2756121B2 (en) Method for manufacturing thin film transistor
JPH04293242A (en) Manufacture of thin film transistor
JPS62299084A (en) Manufacture of thin film transistor
KR100837883B1 (en) method for fabricating thin film transistor
JP2714017B2 (en) Method of manufacturing thin film transistor array for liquid crystal display panel